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A B S T R A C T

Scattered radiation negatively impacts radiographic imaging, with particular regard to mammography. In
clinical practice, anti-scatter grids are exploited for this purpose; however, anti-scatter grids may also degrade
the image quality, since they remove part of the useful primary radiation with the consequent increase of
the dose to be administered to the patient. A suitable digital scatter correction method could tackle the limits
imposed by such grids with a great impact on diagnosis. The main contribution of this study is the development
of a general framework for the assessment of digital scatter correction techniques in mammography. To this
aim, the formation process of both primary and scattered image is described on the basis of a systems-theory
approach. Through a simulation of the radiological process, a reference model of the primary image is obtained
and used as ground truth to compare the intensities of images obtained by applying a deconvolution-based
digital scattering correction technique. Then, an experimental case study on breast phantom images is carried
out to assess the scatter correction using different Point Spread Functions (PSFs) (Gaussian and Hyperbolic)
with varying parameters values. A central issue was the identification of a spatially variant PSF to model
the scattered radiation. The results demonstrate that the proposed approach enables the assessment and the
comparison of different PSF kernels employed for scatter correction; in particular, our procedure shows that
rather low relative errors are obtained ([−0.5;0.5]) for both the PSFs tested and that Gaussian ones are more
sensitive to variations in their parameters.
1. Introduction

Soft tissue imaging, such as breast imaging, is greatly affected by
the scatter phenomenon. To make accurate diagnoses it is therefore
important to develop methods that aim to improve the quality of
mammography images by removing the scatter component. The lit-
erature has suggested a variety of methods to enhance the quality
of medical images, e.g by means of contrast enhancers [1–4], or by
applying post-processing techniques based on Artificial Intelligence (AI)
algorithms [5–11], or, like in the case of digital mammography, by the
use of an anti-scatter grid.

The latter, however, has the disadvantage of cutting primary radia-
tion components, which are fundamental for image formation process,
with the consequent need for increased X-ray dose to achieve ade-
quate image quality [12]. Furthermore, the anti-scatter grid is not
able to completely remove the scattered radiation and, as a result, the
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breast image obtained is still affected by the detrimental effect of the
scattering phenomenon. Therefore, methods for digital scatter removal
become necessary in digital mammography also to overcome the main
limitations of anti-scatter grids. Among the scatter removal approaches
in X-ray imaging, convolution-based filtration techniques are widely
employed in the literature.

Shaw et al. [13] and Love and Kruger [14] applied a digital cor-
rection based on convolution to digital subtraction angiography (DSA)
for different purposes; the former developed a videodensitometry sys-
tem, the latter showed that two-dimensional exponential kernels best
reproduced the scatter fields. Subsequently, Molloi and Mistretta [15]
tried to correct the scattering and veiling glare phenomena using
Gaussian convolution kernels. Naimuddin et al. [16] studied a scat-
ter correction method using a convolution algorithm with variable
weighting to improve the scatter estimate and provide better results
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for general videodensitometric applications. Floyd et al. [17] presented
a numerical deconvolution technique to compensate image degrad-
ing effects in X-ray chest images using Fourier deconvolution. Kruger
et al. [18] showed that dual-kernel algorithms are more effective
than equivalent single-kernel algorithms. In the digital mammography
field, Baydush and Floyd [19] studied the effect of bayesian image
estimation on digital mammograms to reduce the scatter content and
improve the contrast-to-noise ratio. Furthermore, a number of research
studies examined the application of spread functions [20] and digital
filtering [21–23] to study the scattering phenomena.

Based on the existing literature, in-depth knowledge and under-
standing of the X-ray scattering phenomenon and how it affects the
acquired mammograms are required in order to build adequate image
processing approaches for the accurate removal of the scattering. Ba-
sically, the scatter effect occurring within an X-ray Image Intensifier
(XRII), i.e. a device that converts an incident X-ray pattern to a visible-
light image [24], can be described as a linear process. Indeed, Seibert
et al. (1984) [25] originally attempted to derive a theoretical model
of the so-called veiling glare, a term used to describe the scattering of
electrons and light photons within an XRII. They were able to derive
the analytical expression of the Point Spread Function (PSF) of an XRII
based on three fundamental assumptions on the scattering process and
on the PSF behavior:

1. linearity;
2. spatial invariance;
3. independence on X-ray energy.

