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Second Order Regularity for a Linear
Elliptic System Having BMO Coefficients

Gioconda Moscariello and Giulio Pascale

Abstract. We consider linear elliptic systems whose prototype is

div Λ [ exp(−|x|) − log |x| ] I Du = div F + g in B. (0.1)

Here B denotes the unit ball of R
n, for n > 2, centered in the origin, I is the

identity matrix, F is a matrix in W 1,2(B, Rn×n), g is a vector in L2(B, Rn) and
Λ is a positive constant. Our result reads that the gradient of the solution u ∈
W 1,2

0 (B, Rn) to Dirichlet problem for system (0.1) is weakly differentiable provided
the constant Λ is not large enough.
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1. Introduction

We consider the linear elliptic system

div A(x)Du(x) = div F (x) + g (1.1)

in a bounded domain Ω ⊂ R
n, n > 2, with A(x) = (Aij(x)) symmetric, positive defi-

nite matrix with measurable coefficients, F given matrix field in W 1,2(Ω, Rn×n) and
g given vector field in L2(Ω, Rn). A vector field u in the Sobolev space W 1,2

0 (Ω, Rn)
is a weak solution of the Dirichlet problem:{

divA(x)Du = divF + g in Ω
u = 0 on ∂Ω

(1.2)
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if it verifies∫
Ω

〈A(x)Du(x), Dϕ(x)〉 dx =
∫

Ω

〈F (x), Dϕ(x)〉 dx +
∫

Ω

〈g(x), ϕ〉 dx

∀ϕ ∈ C∞
0 (Ω, Rn). (1.3)

We assume that the entries of the matrix A lie in the John - Nirenberg space BMO
and that for a.e. x ∈ Ω the following condition holds

|A(x + hei) − A(x)| ≤ K(x)|h|, i = 1, . . . , n,

with K(x) ∈ Ln,∞(Ω), and h ∈ R such that x+hei ∈ Ω. Thanks to a characterization
of the Sobolev functions due to Hajlasz [20], the function K above plays the role of
the derivative DxA. In fact this condition describes a weak form of continuity since
the function K may blow up at some points.

In the account of the typical functions of BMO and Ln,∞ respectively, it’s
obvious that the matrix

A(x) = Λ (e−|x| − log |x|) I, (1.4)

with x ∈ B(0, 1) = {x ∈ R
n : 0 < |x| < 1}, satisfies the assumptions above. Here Λ

is a positive constant and I denotes the identity matrix.
Note that the hypothesis A(x) in BMO guarantees that the problem (1.1)

admits a unique solution (see Theorem 1.1 of [28]).
The regularity results for linear systems with continuous coefficients can be

considered classical. The first remarkable contribution is due to Agmon, Douglis
and Nirenberg (see [2] and [3]). Later regularity results of Schauder type in the
class of Hölderian functions are proved by Campanato [8] and Morrey [26]. See also
[9]. A full discussion can be found in [15] and [16].

The aim of this paper is to study the second order regularity of the solution
of (1.1). More precisely, we prove the following:

Theorem 1.1. Let Ω be a regular Lipschitz domain. There exists ε0 > 0, depending
on n, such that, if

DK ≡ distLn,∞(K(x), L∞) < ε0, (1.5)

then u ∈ W 2,2
loc (Ω, Rn) and∫

BR

|D2u|2 dx ≤ c

∫
B2R

((
1 +

1
R2

)
|Du|2 +

1
R2

|F |2 + |DF |2 + |g|2
)

dx,

for every ball B2R ⊂⊂ Ω and for a constant c, depending on n, DK and the BMO-
norm of A.

For the definition of regular domain, see the Sect. 2 below. Anyway, balls and
cubes of R

n are regular domains.
The condition (1.5) on the distance DK of K(x) to L∞ is clearly satisfied if

the derivatives of A(x) belong to any subspace of Ln,∞ in which L∞ is dense, and
then, in particular, if they belong to Ln,q with 1 < q < ∞, since their distances to
L∞ are null. On the contrary, L∞ is not dense in Lp,∞ for any p > 1. We point
out that the condition (1.5) does not imply the smallness of the norm of K(x) in
Ln,∞. In fact, if A(x) is the matrix in (1.4), an elementary calculation shows that
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it reduces to consider the constant Λ < ε0ω
−1/n
n , where ωn denotes the measure

of unit ball in R
n. A value of ε0 is given in (3.13). It follows that assuming (1.5)

is more general than considering a condition on the norm and allows us to present
different settings of our result in a unified way. We explicitly remark that, thanks
to the embedding theorem 2.2, our result applies if the entries of A(x) lie in W 1,n.
The boundedness of the coefficients in a system of the type (1.1) is sometimes
too restrictive in applications, as for example in phisical process of diffusion or in
mathematical finance.

The novelty of Theorem 1.1 is to consider systems with BMO coefficients,
which feature is that they are allowed to be very irregular. In this case the energy
functional ∫

Ω

〈A(x) Du,Du〉 dx

could not be bounded, then a priori we cannot use test functions in (1.3) propor-
tional to the solution u. The Hodge decomposition and a generalization of Coifman,
Rochberg and Weiss commutator result [12] allow us to establish an a priori esti-
mate. Then the result follows by considering regularized approximating problems. If
the boundary of Ω is more regular, a global version of Theorem 1.1 is also available
(Proposition 4.1).

