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A smooth, projective surface S of general type is said to be a
standard isotrivial fibration if there exists a finite group G acting
faithfully on two smooth projective curves C and F so that S is
isomorphic to the minimal desingularization of T := (C × F )/G .
If T is smooth then S = T is called a quasi-bundle. In this paper
we classify the standard isotrivial fibrations with pg = q = 1 which
are not quasi-bundles, assuming that all the singularities of T are
rational double points. As a by-product, we provide several new
examples of minimal surfaces of general type with pg = q = 1 and
K 2

S = 4,6.
© 2008 Elsevier Inc. All rights reserved.

0. Introduction

Recently, there has been considerable interest in understanding the geometry of complex projective
surfaces with small birational invariants, and in particular of surfaces with pg = q = 1. Any surface S
of general type verifies χ(O S) > 0, hence q(S) > 0 implies pg(S) > 0. It follows that the surfaces of
general type with pg = q = 1 are the irregular ones with the lowest geometric genus, hence it would
be important to achieve their complete classification. So far, this has been obtained only in the cases
K 2

S = 2,3 (see [Ca81,CaCi91,CaCi93,Pol05,CaPi06]). If S is any surface with q = 1, its Albanese map
α : S → E is a fibration over an elliptic curve E; we denote by galb the genus of the general fiber of α.
The universal property of the Albanese morphism implies that α is the unique fibration on S with
irrational base. As the title suggests, this paper considers surfaces with pg = q = 1 which are standard
isotrivial fibrations. This means that there exists a finite group G which acts faithfully on two smooth
projective curves C and F so that S is isomorphic to the minimal desingularization of T := (C × F )/G .
If T is smooth then S = T is called a quasi-bundle or a surface isogenous to an unmixed product (see
[Se90,Se96,Ca00]). Quasi-bundles of general type with pg = q = 1 are classified in [Pol08] and [CarPol].
In the present work we consider the case where all the singularities of T are rational double points
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(RDPs). Our classification procedure combines ideas from [Pol08] and combinatorial methods of finite
group theory. Let λ : S → T = (C × F )/G be a standard isotrivial fibration; then the two projections
πC : C × F → C , πF : C × F → F induce two morphisms α : S → C/G , β : S → F/G , whose smooth
fibers are isomorphic to F and C , respectively. We have q(S) = g(C/G) + g(F/G), then if q(S) = 1
we may assume that E := C/G is an elliptic curve and F/G ∼= P

1. Consequently, the morphism α
is the Albanese fibration of S and galb = g(F ). If pg(S) = q(S) = 1 and T contains only RDPs, we
show that S is a minimal surface (Proposition 3.5) and that 2 � g(F ) � 4. Therefore we can use the
classification of finite groups acting on Riemann surfaces of low genus given in [Br90,KuKi90,KuKu90,
Bre00,Vin00,Ki03]. In particular we obtain |G| � 168 and so the problem can be attacked with the
computer algebra program GAP4, whose database includes all groups of order less than 2000, with
the exception of 1024 (see [GAP4]). Computer algebra is a powerful tool when dealing with this kind
of problems; a recent example is the paper [BaCaGr06], where the MAGMA database of finite groups
(identical to the GAP4 database) is exploited in order to achieve the classification of surfaces with
pg = q = 0 isogenous to a product. In our case we have tried to minimize the amount of computer
calculations, doing everything “by hand” whenever possible and using GAP4 only when working with
groups of big order or cumbersome presentation. Nevertheless, the computer’s aid has been extremely
useful in order to obtain some of the non-generation results of Section 2 and some of the existence
results of Section 7. The aim of this paper is to prove the following

Main Theorem. Let λ : S → T = (C × F )/G be a standard isotrivial fibration of general type with pg = q = 1,
which is not a quasi-bundle, and assume that T contains only RDPs. Then S is a minimal surface, K 2

S is even
and the singularities of T are exactly 8 − K 2

S nodes. Moreover, the occurrences for K 2
S , g(F ), g(C) and G are

precisely those listed in the table below.