They made the case of an accelerated electron striking an infinitely
thin and uniform phosphor material of a typical XRII. Starting from the
above-mentioned assumptions and by equating the net flow of scattered
photons through the area of the phosphor material to the total energy
in the same area [25], they derived a theoretical model of the phe-
nomenon which was then adapted to digital mammography by Ducote
and Molloi [26]. The key premise of the model is that the incoming
radiation is represented as a pencil beam that grows predictably after
it enters the tissues, mimicking the dispersed radiation.

Taking advantage of the current knowledge on the scattering phe-
nomenon and on previous studies [27], this work proposes a general
framework for the assessment of the scatter correction in mammo-
grams. The studies present in the literature on the scattering phe-
nomenon propose an evaluation based either on theoretical knowledge
on the diagnostic aspects of interest [13,14] or they calculate the error
in the estimation of the scatter kernel with respect to direct physical
measurements made with a phantom relating to specific organs [15,
17]. In the approach we propose, by exploiting a system theory ap-
proach, a theoretical model of the imaging process is defined and some
related research questions are proposed. Our procedure is then applied
to a case study aimed at assessing the scatter correction techniques
proposed in the literature. We shall start from the assumption estab-
lished in earlier works, which suggested modeling the scatter radiation
using a radially symmetric PSF representing the interaction between the
main radiation and the tissues being studied. We shall focus, therefore,
on the optimization of the suitable shape for the PSF that models the
scattering phenomenon, and a modeling strategy based on the use of
a classical Gaussian PSF and an hyperbolic PSF as proposed by Ducote
and Molloi [26], will be adopted.

In particular, the methodological workflow here proposed consists
of a simulation approach followed by an experimental case study on
mammographic images acquired on a breast phantom. In order to
evaluate the accuracy of the scatter removal from the mammographic
image, the radiological process is simulated to compute the theoretical
and ideal primary radiation intensities. This will allow us to obtain a
reference model of the image intensities in absence of the scattering
phenomenon. This simulated model is then taken as ground truth to
calculate the errors produced by the two PSF models with respect to the
2

theoretical reference, and make an assessment of the scatter correction.
Fig. 1. Theoretical model of the image acquisition chain in the space domain.

This work will show that, thanks to the proposed framework for the
assessment of digital correction techniques, it is possible to demonstrate
the feasibility of the correction methods proposed in the literature and
to arrive at important considerations on the scattering phenomenon.
The results obtained allow us to conclude that a digital removal of the
scatter is feasible and that the scatter correction is influenced by the
makeup of the tissues and the thickness of the area under examination.
Moreover, our study proves that a Gaussian kernel outperforms a hyper-
bolic kernel in minimizing the scattering component of the radiation,
proving that the suggested methodology enables the assessment and the
comparison of different PSF kernels employed for scatter correction.

2. Methods

2.1. Theoretical framework

Tissue–radiation interaction can be described, from a theoretical
perspective, as reported in Fig. 1, where, said N the set of integer
numbers and (𝑥, 𝑦) ∈ N×N the coordinate of a given pixel, the involved
signals are

𝑢𝑅(𝑥, 𝑦) the incident radiation

𝑃 (𝑥, 𝑦) the primary image
𝐼𝑆 (𝑥, 𝑦) the scattered image

Each block in Fig. 1 is described in the space domain by the
orresponding impulse response, as follows:

ℎ𝑇 (𝑥, 𝑦) impulse response (kernel) modeling the
tissues–radiation interaction

𝑆 (𝑥, 𝑦) impulse response (kernel) of the scatter
dynamics

The spatial convolution, between the impulse response of the block
n Fig. 1 and its input, determines the output of the blocks. Note that,
n this paper, we have neglected the spatial dynamics of the sensors,
ince, as usual, we have assumed that each pixel of the sensors panel
s described as a memory-less system with unit input–output gain;
ndeed, in that case, the input–output gain of the whole sensors panel
s invariant over space (i.e. unitary for all pair (𝑥, 𝑦)) and its kernel
unction turns out to be the impulse function centered at (0, 0).