The study of the second order regularity of solutions to linear equations with
discontinuous coefficients goes back to C. Miranda [25], who considered the case of
coefficients in W 1,n. Then a significant improvement has been given in [5] and in
[10,11]. Linear equations having coefficients in BMO with small norm have been
addressed in [19]. More recently, a condition similar to (1.5) has been considered in
[16] to study the Lp - regularity of a linear Dirichlet problem. In connection with the
regularity of minimizers of functionals of the Calculus of Variations [1], the study
of the regularity theory for systems had a remarkable development in last years.
Recently in [13] linear systems with coefficients having in some directions locally
small mean oscillation have been studied. We refer to [23,24] and references therein
for an almost complete recent treatment.

2. Preliminaries

This section is devoted to notation and preliminary results useful for our aims.

2.1. BMO Spaces

Definition 2.1 ([7,22]). Let Ω be a cube or the entire space R
n. The BMO(Ω) space

consists of all functions b which are integrable on every cube Q ⊂ Ω with sides
parallel to those of Ω and satisfy:

||b||∗ = sup
Q

{
1

|Q|
∫

Q

|b − bQ| dx

}
< ∞,

where bQ = 1
|Q|

∫
Q

b(y) dy and |Q| denotes the Lebesgue measure of Q.
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It is clear that the functional || · ||∗ does not define a norm since it vanishes on
constant functions. However BMO becomes a Banach space provided we identify
functions which differ a. e. by a constant.

Bounded functions f are in BMO. On the other hand, BMO contains
unbounded functions. The standard example of BMO function is

f(x) = log |x|, x ∈ B(0, 1).

We also recall the following inclusion

Theorem 2.2 ([7]). For any cube Q ⊂ R
n the following inclusion holds with contin-

uous embedding:

W 1,n(Q) ↪→ BMO(Q).

2.2. Hodge Decomposition

We shall now discuss briefly the Hodge decomposition of vector fields; for a more
complete treatment see [21]. For a given vector field F = (f1, . . . , fn) ∈ Lp(Rn, Rn),
1 < p < ∞, the Poisson equation Δu = divF can be solved by using the Riesz
transforms in R

n, R = (R1, . . . , Rn),

∇u = −(R ⊗ R)(F ) =: K (F ).

Here the tensor product operator K = −R⊗R = −[Rij ] is the n×n matrix of the
second order Riesz transforms Rij = Ri ◦ Rj , i, j = 1, . . . , n. Notice that the range
of the operator

H := Id − K : Lp(Rn, Rn) → Lp(Rn, Rn)

consists of the divergence free vector fields. We then arrive at the familiar Hodge
decomposition of F

F = ∇u + H, divH = 0.

Hence, Lp-estimates for Riesz transform yield an uniform estimate

||∇u||Lp + ||H||Lp ≤ c(p)||F ||Lp .

Let Ω ⊂ R
n be a domain and G = G(x, y) the Green’s function. For h ∈ C∞

0 (Ω)
the integral

u(x) =
∫

Ω

G(x, y)h(y) dy

defines a solution of the Poisson equation Δu = h with u vanishing on the boundary
of Ω. If h has a divergence form, say h = div F with F = (f1, . . . , fn) ∈ C∞

0 (Ω, Rn),
then integration by parts yields

u(x) = −
∫

Ω

∇yG(x, y)F (y) dy.

Hence the gradient of u is expressed by a singular integral

∇u(x) = −
∫

Ω

∇x∇yG(x, y)F (y) dy =: (KΩF )(x).

The continuity of KΩ : L2(Ω, Rn) → L2(Ω, Rn) is easily established by interpreting
KΩF as the orthogonal projection of F into gradient fields.
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Let Dp(Ω, Rn) denote the closure of the range of the gradient operator ∇ :
C∞

0 (Ω) → Lp(Ω, Rn), 1 < p < ∞. If Ω is smooth, then KΩ extends continuously
to all Lp(Ω, Rn) spaces. Consequently the formula ∇u = KΩF extends to all F ∈
Lp(Ω, Rn) giving a solution with ∇u ∈ Dp(Ω, Rn), 1 < p < ∞.

Definition 2.3 ([21]). A domain Ω ⊂ R
n will be called regular if the operator KΩ

acts boundedly in all Lp(Ω, Rn)-spaces, for 1 < p < ∞.

For Ω a regular domain we introduce, as before, the operator

HΩ := Id − KΩ : Lp(Ω, Rn) → Lp(Ω, Rn).

Obviously, the range of HΩ consists of the divergence free vector fields on Ω. We
have the Hodge decomposition of F ∈ Lp(Ω, Rn),

F = ∇u + H, div H = 0, ∇u ∈ Dp(Ω, Rn). (2.1)

We also have the uniform estimate

||∇u||Lp + ||H||Lp ≤ c(p, Ω)||F ||Lp .

We now turn to commutators. We need the following definition.

Definition 2.4 ([28]). Let k(x) : R
n → R

n. We will call k a Calderon-Zygmund
kernel (CZ kernel) if k satisfies the following properties

1. k(x) ∈ C∞(Rn \ {0}),
2. k(x) is homogeneous of degree −n,
3.

∫
Σ

k(x) dσx = 0 where Σ is the unit sphere of R
n.

Given such a kernel, one can define a bounded operator in Lp, called Calderon–
Zygmund singular operator, as follows

Kf(x) = P.V.(k � f)(x) := P.V.

∫
Rn

k(x − y)f(y) dy.

Let ϕ ∈ BMO(Rn) and k a CZ kernel. Following [12], we define, for f ∈ Lp(Rn)
(1 < p < ∞), the commutator of ϕ and k as the principal value

C[ϕ, f ] = ϕ(x)P.V.k � f(x) − P.V.k � (ϕf)(x).