K 2
S g(F ) = galb g(C) G IdSmall

Group(G)

6 3 10 SL2(F3) G(24,3)

6 3 13 Z2 � (Z2 × Z8) G(32,9)

6 3 13 Z2 � D2,8,5 G(32,11)

6 3 19 G(48,33) G(48,33)

6 3 19 Z3 � (Z4)2 G(48,3)

6 3 64 PSL2(F7) G(168,42)

6 4 3 D4 G(8,3)

6 4 4 A4 G(12,3)

6 4 7 D2,12,7 G(24,10)

6 4 10 Z3 × A4 G(36,11)

6 4 19 D4 � (Z3)2 G(72,40)

6 4 31 S5 G(120,34)

4 2 3 Z2 × Z2 G(4,2)

4 2 4 Z6 G(6,2)

4 2 4 S3 G(6,1)

4 2 5 D4 G(8,3)

4 2 7 Z2 × Z6 G(12,5)

4 2 7 D6 G(12,4)

4 2 9 D2,8,3 G(16,8)

4 2 13 Z2 � ((Z2)2 × Z3) G(24,8)

4 2 25 GL2(F3) G(48,29)

4 3 3 D4 G(8,3)

4 3 4 A4 G(12,3)

4 3 5 D2,8,5 G(16,6)

4 3 5 D4,4,−1 G(16,4)

4 3 7 Z2 × A4 G(24,13)

2 2 3 Q 8 G(8,4)

2 2 3 D4 G(8,3)

Here IdSmallGroup(G) denotes the label of G in the GAP4 database of small groups. For in-
stance, IdSmallGroup(D4) = G(8,3) means that D4 is the third in the list of groups of order 8. We
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emphasize that all quasi-bundles with χ(O S ) = 1 verify K 2
S = 8 (see [Se90], Proposition 3.5), whereas

imposing some RDPs allows us to obtain surfaces with lower K 2
S . In particular, as a by-product of

our classification, we produce several examples with pg = q = 1 and K 2
S = 6. In the survey paper

[BaCaPi06] the minimal surfaces of general type with these invariants are referred as “mysterious.”
Actually, there was only one example hitherto known, described by C. Rito in [Ri07]. It verifies galb = 3
and is obtained as a double cover of a Kummer surface; the construction makes use of the computer
algebra program MAGMA in order to find a branch curve with the right singularities. We note that
Rito’s surface is not a standard isotrivial fibration, because the reducible fibers of its Albanese pencil
contain no HJ-strings (cf. Theorem 3.2). Therefore all examples with pg = q = 1, K 2

S = 6 and galb = 3
described in the present paper were previously unknown; in addition, we provide the first examples
with galb = 4. Our viewpoint also sheds some new light on surfaces with pg = q = 1, K 2

S = 4 and
galb = 2,3. An example with K 2

S = 4 and galb = 2 was previously given by Catanese [Ca99] as the
minimal resolution of a bidouble cover of P

2; examples with K 2
S = 4 and galb = 3 were constructed

by Ishida [Is05] as the minimal resolution of a double cover of the 2-fold symmetric product E(2)

of an elliptic curve. Both covers of Catanese and Ishida contain non-rational singularities, whereas in
all our examples T has only nodes; it follows that all surfaces with K 2

S = 4 presented here are new.
Finally, we obtain two examples with K 2

S = 2; they can be also constructed as double covers of E(2)

and in both cases we describe the six-nodal branch curve in detail (Proposition 7.9). These two exam-
ples belong to the same irreducible component of the moduli space of surfaces of general type with
K 2

S = 2, χ(O S ) = 1, which is in fact irreducible [Ca81]; then it would be desirable to know whether
any two surfaces in our list, with the same K 2

S and galb, are deformation equivalent. We conjecture
that the answer is negative, but this question is at the present not solved. One could obtain some
partial information by computing in every case the index of the paracanonical system, which is a
topological invariant ([CaCi91], Theorem 1.4; see also [Pol08], Theorem 6.3), but we will not develop
this point here.

We shall now explain in more detail the steps of our classification procedure. The crucial fact is
that, since G acts on both C and F , the geometry of S is encoded in the geometry of the two G-
covers h : C → C/G , f : F → F/G . This allows us to “detopologize” the problem by transforming it
into an equivalent problem about the existence of a pair (V , W ) of generating vectors for G of type
(0 | m1, . . . ,mr) and (1 | n1, . . . ,ns), respectively (see Section 1 for the definitions). These vectors must
satisfy some additional properties in order to obtain a quotient T = (C × F )/G with only RDPs and
whose desingularization S has the desired invariants (Proposition 5.6).