Under this assumption, the output of the whole system in Fig. 1 is
iven by (we omit the space argument for the sake of brevity)

𝑆 = ℎ𝑆 ∗
(

ℎ𝑇 ∗ 𝑢𝑅
)

, (1)

here ∗ denotes the convolution operator.
From the engineering point of view, the acquisition scheme depicted

n Fig. 1 leads to some problems to be solved in order to improve the
mage quality.

roblem 1 (Estimation of the Primary Image). Given the scattered image
𝑆 (⋅ , ⋅), to estimate the primary image 𝐼𝑃 (⋅ , ⋅). ■

In order to solve Problem 1, we need to invert the equation

𝑆 (𝑥, 𝑦) = ℎ𝑆 (𝑥, 𝑦) ∗ 𝐼𝑃 (𝑥, 𝑦),

hrough the deconvolution operator 𝑑𝑒𝑐(⋅, ⋅)

(𝑥, 𝑦) = 𝑑𝑒𝑐
(

ℎ (𝑥, 𝑦), 𝐼 (𝑥, 𝑦)
)

. (2)
𝑃 𝑆 𝑆
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Fig. 2. Block diagram for the identification problem.
Fig. 3. X-ray spectrum at 30 kVp obtained with Spekpy tool.

Therefore, in view of (2), Problem 1 is essentially reduced to the
identification of the kernel ℎ𝑆 (⋅ , ⋅).

Regarding the scheme in Fig. 1, another problem, of great interest in
the field of mammographic imaging, can be posed. In particular, when
the primary image has been identified, an important issue concerns the
identification of the tissue response to radiation.

Problem 2 (Identification of the Tissue Response). Given the primary
image 𝐼𝑃 (⋅, ⋅) and the incident radiation 𝑢𝑅(⋅, ⋅), to identify the kernel
ℎ𝑇 (⋅, ⋅). ■

This paper will be devoted to the solution of Problem 1, while
Problem 2 and the related possible applications will be the object of
future investigation. To this regard, it is worth noting that, by the
solution of Problem 2, an estimated model of the response of the tissues
to the incident radiation will be available, through the knowledge of
ℎ𝑇 ; such response, in turn, could be exploited to generate synthetic
images, starting from different radiation inputs 𝑢𝑅(𝑥, 𝑦), which may
have many relapses in the clinical field as envisaged in literature
studies [28–30].

2.2. Primary image formation process

In order to describe the formation process of the primary im-
age (𝐼𝑃 ), a simulation of the radiological process was developed to
simulate the intensities of a theoretical scatter-free image, 𝐼𝑃 , repre-
senting the simulation of the theoretical 𝐼𝑃 in the absence of scattering
phenomena.

The simulation of the radiological process is described in the upper
path of the scheme in Fig. 2 and is based on the computation of the
theoretical intensities, using the equation:

𝐼𝑃 = 𝑆(𝐸) exp(−(𝜇𝑔𝑙(𝐸)𝐻𝑔𝑙 + 𝜇𝑓𝑎𝑡(𝐸)𝐻𝑓𝑎𝑡))𝑑𝐸 , (3)
3

∫

where 𝐸 is the energy and 𝑆(𝐸) is the spectrum of the incident
radiation, which is obtained by the simulation at 30 kVp (to which the
images of the phantom were acquired) using the Spekpy toolkit [31];
the behavior of 𝑆(𝐸) is showed in Fig. 3. In (3) the parameters 𝜇𝑔𝑙
and 𝜇𝑓𝑎𝑡 are the linear attenuation coefficients of the glandular and
adipose tissues (functions of 𝐸), respectively, while 𝐻𝑔𝑙 and 𝐻𝑓𝑎𝑡 are
the thickness of the glandular and adipose tissues, respectively. The
linear attenuation coefficients used in (3) have been provided by the
manufacturer of the phantom.

2.3. Scattered image formation process

As illustrated in Section 2.1, the scatter can be seen as the effect of
low-pass 2D-convolution filtering of the primary image (𝐼𝑃 ). Therefore,
the scattered image (𝐼𝑆 ) can be written as the convolution between the
primary component and the impulse response of the scatter dynamics
(ℎ𝑆 ).

The formation process of the scattered image (𝐼𝑆 ) is depicted in the
first two blocks of the lower path of the scheme in Fig. 2, which are
then followed by a deconvolution block between ℎ𝑆 and 𝐼𝑆 to compute
the estimated intensity of the scatter-free image, 𝐼𝑃 , representing the
estimate of 𝐼𝑃 after the digital scatter removal.