Theorem 2.5 ([12]). Under the previous assumptions on ϕ and k, C[ϕ, f ] is well
defined for f ∈ Lp. Moreover C[ϕ, f ] is a bounded operator in Lp(Rn), i.e. for some
constant c = c(n, p, ||k||L2) we have

||C[ϕ, f ]||Lp ≤ c||ϕ||∗||f ||Lp .

We will state a generalization of Theorem 2.5 in finite - dimensional normed
spaces. Let E be a finite-dimensional normed space of dimension m,

T : Lp(Rn, E) �→ Lp(Rn, E), 1 < p < ∞,

a Calderon - Zygmund integral operator. Fixed a basis in E, we can associate to
the operator T a m × m matrix of Calderon–Zygmund operators

Tij : Lp(Rn) �→ Lp(Rn).
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Given A ∈ BMO(Rn, Aut(E)), where Aut(E) denotes the space of linear maps from
E to E, and

||A||∗ = sup
Q

1
|Q|

∫
Q

||A − AQ|| dx

is the BMO norm, we consider the range of A:

A = {A(z); z ∈ R
n} ⊂ Aut(E).

Let us state the theorem:

Theorem 2.6 ([28]). Given f ∈ Lp(Rn, E) such that commutes with the range of
A,

T [A(z)f ](x) = A(z)Tf(x) (2.2)

for almost every z ∈ R
n, then

||T (Af) − ATf ||Lp ≤ c||A||∗||f ||Lp .

Since we would apply Theorem 2.6 to the projection T onto divergence free
matrix fields, we need to identify the range of the compatibility condition (2.2). Take
now A0 a n×n-matrix, A0 induces a linear transformation given by A0(X) = A0X,
the row by column product of matrices. It is easy to verify that A0 commutes with
the operator T ; in fact, multiplying the decomposition of F by A0 we get

A0F = A0Du + A0H = D(A0u) + A0H and div(A0H) = 0

in the sense of distributions:∫
〈A0H,Dϕ〉 =

∫
〈H,A0tDϕ〉 =

∫
〈H,D(A0tϕ)〉,

where A0t denotes the transpose of A0. It can be shown a local version of Theo-
rem 2.5 in the case of Hodge decomposition of matrix fields. Therefore, given any
BMO-matrix field A(x), we get:

Lemma 2.7. ([28]) For Ω = R
n or Ω regular domain, let T be the projection onto

divergence free matrix fields, and A(x) a BMO - matrix field. Then

||TA(F ) − AT (F )||Lp ≤ c||A||∗||F ||Lp

for every F ∈ Lp(Ω, Rn×n).

2.3. Lorentz Spaces

Let Ω be a bounded domain in R
n. Given 1 < p, q < ∞, the Lorentz space Lp,q(Ω)

consists of all measurable functions g defined on Ω for which the quantity

||g||qLp,q = p

∫ ∞

0

|Ωt(g)| q
p tq−1 dt

is finite, where Ωt(g) = {x ∈ Ω : |g(x)| > t} and |Ωt| is the Lebesgue measure of
Ωt. Note that || · ||Lp,q is equivalent to a norm and Lp,q becomes a Banach space
when endowed with it. For p = q, the Lorentz space Lp,p reduces to the standard
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Lebesgue space Lp. For q = ∞, the class Lp,∞ consists of all measurable functions
g defined on Ω such that

||g||pLp,∞ = sup
t>0

tp|Ωt(g)| < ∞

and it coincides with the Marcinkiewicz class, weak-Lp. For Lorentz spaces the
following inclusions hold

Lr(Ω) ⊂ Lp,q(Ω) ⊂ Lp,r(Ω) ⊂ Lp,∞(Ω) ⊂ Lq(Ω),

whenever 1 ≤ q < p < r ≤ ∞
Fundamental to us will be the Sobolev embedding theorem in Lorentz spaces

(see [4]).

Theorem 2.8. Let us assume that 1 < p < n, 1 ≤ q ≤ p, then any function u ∈
W 1,1

0 (Ω) such that |∇u| ∈ Lp,q(Ω) actually belongs to Lp∗,q(Ω) and

||u||Lp∗,q ≤ Sn,p||∇u||Lp,q .

Here p∗ = np
n−p and Sn,p = ω

− 1
n

n
p

n−p , where ωn is the Lebesgue measure of the unit
ball in R

n.

We define the distance of a given f ∈ Lp,∞ to L∞ as

distLp,∞(f, L∞) = inf
g∈L∞

||f − g||Lp,∞ .

To find a formula for the distance, we consider the truncation operator. For k > 0
and y ∈ R, we set

Tk(y) = min{k,max{−k, y}}.

Then

distLp,∞(f, L∞) = lim
k→∞

||f − Tkf ||Lp,∞ .

Indeed, ∀g ∈ L∞, ∀k ≥ ||g||L∞ , we have for almost every x ∈ Ω,

|f(x) − g(x)| ≥ |f(x) − Tkf(x)|.
Let Ω be the unit ball of R

n. The function

f(x) =
1
|x|

belongs to Ln,∞. Setting ωn = |Ω|, we have

||f − Tkf ||Lp,∞ = ω1/n
n

and it does not depend on k. For more details, see [15].
We recall the following relevant properties.

Lemma 2.9 ([6]). If E ∈ Lp,∞(Rn), 1 < p < ∞, and f ∈ L1(Rn), then E � f ∈
Lp,∞(Rn) and

||E � f ||Lp,∞ ≤ ||E||Lp,∞ ||f ||L1 .
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Theorem 2.10. (Hölder’s inequality in Lorentz spaces, [27]) If 0 < p1, p2, p < ∞
and 0 < q1, q2, q ≤ ∞ obey 1

p = 1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
then

||fg||Lp,q ≤ ||f ||Lp1,q1 ||g||Lp2,q2

whenever the right-hand side norms are finite.