In Section 1 we present some preliminaries and we fix the algebraic set-up. In Proposition 1.3,
which is essentially a reformulation of Riemann’s existence theorem, we show that a smooth projec-
tive curve Y of genus g′ admits a G-cover X → Y , branched in r points P1, . . . , Pr with branching
numbers m1, . . . ,mr , if and only if G contains a generating vector V of type (g′ | m1, . . . ,mr). For
every h ∈ G we give a formula that computes the number of fixed points of h on X in terms of V
(Proposition 1.4).

In Section 2 we collect some non-generation results for finite groups which will be useful in the
sequel of the paper. They are obtained either by direct computation or by using the GAP4 database
of small groups. For every group we refer to the presentation given in the corresponding table of
Appendix A. The reader that finds these results too dry or boring might skip this section for the
moment and come back to it when reading Section 7.

In Section 3 we establish the main properties of standard isotrivial fibrations (following [Se96])
and we compute their invariants in the case where T has only RDPs.

In Sections 4 and 5 we show that if S is a standard isotrivial fibration of general type with pg =
q = 1 and T contains only RDPs, then S is a minimal surface, K 2

S is even and the singularities of T are
exactly 8 − K 2

S nodes. Furthermore we prove Proposition 5.6, which plays a crucial role in this paper
as it provides the translation of our classification problem “from geometry to algebra.”

In Section 6 we show our Main Theorem assuming that the group G is abelian; the proof is
extended to the non-abelian case in Section 7.

The tables in Appendix A contain the automorphism groups acting on Riemann surfaces of genus
2,3 and 4 so that the quotient is isomorphic to P

1. In the last two cases we listed only the non-
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abelian groups. Tables 1–3 are adapted from [Br90, pp. 252, 254, 255], whereas Table 4 is adapted
from [Ki03, Theorem 1] and [Vin00]. For every G we give a presentation, the branching data and the
IdSmallGroup(G).

Finally, in Appendix B we give an example of GAP4 script used during the preparation of this work.
Notations and conventions. All varieties, morphisms, etc. in this article are defined over the field

C of the complex numbers. By “surface” we mean a projective, non-singular surface S , and for such
a surface K S denotes the canonical class, pg(S) = h0(S, K S ) is the geometric genus, q(S) = h1(S, K S )

is the irregularity and χ(O S) = 1 − q(S) + pg(S) is the Euler characteristic. If T is a normal surface,
a desingularization λ : S → T is said to be minimal if λ does not contract any (−1)-curve in S . Such a
minimal desingularization always exists and it is determined uniquely by T [BPV84, p. 86]; it is worth
pointing out that S is not necessarily a minimal surface (cf. Proposition 3.5).

Throughout the paper we use the following notation for groups:

• Zn: cyclic group of order n.
• D p,q,r = Zp � Zq = 〈x, y | xp = yq = 1, xyx−1 = yr〉: split metacyclic group of order pq, note that

r p ≡ 1 mod q. The group D2,n,−1 is the dihedral group of order 2n, that will be denoted by Dn .
• Sn, An: symmetric, alternating group on n symbols. We write the composition of permutations

from the right to the left; for instance, (13)(12) = (123).
• GLn(Fq), SLn(Fq), PSLn(Fq): general linear, special linear and projective special linear group of

n × n matrices over a field with q elements.
• Whenever we give a presentation of a semi-direct product H � N , the first generators represent

H and the last generators represent N . The action of H on N is specified by conjugation relations.
• The order of a finite group G is denoted by |G|. If H is a subgroup of G , the centralizer of H

in G is denoted by CG(H) and the normalizer of H in G by NG(H). The conjugacy relation in G
is denoted by ∼G .

• The subgroup generated by x1, . . . , xn ∈ G is denoted by 〈x1, . . . , xn〉. The derived subgroup of G
is denoted by G ′ . The center of G is denoted by Z(G). The set of elements of G different from
the identity is denoted by G× .

• If x ∈ G , the order of x is denoted by o(x) and the conjugacy class of x by Cl(x). If x, y ∈ G , their
commutator is defined as [x, y] = xyx−1 y−1.