In scatter correction, the problem of noise amplification is signif-
icant, as it deteriorates the quality of the medical image, reducing
the Contrast-to-noise ratio (CNR) [32,33]. In this deconvolution-based
approach, this aspect has been considered through the appropriate
tuning of the deconvolution operator. In particular, a damping factor
deconvolution method has been used and the damping factor has been
properly tuned in order to prevent the noise amplification for those
pixels slightly deviating from the noise level. Furthermore, readout
noise variance of the noise and additive noise have been taken into
account.

In order to properly describe the scattered image formation process
and to obtain more accurate estimates of 𝐼𝑆 , the characterization and
modeling of the scattering kernel ℎ𝑆 is crucial.

In accordance with the literature, we shall assume the radiation
beam is a matrix of pencil beams, which expand in a predictable
way according to the theoretical scatter phenomenon as soon as it
penetrates tissues. Therefore, the total pixel value of the X-ray image is
represented as the sum of both the scatter and the primary component
of the radiation.

As far as the ℎ𝑆 model, we shall investigate two different kernel
functions as illustrated in the following.

In the first case, ℎ𝑆 is assumed to have a Gaussian behavior with
zero mean, namely:

ℎ𝑆 (𝑥, 𝑦) ≡ ℎ𝑆𝐺(𝑥, 𝑦) = (1 + 𝑆𝐹 ) 1
2𝜋𝑘2

𝑒−(
𝑥2+𝑦2

2𝑘2
) . (4)

Since the scattering phenomenon modeled through (4) exhibits a
radial symmetry, in the following, by a change of variable, we shall
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Fig. 4. Schematic representation of operative workflow. (𝑑𝑒𝑐 stands for the deconvolution operator as detailed in the main text; 𝐼𝑃 is the estimated intensity of the scatter-free
image obtained by a deconvolution).
refer to kernels depending on only one variable 𝑟, where 𝑟2 = 𝑥2 + 𝑦2,
therefore we rewrite (4) as follows:

ℎ𝑆𝐺(𝑟) = (1 + 𝑆𝐹 ) 1
2𝜋𝑘2

𝑒−(
𝑟2

2𝑘2
) . (5)

where:

• 𝑟 represents the distance from the origin (i.e. from the point where
the incident accelerated electron strikes the phosphor material);

• 𝑆𝐹 represents the fraction of light that is strongly scattered, hence
0 < 𝑆𝐹 < 1;

• 𝑘 ≠ 0 represents the mean scatter radial extent (i.e. the mean
propagation distance of the light in the phosphor material).

In the second case, an alternative hyperbolic behavior for ℎ𝑆 , in-
troduced by Seibert et al. in 1984 [25], is considered and defined as
follows:

ℎ𝑆 (𝑟) ≡ ℎ̃𝑆𝐻 (𝑟) = (1 − 𝑆𝐹 )
𝛿(𝑟)
𝑟

+ 𝑆𝐹
2𝑘𝑟

𝑒−𝑟∕𝑘 , (6)

where:

• 1 − 𝑆𝐹 represents the fraction of light that is not scattered and,
thereby, provides a direct mapping of the incident electron on the
phosphor material;

• the impulse function centered at 𝑟 = 0, namely 𝛿(𝑟), accounts for
the mapping of the primary component;

• the function 1
2𝑘𝑟 𝑒

−𝑟∕𝑘 represents the spread of the energy at a
distance 𝑟. This term can be derived from (7) as reported in [25]:

𝐸(𝑟) = 1
2𝜋𝑟0𝑟

𝑒−𝑟∕𝑟0 , (7)

with 𝑟0 being the mean diffusion distance.

The terms 𝑆𝐹 and 𝑘 in (6) take into account the behavior of the
scattering kernel. If Eq. (6) is normalized with respect to the non-
scattered light fraction (1−𝑆𝐹 ), it can be rewritten as in (8), according
to the authors of [26], who applied the PSF proposed by Seibert
et al. [25] to the case of digital mammography:

ℎ𝑆𝐻 (𝑟) =
𝛿(𝑟)
𝑟

+ 𝑆𝐹
(1 − 𝑆𝐹 )2𝑘𝑟

𝑒−𝑟∕𝑘 . (8)

It is readily seen that the behavior of both ℎ𝑆𝐺 and ℎ𝑆𝐻 is regulated
by two parameters, namely the scatter fraction (𝑆𝐹 ) and the mean
radial extension (𝑘).

When looking at the gaussian PSF, ℎ𝑆𝐺, such parameter values can
be interpreted as a wider, intermediate, and narrower Gaussian in terms
of standard deviation.