2.4. Difference Quotients

Definition 2.11 ([18]). Let f(x) be a function defined in an open set Ω ⊂ R
n, and

let h be a real number. We call the difference quotient of f with respect to xs the
function

Δs,hf(x) =
f(x + hes) − f(x)

h
≡ τs,h f(x)

h
,

where es denotes the direction of the xs axis and τs,h is the finite difference operator.

When no confusion can arise, we shall omit the index s, and we shall write
simply Δh instead of Δs,h.

The function Δs,hf is defined in the set

Δs,hΩ := {x ∈ Ω : x + hes ∈ Ω},

and hence in the set

Ω|h| = {x ∈ Ω : dist(x, ∂Ω) > |h|}.

The following properties of the difference quotients are immediate:
• If f ∈ W 1,p(Ω), then Δhf ∈ W 1,p(Ω|h|), and

Di(Δhf) = Δh(Dif).

• If at least one of the functions f or g has support contained in Ω|h|, then∫
Ω

fΔhg dx = −
∫

Ω

gΔ−hf dx. (2.3)

• We have

Δh(fg)(x) = f(x + hes)Δhg(x) + g(x)Δhf(x).

Remark 2.12. It follows immediately from (2.3) that the derivatives Dsg of a
Lipschitz-continuous function g, which exist almost everywhere as limits of the dif-
ference quotient Δs,hg, coincide with its weak derivatives. In fact, if f is a test
function, we can pass to the limit in (2.3), getting∫

fDsg dx = −
∫

gDsf dx.

In other words, we have Lip(Ω) = W 1,∞(Ω).

For R > 0 and x0 ∈ R
n, we define

BR(x0) = {x ∈ R
n : |x − x0| < R},

but in the case no ambiguity arises, we shall use the short notation BR.
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Lemma 2.13. ([18]) There exists a constant c(n) such that if v ∈ W 1,p(Ω), Σ ⊂⊂ Ω,
1 < p < ∞, s ∈ {1, . . . , n} and |h| < h0 = 1

10
√

n
dist(Σ, ∂Ω)

||Δs,hv||Lp(Σ) ≤ c||Dsv||Lp(Ω).

Moreover, if 0 < 
 < R, |h| < R − 
,∫
B�

|v(x + hes)|p dx ≤ c(n, p)
∫

BR

|v(x)|p dx.

Finally we recall the following useful lemma:

Lemma 2.14. ( [17]) For R0 < R1, consider a bounded function f : [R0, R1] →
[0,∞) with

f(s) ≤ ϑf(t) +
A

(s − t)α
+ B for allR0 < s < t < R1,

where A, B and α denote non-negative constants and ϑ ∈ (0, 1). Then we have

f(R0) ≤ c(α, ϑ)
(

A

(R1 − R0)α
+ B

)
.

3. A Priori Estimate

Theorem 3.1. Let Ω be a regular Lipschitz domain. If the solution u of (1.2) is in
W 2,2

loc (Ω, Rn), then there exists ε0 > 0, depending only on n, such that, if DK < ε0,
the following estimate holds∫

BR

|D2u|2 dx ≤ c

∫
B2R

((
1 +

1
R2

)
|Du|2 +

1
R2

|F |2 + |DF |2 + |g|2
)

dx,

for all B2R ⊂⊂ Ω and for a constant c depending on n, DK and the BMO-norm of
A.

Proof. If u ∈ W 1,2
0 (Ω) is the solution of (1.2), then for every ε > 0 we have that

A(x)Du ∈ L2−ε(Ω, Rn×n) since A belongs to Lp for every 1 < p < ∞. We decompose
as in (2.1)

ADu = DΨ + H, (3.1)

with DΨ ∈ L2−ε(Ω, Rn×n) and H ∈ L2−ε(Ω, Rn×n) divergence free vector field.
Since u solves problem (1.2), we get

divDΨ = ΔΨ = divF + g,

then, by the classical theory, DΨ ∈ L2(Ω, Rn×n) and

||DΨ||L2 ≤ ||F ||L2 + ||g||L2 .

Let us examine the other term of the Hodge decomposition: H in (3.1) is a com-
mutator with BMO-matrix of a gradient field in L2; using Lemma 2.7 we conclude
that H ∈ L2 and

||H||L2 ≤ c||A||∗||Du||L2 ,
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where c = c(n). Finally from (3.1) we deduce that A(x)Du belongs to L2(Ω, Rn×n)
and we get

||A(x)Du||L2 ≤ c(n)(||A||∗||Du||L2 + ||F ||L2 + ||g||L2).

Now for a fixed ball B2R ⊂⊂ Ω and radii R < s < t < 2R with R small
enough, consider a function ξ ∈ C∞

0 (Bt), 0 ≤ ξ ≤ 1, ξ = 1 on Bs, |∇ξ| ≤ 1
t−s and

set ψ = ξ2τhu for sufficiently small h. Since u is a weak solution of (1.1), we are
able to use ϕ = τ−hψ as test function in (1.3). Then∫

Bt

〈A(x)Du,Dϕ〉 dx =
∫

Bt

〈F (x), Dϕ〉 dx +
∫

Bt

〈g(x), ϕ〉 dx,

and by virtue of the properties of difference quotients∫
Bt

〈τh(A(x)Du), D(ξ2τhu)〉 dx =
∫

Bt

〈τhF (x), Dψ〉 dx −
∫

Bt

〈g(x), ϕ〉 dx.