Concerning ℎ𝑆𝐻 , the values of 𝑆𝐹 and 𝑘 have been chosen on the
basis of the limits imposed by the function previously defined.

Different values of the above-mentioned scatter kernel parameters
will be used and discussed in the case study illustrated in Section 2.4.
4

Table 1
Summary of the value of 𝑆𝐹 and 𝑘 tested for ℎ𝑆𝐺 and for ℎ𝑆𝐻 .

𝑆𝐹 𝑘

0.5 0.01
ℎ𝑆𝐺 0.99 0.001

0.2 0.1

0.5 0.01
ℎ𝑆𝐻 0.99 0.001

0.2 0.1

2.4. Case study

An experimental case study is carried out to implement the proposed
framework, as graphically illustrated in Fig. 4.

The upper path in Fig. 4 produces the simulated theoretical scatter-
free image, 𝐼𝑃 , while the lower path in Fig. 4 produces the esti-
mated scatter-free image by the deconvolution operator discussed in
Section 2.1.

The experimental campaign was carried out on digital mammog-
raphy images of a breast phantom with regions of known adipose
and fibroglandular tissue composition and at different thicknesses, as
detailed in Section 2.5. The choice of such a structured phantom
was made to investigate the effectiveness of the scatter correction
evaluation approach at different breast tissues’ composition, size, and
thickness.

As far as the characterization of the PSF model of the scattering
phenomenon, different values have been chosen for the independent
parameters 𝑆𝐹 and 𝑘 presented in Section 2.3. In particular, the
scatter kernel parameters here tested are summarized in Table 1. These
two terms control the behavior of the scatter kernel and have been
studied in detail in [34]. To evaluate the behavior of the Gaussian and
hyperbolic PSF, object of the case study in the paper, it was decided to
consider the maximum, minimum and an intermediate value referring
to the previously cited work of Leon et al. [34] where a characterization
of scatter in digital mammography is done. This involves a study on a
more or less significant scatter component based on the chosen values.

Finally, to evaluate the effect of the digital scatter correction, a com-
parison between the scatter-free images intensities by deconvolution
(𝐼𝑃 ) and the simulated theoretical intensities (𝐼𝑃 ) by Eq. (3), taken as
references, was carried out.

2.5. Experimental settings

The phantom used for the acquisitions is the Mammo CESM Phan-
tom (Sun Nuclear Corporation), described in [35]. It is made of four
adipose-glandular blocks, made of High Equivalency materials accu-
rately described in [36], with five steps of glandularity (0%, 25%, 50%,

75%, 100%) [35], with a thickness that can range from 1 to 9 cm.
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Fig. 5. Schematic representation of the phantom with the five ROI, from 1 to 5, that
represent, respectively, the ROI with 100%, 75%, 50%, 25%, 0% of adipose tissue.

In Fig. 5 a schematic representation of the phantom is shown, where
the five Regions of Interest (ROIs), representing the five glandularity
steps, are highlighted.

Phantom mammographic images were acquired using Giotto Class
(IMS GIOTTO S.p.A., Sasso Marconi, Bologna, Italy). For each thickness
of the phantom (from 1 to 9 cm), 30 KVp and 100 mAs were set. The
mammograph used had a tungsten anode with a 10 degree angle and
used a 0.05 mm thick silver filter.

The acquisitions were made using a physical grid in accordance with
the clinical protocol. The graphite interspaced antiscatter grid mounted
on the Giotto Class mammograph has a grid ratio of 5:1, with a line
density of 36 lines/cm and a focal distance of 68.5 cm.

Only raw acquired images (‘‘FOR PROCESSING’’ images) were taken
into account as they preserve the original X-ray attenuation informa-
tion.

2.6. Metrics for the assessment of the scatter correction

To evaluate the accuracy of the convolution-based digital scatter
correction, a comparison between the values obtained for 𝐼𝑃 and 𝐼𝑃
is carried out. In particular, we considered the scatter removal sat-
isfactory when the estimated intensity of the scatter-free image, 𝐼 ,
5

𝑃

obtained by a deconvolution between the measured intensity of the
scattered image 𝐼𝑆 and the PSF ℎ𝑆 , is comparable to the simulated
intensity of the theoretical scatter-free image, 𝐼𝑃 . A scaling factor (here
equal to 0.04), which takes into account the conversion gain of the
detector and the contribution of the anti-scatter grid, is applied to yield
the value of the simulated intensity of the theoretical scatter-free image,
𝐼𝑃 obtained in (3).