It follows that∫
Bt

ξ2〈τh(A(x)Du), Dτhu〉 dx + 2
∫

Bt

ξ〈τh(A(x)Du),∇ξ ⊗ τhu〉 dx

=
∫

Bt

〈τhF,Dψ〉 dx −
∫

Bt

〈g, τ−h(ξ2τhu)〉 dx.

(3.2)

We remark that

τh(A(x)Du) = A(x + hei)Dτhu + (τhA(x))Du.

Then from (3.2) we get∫
Bt

ξ2〈A(x + hei)Dτhu,Dτhu〉 dx

= −
∫

Bt

ξ2〈(τhA(x))Du,Dτhu〉 dx

−2
∫

Bt

ξ〈A(x + hei)Dτhu, ∇ξ ⊗ τhu〉 dx

−2
∫

Bt

ξ〈(τhA(x))Du, ∇ξ ⊗ τhu〉 dx

+
∫

Bt

〈τhF,Dψ〉 dx

−
∫

Bt

〈g, τ−h(ξ2τhu)〉 dx

= I1 + I2 + I3 + I4 + I5. (3.3)

Now let K0 ∈ L∞(Ω). The use of Hölder’s inequality in Lorentz spaces (Theo-
rem 2.10), together with Young’s inequality with a constant ν ∈ (0, 1) that will be
chosen later, yields
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|I1| ≤
∫

Bt

ξ2|h|K(x) |Du| |Dτhu| dx

≤ ν

2

∫
Bt

ξ2|Dτhu|2 dx +
1
2ν

∫
Bt

|h|2|K(x) − K0|2|ξDu|2 dx

+
∫

Bt

ξ2||K0||L∞ |h| |Du| |Dτhu| dx

≤ ν

2

∫
Bt

ξ2|Dτhu|2 dx +
|h|2
2ν

||K(x) − K0||2Ln,∞(Bt)
||ξDu||2L2∗,2(Bt)

+
ν

2

∫
Bt

ξ2|Dτhu|2 dx +
|h|2
2ν

∫
Bt

ξ2||K0||2L∞ |Du|2 dx.

Finally by Theorem 2.8

|I1| ≤ ν

∫
Bt

ξ2|Dτhu|2 dx +

+
|h|2
2ν

S2
2,n||K(x) − K0||2Ln,∞ ||D(ξDu)||2L2(Bt)

+

+
|h|2
2ν

∫
Bt

ξ2||K0||2L∞ |Du|2 dx. (3.4)

Next we estimate I2.

|I2| ≤ 2
∫

Bt−Bs

|ξ| |A(x + hei)τhu| |Dτhu| |∇ξ| dx

≤
∫

Bt−Bs

ξ2|Dτhu|2 dx +
∫

Bt−Bs

|∇ξ|2|A(x + hei)τhu|2 dx

≤
∫

Bt−Bs

ξ2|Dτh(u)|2 dx +
1

(t − s)2

∫
Bt−Bs

|A(x + hei)τhu|2 dx. (3.5)

Now we estimate I3. Again by Hölder’s and Young’s inequalities, we get

|I3| ≤ 2
∫

Bt

|ξ| |A(x + hei) − A(x)| |Du| |∇ξ| |τhu| dx

≤
∫

Bt

|ξ|2|A(x + hei) − A(x)|2|Du|2 dx +
∫

Bt−Bs

|∇ξ|2|τhu|2 dx

≤ 2
∫

Bt

|h|2|ξ|2|K(x) − K0|2|Du|2 dx + 2
∫

Bt

|h|2|ξ|2||K0||2L∞ |Du|2 dx

+
∫

Bt−Bs

|∇ξ|2|τhu|2 dx

≤ 2|h|2||K(x) − K0||2Ln,∞ ||ξDu||2L2∗,2 + 2|h|2||K0||2L∞

∫
Bt

ξ2|Du|2 dx

+
1

(t − s)2

∫
Bt−Bs

|τhu|2 dx.
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Applying Theorem 2.8, then

|I3| ≤ 4S2
2,n|h|2||K(x) − K0||2Ln,∞ ||ξD2u||2L2 +

+2|h|2||K0||2L∞

∫
Bt

ξ2|Du|2 dx +

+
1

(t − s)2

∫
Bt−Bs

|τhu|2 dx +

+4|h|2S2
2,n

1
(t − s)2

||K(x) − K0||2Ln,∞

∫
Bt−Bs

|Du|2 dx. (3.6)

Finally we estimate I4:

|I4| =
∣∣∣∣
∫

Bt

〈τhF,D(ξ2τhu)〉 dx

∣∣∣∣
≤ ν

2

∫
Bt

ξ2|Dτhu|2 dx +
1
2ν

∫
Bt

ξ2|τhF |2 dx

+
∫

Bt

ξ2|τhF |2 dx +
∫

Bt

|∇ξ|2|τhu|2 dx

≤ ν

2

∫
Bt

ξ2|Dτhu|2 dx +
(

1
2ν

+ 1
) ∫

Bt

ξ2|τhF |2 dx

+
1

(t − s)2

∫
Bt−Bs

|τhu|2 dx, (3.7)

and I5:

|I5| =
∣∣∣∣h

∫
Bt

g
τ−h(ξ2τhu)

h
dx

∣∣∣∣
≤ 1

2ν
|h|2

∫
Bt

|g(x)|2 dx +
ν

2

∫
Bt

∣∣∣∣τ−h(ξ2τhu)
h

∣∣∣∣
2

dx

≤ 1
2ν

|h|2
∫

Bt

|g(x)|2 dx +
ν

2

∫
Bt

∣∣∣∣τ−h(ξ2)(−τ−hu) + ξ2τ−h(τhu)
h

∣∣∣∣
2

dx

≤ 1
2ν

|h|2
∫

Bt

|g(x)|2 dx + ν

∫
Bt

∣∣∣τ−h(ξ2)
τ−hu

h

∣∣∣2 dx

+ν

∫
Bt

ξ4

∣∣∣∣τ−h(τhu)
h

∣∣∣∣
2

dx

=
1
2ν

|h|2
∫

Bt

|g(x)|2 dx + ν|h|2
∫

Bt

∣∣∣∣τ−h(ξ2)
h

∣∣∣∣
2 ∣∣∣τ−hu

h

∣∣∣2 dx

+ν

∫
Bt

ξ4

∣∣∣∣τ−h(τhu)
h

∣∣∣∣
2

dx. (3.8)
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Combining estimates (3.3)–(3.8), we get∫
Bt

ξ2|Dτhu|2 dx ≤ 3
2
ν

∫
Bt

ξ2|Dτhu|2 dx

+
(

1
ν

+ 4
)

|h|2S2
2,n||K(x) − K0||2Ln,∞

∫
Bt

|ξD2u|2 dx

+
1

(t − s)2

∫
Bt

|A(x + hei)τhu|2 dx +
(

2 +
1
2ν

)
|h|2||K0||2L∞

∫
Bt

ξ2|Du|2 dx

+
2

(t − s)2

∫
Bt−Bs

|τhu|2 dx +
(

1 +
1
2ν

)∫
Bt

ξ2|τhF |2 dx +
∫

Bt−Bs

ξ2|Dτhu|2 dx

+ |h|2
(

1
ν

+ 4
)

||K − K0||2Ln,∞S2
2,n

1
(t − s)2

∫
Bt−Bs

|Du|2 dx

+
1
2ν

|h|2
∫

Bt

|g(x)|2 dx + ν|h|2
∫

Bt

∣∣∣∣τ−h(ξ2)
h

∣∣∣∣
2 ∣∣∣τ−hu

h

∣∣∣2 dx

+ ν

∫
Bt

ξ4

∣∣∣∣τ−h(τhu)
h

∣∣∣∣
2

dx.

(3.9)

Next we divide by |h|2 in (3.9) and, by Lemma 2.13, as h → 0+, we get(
1 − 5

2
ν

) ∫
Bt

ξ2|D2u|2 dx ≤
(

1
ν

+ 4
)

S2
2,n ||K − K0||2Ln,∞

∫
Bt

ξ2|D2u|2 dx

+
∫

Bt−Bs

ξ2|D2u|2 dx +
1

(t − s)2

∫
Bt

|A(x) Du|2 dx

+
(

1
2ν

+ 2
)

||K0||2L∞

∫
Bt

ξ2|Du|2 dx +
2

(t − s)2

∫
Bt−Bs

|Du|2 dx

+
4ν

(t − s)2

∫
Bt

|Du|2 dx +
(

1
2ν

+ 1
)∫

Bt

ξ2|DF |2 dx

+
(

1
ν

+ 4
)

S2
2,n||K − K0||2Ln,∞

1
(t − s)2

∫
Bt−Bs

|Du|2 dx +
1
2ν

∫
Bt

|g(x)|2 dx.

(3.10)

Now we put ν = ν0 :=
√

65−5
20 , in order to maximize the function 1− 5

2ν

4+ 1
ν

, and η :=

1
S2,n

√
1− 5

2ν0

4+ 1
ν0

=
√

9−√
65

4S2,n
. Let ε0 be a number such that 0 < ε0 < η. If

DK < ε0, (3.11)

then we can choose K0 ∈ L∞(Ω) such that
(
1− 5

2ν0 −
(

1
ν0

+ 4
)

S2
2,n||K −K0||2Ln,∞

)
>

(
1 − 5

2ν0 −
(

1
ν0

+ 4
)

S2
2,nε2

0

)
> 0. Then, by reabsorbing the first term of the right

hand side of (3.10) in the left hand side, since ξ = 1 on Bs and 0 ≤ ξ ≤ 1, we get
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C

∫
Bs

|D2u|2 dx ≤
∫

Bt−Bs

|D2u|2 dx +
1

(t − s)2

∫
Bt

|A(x) Du|2 dx

+
(

1
2ν0

+ 2
)

||K0||2L∞

∫
Bt

|Du|2 dx +
(

3 +
3
2
ν0

)
1

(t − s)2

∫
Bt

|Du|2 dx

+
(

1
2ν0

+ 1
) ∫

Bt

|DF |2 dx +
1

2ν0

∫
Bt

|g(x)|2 dx,

where C = 1 − 5
2ν0 −

(
1
ν0

+ 4
)

S2
2,nε2

0.
Now we fill the hole, having∫

Bs

|D2u|2 dx ≤ 1
C + 1

∫
Bt

|D2u|2 dx +
1

C + 1

( 1
(t − s)2

∫
Bt

|A(x) Du|2 dx

+
(

1
2ν0

+ 2
)

||K0||2L∞

∫
Bt

|Du|2 dx +
(

3 +
3
2
ν0

)
1

(t − s)2

∫
Bt

|Du|2 dx

+
(

1
2ν0

+ 1
) ∫

Bt

|DF |2 dx +
1

2ν0

∫
Bt

|g(x)|2 dx
)
.