The following two different metrics were used for the assessment of
the scatter correction:

• the ratio between the intensity values calculated from the avail-
able X-ray images, both scattered (𝐼𝑆 ) and scatter-free (𝐼𝑃 ), and
the simulated intensity (𝐼𝑃 ) values, is calculated for each region
of the phantom;

• the relative error, defined as the ratio between the punctual
error (𝐸𝑟𝑟) on the primary image estimate, which is given as the
difference between 𝐼𝑃 - 𝐼𝑃 , and the theoretical scatter-free image
𝐼𝑃 .

Plots and heat maps were used to visualize the metrics here adopted.

3. Results and discussion

In Fig. 6, the ratio between the scattered intensities and the simu-
lated intensities is shown; each plot in Fig. 6 is referred to a different
ROI and thickness of the phantom.

In order to better analyze the behavior following the removal of
the scatter, in the single ROI and in the whole phantom at the various
thicknesses, the previously described error maps and relative error
trend plots have been reported.

In the following, we consider three cases.

Case 1. [ℎ𝑆 ≡ ℎ𝑆𝐺 with 𝑆𝐹 = 0.5 and 𝑘 = 0.01]

The results related to the ratio between the scatter-free and simu-
lated intensities, as a function of the phantom ROIs, when the primary
image is obtained by ℎ𝑆𝐺, are shown in Fig. 13(a).

Note that, in Fig. 6, the ratio between the intensity values of
the scattered (measured) image and the simulated intensity, obtained
through Eq. (3), varies between 0.7 and 2, without considering the
background.

Conversely, as expected, removing the scatter radiation through the
application of the Gaussian-type PSF, namely ℎ𝑆𝐺, reduced values of
the ratio, ranging between 0.6 and 1.3, are obtained, as shown in
Fig. 13(a). In other words, we are approaching the unit value, that
Fig. 6. Ratio between the scattered intensities and the simulated intensities for the measured image as a function of the phantom region (%).
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Fig. 7. Relative error distribution on five ROIs of phantom for thickness from 1 cm (top right) to 9 cm (lower left) in case 1.
Fig. 8. Relative error trend on five ROIs of phantom for thickness 1 cm, 5 cm and 9 cm in case 1.
represents the desired target. There remains a certain variability in
relation to both the thickness of the phantom and the regions and
therefore to the different composition of adipose and glandular tissue.

From this discussion, it is evident the dependence of the goodness
of the scatter removal on the composition of the tissues and on the
thickness of the phantom.
6

As said, we then evaluate the relative error behavior in every single
ROI.

In Fig. 7 the error distribution maps for the five phantom ROIs
(from 100% fat on the left to 100% glandular on the right) for all
phantom thicknesses are shown. As far as ROI 1 (100% fat) is con-
cerned, it is possible to note that the distribution of the relative error
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Fig. 9. Relative error distribution on five ROIs of phantom for thickness from 1 cm (top right) to 9 cm (lower left) in case 2.
Fig. 10. Relative error trend on five ROIs of phantom for thickness 1 cm, 5 cm and 9 cm in case 2.
is homogeneous over the entire layer, especially for low thicknesses.
For high thicknesses, there is an error trend that is mainly affected
by the influence of the projection of the superimposed layers, and by
the influence of those adjacent ROIs that have a different composition
of glandular and adipose tissues. As far as ROI 5 (100% glandular)
7

is concerned, it is possible to note that the relative error distribution
is affected by an increasing noise for all thicknesses. In this case, the
influence of the projection of the superimposed layers is less evident,
but it is possible to see the influence of the edge effects. In this case,
the mutual influence between ROIs and edge effects is highlighted.
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Fig. 11. Relative error distribution on five ROIs of phantom for thickness from 1 cm (top right) to 9 cm (lower left) in case 3.
Fig. 12. Relative error trend on five ROIs of phantom for thickness 1 cm, 5 cm and 9 cm in case 3.
The same considerations can be better deduced from the graphs in
Fig. 8 which show the trend of the relative error along the 5 layers
of which the phantom is made up, reported for the overall thickness
of the phantom of 1 cm, 5 cm and 9 cm. From here it is possible to
note that the relative error remains in a range of [0;0.5], except in the
9 cm thickness where a strong component of noise on the edges and
8

the effect of the superimposed layers is evident, as already highlighted
in the errors maps.