(3.12)

Then by Lemma 2.14∫
BR

|D2u|2 dx ≤ c
( 1

R2

∫
B2R

(||A||2∗|Du|2 + |F |2) dx

+
(

1 +
1

R2

) ∫
B2R

|Du|2 dx

+
∫

B2R

|DF |2 dx +
∫

B2R

|g(x)|2 dx
)
,

(3.13)

where c = c(n,DK), and therefore we have the result. �

Remark 3.2. The bound in (3.11) could be not optimal. Anyway it is comparable
with analogous bounds in [14].

Remark 3.3. We explicitly observe that the dependence of the constant in (3.13) on
DK occurs only through the norm of K0 in L∞.

4. Regularity

Given a symmetric matrix-valued function A(x) ∈ BMO(Ω, Rn×n), Ω Lipschitz
domain, we assume that

〈A(x)Y, Y 〉 ≥ ||Y ||2
for every matrix Y ∈ R

n×n. We consider the following system with Dirichlet bound-
ary conditions : {

div(ADu) = div F + g in Ω
u = 0 on ∂Ω,

(4.1)
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where u : Ω �→ R
n is a W 1,2

0 vector-valued function, F is a field in W 1,2 (Ω, R
n×n)

and g is a field in L2(Ω, Rn). Notice that we do not require that A belongs to L∞,
the system have to be understood in the weak sense∫

Ω

〈A(x)Du(x), Dϕ(x)〉 dx =
∫

Ω

〈F (x), Dϕ(x)〉 dx +
∫

Ω

〈g(x), ϕ(x)〉 dx

∀ϕ ∈ C∞
0 (Ω, Rn).

Because A ∈ BMO, we know that A ∈ L2 but A doesn’t need to be bounded;
however we know, by Theorem 1.1 in [28], that the Dirichlet problem (4.1) admits
a unique solution u in W 1,2

0 .
Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. We first extend the matrix A to R
n, putting zero outside of

Ω. Then we take 
 ∈ C∞
0 (Rn) such that supp 
 ⊂ B1(0), 
 ≥ 0, 
 �≡ 0 and ∞, and

we consider the convolution AN = A � 
N , with 
N = Nn�(Nx)∫
�

and defined by:

AN (x) =
∫
Rn

A(y)
N (x − y) dy, x ∈ Ω.

We notice that
1. AN ∈ C∞(Ω, Rn×n) ∩ L∞(Ω, Rn×n),
2. 〈ANY, Y 〉 ≥ ||Y ||2,
3. |AN (x + hei) − AN (x)| ≤ KN (x)|h|,
4. KN (x) = (K � 
N )(x) ∈ Ln,∞,
5. ||AN ||∗ ≤ ||A||∗,
6. AN converges to A in L2.

We find solutions uN ∈ W 1,2
0 (Ω, Rn) of the Dirichlet problems :{

div(AN DuN ) = div F + g in Ω
uN = 0 on ∂Ω,

(4.2)

that converge weakly in W 1,2
0 , and strongly in L2, to u (see [28]) and it is well known

that uN ∈ W 2,2
loc (Ω, Rn) (see [18]).

Let ε0 > 0 be the number fixed in (3.11) and let us assume

DK < ε0.

We notice that, from Lemma 2.9, we have

DKN
≤ DK < ε0.

More precisely, if K0 ∈ L∞(Ω) is a function such that ||K − K0||Ln,∞ < ε0, we get

||KN − K0||Ln,∞ ≤ ||K − K0||Ln,∞ + ||(K0)N − K0||Ln,∞ .

Since K0 ∈ Lp(Ω) for every p ≥ n, thanks to Theorem 2.10 the second term in
the right hand side of the previous inequality goes to 0 as N → +∞. Then we can
assume that

||KN − K0||Ln,∞ < ε0

for N sufficiently large.
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Now, arguing as in Theorem 3.1, we get the following relation∫
Bs

|D2uN |2 dx ≤ 1
C + 1

∫
Bt

|D2uN |2 dx

+
1

C + 1

( 1
(t − s)2

∫
Bt

|AN (x) DuN |2 dx

+
(

1
2ν0

+ 2
)

||K0||2L∞

∫
Bt

|DuN |2 dx

+
(

3 +
3
2
ν0

)
1

(t − s)2

∫
Bt

|DuN |2 dx +
(

1
2ν0

+ 1
)∫

Bt

|DF |2 dx

+
1

2ν0

∫
Bt

|g(x)|2 dx
)
,

where the constant C is the same of (3.12).
Applying Lemma 2.14 we deduce∫

BR

|D2uN |2 dx ≤ c(n,DK)
( 1

R2

∫
B2R

(||A||2∗|DuN |2 + |F |2) dx

+
(

1 +
1

R2

) ∫
B2R

|DuN |2 dx

+
∫

B2R

|DF |2 dx +
∫

B2R

|g(x)|2 dx
)
,

and∫
BR

|D2uN |2 dx ≤ c

∫
B2R

((
1 +

1
R2

)
|DuN |2 +

1
R2

|F |2 + |DF |2 + |g|2
)

dx,

with c = c(n,DK , ||A||∗). From the previous relation, we deduce that |D uN | is
a bounded sequence in W 1,2(BR). Then, by compactness, up to a sequence not
relabeled, we deduce that |D uN | converges to |D u| in L2(BR). Finally, by the
semicontinuity of the norm, we get∫

BR

|D2u|2 dx ≤ lim inf
N

∫
BR

|D2uN |2 dx

≤ c(n,DK , ||A||∗)
∫

B2R

((
1 +

1
R2

)
|Du|2 +

1
R2

|F |2 + |DF |2 + |g|2
)

dx. �

Now we prove a global version of Theorem 1.1.