Case 2. [ℎ𝑆 ≡ ℎ𝑆𝐺 with 𝑆𝐹 = 0.99 and 𝑘 = 0.001]

In this case we are considering a Gaussian PSF with a double
amplitude and a standard deviation equal to 1/10 compared to the
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Fig. 13. Ratio between the scatter-free intensities and the simulated intensities when
the primary image is calculated by ℎ𝑆𝐺 in the case 1 (a), in the case 2 (b), in the case
3 (c) and by ℎ𝑆𝐻 in the case 4 (d), as a function of the ROI of the phantom (%).

previous case. A larger relative error, of order 0.5, is obtained in this
case, as it can be seen in Fig. 9 and in Fig. 10. However, the trend
remains unchanged with respect to the previous case, i.e. we notice
a homogeneous relative error for all the ROIs at the lowest thickness
of the phantom (1 cm), while, as the thickness increases, the error
differentiates between the various ROIs and, in particular, it reaches its
maximum value in correspondence of ROI 5; this behavior is expected,
since ROI 5 corresponds to 100% of glandular tissue, while ROI 1 is
100% of adipose tissue.

In Fig. 13(b), where the ratio between the scatter-free and the sim-
ulated intensities is shown, it is fairly evident that the curves obtained
in correspondence of the various thicknesses of the phantom are closer
9

to each other than in case 1 (see Fig. 13(a)), with values ranging from
0.5 to 1.

Case 3. [ℎ𝑆 ≡ ℎ𝑆𝐺 with 𝑆𝐹 = 0.2 and 𝑘 = 0.1]

In this case, we are considering a Gaussian PSF with about half the
amplitude and a standard deviation 10 times higher when compared
to case 1. A smaller relative error is obtained, ranging around 0, as
reported in Fig. 11 and in Fig. 12. The trend is confirmed to be similar
to the previous two cases, but in this circumstance, the relative error,
as the thickness of the phantom increases, attains values even equal to
−1, in correspondence with the adipose ROI. Therefore, in this case, the
intensity values on the scatter-free image are higher than the simulated
ones.

In Fig. 13(c) we note that, although the curves related to the various
thicknesses are less close to each other than in case 1, they are more
symmetrically distributed around the unit value. The general trend,
however, remains at values very close to zero for the relative error,
and closer to 1 for the ratio plotted in Fig. 13(c); therefore, we can
consider the given pair of parameters 𝑆𝐹 and 𝑘 satisfactory and a good
start point for the following optimization, that will be discussed in the
next section.

Case 4. [ℎ𝑆 ≡ ℎ𝑆𝐻 ]

Removing the scatter by the hyperbolic PSF ℎ𝑆𝐻 defined in (8), we
notice a different behavior compared to that one of ℎ𝑆𝐺. In particular,
varying 𝑆𝐹 and 𝑘 according to Table I, the relative error shows a
similar trend in the three cases (additional plots reporting the results
obtained varying 𝑆𝐹 and 𝑘 according to Table 1 are included in the
Supplementary Material, with reference to Fig. S2-S4).

For instance, Figs. 14 and 15 show a relative error close to zero,
with values that become strongly negative in ROI 1 (100% of fat tissue)
and 2 (75% of fat tissue) for higher thicknesses; moreover, ROIs are
distinguishable only at lower thicknesses.

Even looking at the plots in Fig. 13(d), we note very similar trends
by varying the parameters 𝑆𝐹 and 𝑘, which confirms a reduced vari-
ability when the kernel ℎ𝑆𝐻 is exploited (additional plots are included
in the Supplementary Material, with reference to Fig. S1-S3).

4. Conclusion

Digital scatter removal is a major challenge in soft tissue imaging
and could represent a turning point in clinical practice for better image-
based diagnosis, accurate detection of lesions, without affecting the
patient dose.

In this paper, a general framework to assess and compare the
effectiveness of different methods, based on deconvolution, for digital
scatter correction is proposed. To this end, a theoretical model of
the image generation process has been defined by taking advantage
of a system theory approach. Based on that, some specific research
questions to be addressed within the defined theoretical model have
been proposed; in particular, the one regarding the estimation of the
primary image has been tackled.

To accomplish this goal, the identification of a suitable model of
the scatter phenomenon is required; in the case study specifically
dealt with in this work, the proposed framework has been applied to
compare some of the most widespread methods of scatter correction
in mammographic images presented in the literature. In particular, we
have focused on two alternative models of the PSF kernel, namely a
Gaussian PSF and an hyperbolic PSF as defined by Ducote and Molloi
in [26]. Our approach shows encouraging results, with relative error
in the range [−0.5;0.5], and allows us to appropriately evaluate digital
removal of the scatter, leading to important conclusions on the scatter
modeling that depends both on the composition of the tissues and on
the thickness of the region of interest, thus laying the foundations
for a deeper investigation aimed at improving the scatter correction
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Fig. 14. Relative error distribution on five ROIs of phantom for thickness from 1 cm (top right) to 9 cm (lower left) in case 4.
Fig. 15. Relative error trend on five ROIs of phantom for thickness 1 cm, 5 cm and 9 cm in case 4.
algorithms based on the systematic optimization of the parameters
modeling the kernel of the image acquisition system. Moreover, the
comparison between the two PSF kernels allowed to conclude that a
Gaussian kernel performs better than a hyperbolic kernel in reducing
the scattering component of the radiation. Several points of interest
10
emerged from the results, which deserve further study. In particular,
it is worth noting that the scatter modeling should be optimized based
on the composition of the various ROIs and on the thickness of the
phantom. In this regard, our study has revealed that, as the thickness
of the phantom increases and considering a greater amount of glandular
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Fig. 16. Surface plot of the original ℎ𝑖𝑛𝑡 of a mammogram sample with a
microcalcification.
Source: Reproduced with License n. 5671381318556 from: ‘‘Yam, M., Highnam, R.,
and Brady, M. (1999). De-noising ℎ𝑖𝑛𝑡 surfaces: a physics-based approach. In Medical
Image Computing and Computer-Assisted Intervention–MICCAI’99: Second International
Conference, Cambridge, UK, September 19–22, 1999. Proceedings 2 (pp. 227–234).
Springer Berlin Heidelberg’’ [37].

tissue inside the ROI, the relative punctual error increases. It can there-
fore be assumed that 𝑆𝐹 and 𝑘 are dependent on both the attenuation
coefficient of the tissues and on the thickness of the phantom.

Another interesting point that emerged in our research, is that the
variations of the parameters 𝑆𝐹 and 𝑘 for the gaussian kernel ℎ𝑆𝐺
result in appreciable effects both in the relative error maps and in the
plots of the ratio between the scatter-free intensities and the simulated
intensities as a function of the ROIs. On the other hand, the hyperbolic
kernel ℎ𝑆𝐻 is less sensitive to the variations of the parameters and,
therefore, is less prone to optimization strategies aimed at adjusting
such parameters. As a result, the proper tuning of 𝑆𝐹 and 𝑘 for ℎ𝑆𝐺
allows a more effective minimization of the error compared to ℎ𝑆𝐻 .

As for the limitations and future developments, it should first of
all be noted that, having confirmed the feasibility of the same in the
case study of the phantom, the application of the proposed framework
to the case of a real clinical image requires an initial estimate of the
thickness of the glandular tissue and adipose to be able to estimate
the theoretical reference model. This has been the subject of previous
studies, in particular Highnam and Brady [38] presented an algorithm
for estimating ℎ𝑖𝑛𝑡, assuming only two types of tissue: fat and non-
fat. The ℎ𝑖𝑛𝑡 model offers an alternative quantitative representation
of the breast tissue, where the ℎ𝑖𝑛𝑡 of a pixel represents the amount
of non-fatty breast tissue at that point. An ℎ𝑖𝑛𝑡 representation can
be easily visualized as an image, since the ℎ𝑖𝑛𝑡 values are in float
format, where brighter parts correspond to regions of the breast with
more interesting (non-fatty) tissue. In Fig. 16 is reported a surface
plot of the ℎ𝑖𝑛𝑡. Furthermore, since the proposed framework has been
adopted to compare a limited number of PSF kernels, further studies
will aim to widen the applications of this approach to different kernels.
Moreover, a wider experimental campaign will be conducted to enlarge
the dataset, by including images acquired at different settings (varying
the X-ray beam properties, KVp and mAs); this will enable a more
systematic optimization of the main parameters of the adopted PSF
kernels (SF and k). Finally, as the present paper addresses the first one
of the research problems described in Section 2.1, in the next papers
we will tackle Problem 2, mainly focusing on the identification of the
tissue impulse response.
11
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