Proposition 4.1. Let Ω be a regular domain with C2 boundary. There exists ε1 > 0,
depending on n and Ω, such that, if

DK ≡ distLn,∞(K(x), L∞) < ε1,

then u ∈ W 2,2(Ω, Rn) and∫
Ω

|D2u|2 dx ≤ c

∫
Ω

(|Du|2 + |F |2 + |DF |2 + |g|2) dx,

for a constant c, depending on n, DK , Ω and the BMO-norm of A.
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Proof. We cover Ω by a family of open sets Ω′, Ω′′, U1, . . . , Um, V1, . . . , Vm such
that

1. Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω;
2. Ul, Vl are neighbourhoods centered in xl ∈ ∂Ω, with l = 1, . . . , m;
3. Vl ⊂⊂ Ul, with l = 1, . . . ,m;
4. ∪m

l=1Vl � ∂Ω;
5. Ω � ∪m

l=1Vl ∪ Ω′.

We consider the solutions uN of the problems (4.2). Covering Ω̄′ by a finite number
of balls, we have that∫

Ω′
|D2uN |2 dx ≤ c(n,DK , Ω, ||A||∗)

∫
Ω

(|DuN |2 + |F |2 + |D F |2 + |g|2) dx.

Now we focus on the boundary regularity of the solutions. Fixed l ∈ {1, . . . ,m},
on every Ul we can consider the diffeomorphism Φ(x) = (Φ1(x), . . . ,Φn(x)) which
maps Ωl ≡ Ul ∩ Ω to an open set of R

n and defined by

Φi(x) = xi, i = 1, . . . , n − 1;

Φn(x) = xn − ψl(x′), withx′ = (x1, . . . , xn−1),

where ψl : R
n−1 → R is C2 and whose graph coincides with ∂Ω in Ul. Φ(x) =: y is

such that

Φ(Ul ∩ Ω) ⊂ {y ∈ R
n : yn > 0}, Φ(Ul ∩ ∂Ω) ⊂ {y ∈ R

n : yn = 0}.

It can be seen that Φ is invertible, both Φ and Φ−1 are C2 functions. Let ũN be such
that uN (x) = (ũN ◦Φ)(x), x ∈ Ul∩Ω̄, and we check that ũN solves in Ω̃l = Φ(Ul∩Ω)
the system {

div ÃN (x)DũN = divF̃ + g̃ in Ω̃l

ũN = 0 on {yn = 0} ∩ ∂Ω̃l,

where

ÃN =
[
DΦ · AN · (DΦ)t

] ◦ Φ−1, F̃ = (F · DΦ) ◦ Φ−1, g̃ = g ◦ Φ−1.

These formulas can be derived starting from the weak formulation of the problem
and applying a change of variables in order to express the different integrals in terms
of the new coordinates.

For instance, for ϕ ∈ C∞
0 (Ωl),∫

Ωl

〈g(x), ϕ(x)〉 dx =
∫

Ω̃l

〈g ◦ Φ−1(y), ϕ ◦ Φ−1(y)〉 det(DΦ−1(y)) dy,

just letting x = Φ−1(y), but then det(DΦ−1) = 1 and we can set ϕ = η ◦ Φ so that
equivalently η = ϕ ◦ Φ−1 and∫

Ωl

〈g(x), ϕ(x)〉 dx =
∫

Ω̃l

〈g̃(y), η(y)〉 dy.
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We have to prove that the conditions on A still hold true for Ã. About the uniform
ellipticity, we have that

〈ÃN (y)Y, Y 〉 = 〈AN (Φ−1(y)) DΦ(Φ−1(y)) Y, DΦ(Φ−1(y)) Y 〉
≥ 〈DΦ(Φ−1(y)) Y, DΦ(Φ−1(y)) Y 〉
≥ c||Y ||2, c > 0.

Hence, ÃN satisfies the uniform ellipticity condition; moreover BMO and Ln,∞ are
preserved under C2 transformations. Finally, we have

|ÃN (y + h ei) − ÃN (y)| ≤ K̃N (y)|h|, y ∈ Ω̃l,

with DK̃N
= DKN

.
Therefore, if D′ũN indicates any derivatives DsũN with s �= n, we have that

D′ũN ∈ W 1,2
loc (Ω̃l, R

n) and∫
B+

R

|DD′ũN |2 dy ≤ c

∫
B+

2R

((
1 +

1
R2

)
|DũN |2 +

1
R2

|F̃ |2 + |DF̃ |2 + |g̃|2
)

dy,

where B+
R = {y = (y1, . . . , yn) ∈ R

n : ||y|| < R, yn > 0} and B+
2R ⊂⊂ Ω̃l. In

order to have the estimate for the derivatives D2
nnũN , the equation readily implies

that Dn(Ãi n
N Dnũj

N ) ∈ L2(Ω̃l) for i, j ∈ {1, . . . , n}; by Lemma 2.13 the difference
quotients Δh(Ãi nDnũj

N ) have uniformly bounded L2 norm in Ω̃l|h| and the same is
true for Ãi nΔhDnũj

N . The uniform ellipticity condition gives that D2
nnũN ∈ L2(Ω̃l)

and the analogous estimate for D2
nnũN .

Taking the covering introduced above with Ul = Φ−1(B+
2R) and Vl = Φ−1(B+

R)
and coming back to the original variables, we get that∫

Vl

|D2uN |2 dx ≤ c

∫
Vl

(|DuN |2 + |F |2 + |DF |2 + |g|2) dx,

and summing∫
Ω

|D2uN |2 dx ≤ c

∫
Ω

(|DuN |2 + |F |2 + |DF |2 + |g|2) dx.

Arguing as in the proof of the Theorem 1.1, we get the desired result. �
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