• All groups are represented in multiplicative format.

1. Algebraic background

In this section we present some preliminaries and we fix the algebraic set-up. Many of the results
that we collect here are standard, so proofs are often omitted. We refer the reader to [Br90, Section 2],
[Bre00, Chapter 3], [H71] and [Pol08, Section 1] for more details.

Definition 1.1. Let G be a finite group and let

g′ � 0, mr � mr−1 � · · · � m1 � 2

be integers. A generating vector for G of type (g′ | m1, . . . ,mr) is a (2g′ + r)-tuple of elements

V = {g1, . . . , gr; h1, . . . ,h2g′ }

such that the following conditions are satisfied:

• the set V generates G;
• o(gi) = mi ;

• g1 g2 · · · gr
∏g′

i=1[hi,hi+g′ ] = 1.

If such a V exists, then G is said to be (g′ | m1, . . . ,mr)-generated.
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For convenience we make abbreviations such as (4 | 23,32) for (4 | 2,2,2,3,3) when we write
down the type of the generating vector V .

Proposition 1.2. If an abelian group G is (g′ | m1, . . . ,mr)-generated, then r 	= 1.

Proof. If r = 1 and V = {g1, h1, . . . ,h2g′ } is a generating vector, we have

1 = g1

g′∏
i=1

[hi,hi+g′ ] = g1,

a contradiction because o(g1) = m1 � 2. �
The following result, which is essentially a reformulation of Riemann’s existence theorem, trans-

lates the problem of finding Riemann surfaces with automorphisms into the group theoretic problem
of finding groups G which contain suitable generating vectors.

Proposition 1.3. A finite group G acts as a group of automorphisms of some compact Riemann surface X
of genus g if and only if there exist integers g′ � 0 and mr � mr−1 � · · · � m1 � 2 such that G is
(g′ | m1, . . . ,mr)-generated, with generating vector V = {g1, . . . , gr; h1, . . . ,h2g′ }, and the following
Riemann–Hurwitz relation holds:

2g − 2 = |G|
(

2g′ − 2 +
r∑

i=1

(
1 − 1

mi

))
. (1)

If this is the case then g′ is the genus of the quotient Riemann surface Y := X/G and the G-cover X → Y is
branched in r points P1, . . . , Pr with branching numbers m1, . . . ,mr , respectively. In addition, the subgroups
〈gi〉 and their conjugates provide all the non-trivial stabilizers of the action of G on X.

Let G , V and X be as in Proposition 1.3. For any h ∈ G set H := 〈h〉 and define

FixX (h) = FixX (H) := {x ∈ X | hx = x}.

Proposition 1.4. If o(h) = m then

∣∣FixX (h)
∣∣ = ∣∣NG(H)

∣∣ ·
∑

1�i�r
m|mi

H∼G 〈g
mi/m
i 〉

1

mi
.

Proof. (See [Bre00], Lemma 10.4.) Let x be in FixX (h) and let Ri be a set of coset representatives of
〈gi〉 in G . Then

FixX (h) =
⊎

1�i�r

{
σ x

∣∣ σ ∈ Ri, H �
〈
σ giσ

−1〉}

=
⊎

1�i�r

{
σ x | σ ∈ Ri, H = 〈

σ gmi/m
i σ−1〉}.

Taking the cardinalities on both sides, we get
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∣∣FixX (h)
∣∣ =

∑
1�i�r

∣∣{σ x
∣∣ σ ∈ Ri, H = 〈

σ gmi/m
i σ−1〉}∣∣

=
∑

1�i�r

∣∣{σ ∈ Ri
∣∣ H = 〈

σ gmi/m
i σ−1〉}∣∣

=
∑

1�i�r

1

mi

∣∣{σ ∈ G
∣∣ H = 〈

σ gmi/m
i σ−1〉}∣∣,

where the set in the ith summand has cardinality |NG(H)| if H is G-conjugate to 〈gmi/m
i 〉, and is

empty otherwise. �
Corollary 1.5. If o(h) = 2 then

∣∣FixX (h)
∣∣ = |G|

|Cl(h)| ·
∑
2|mi

H∼G 〈g
mi/2
i 〉

1

mi
. (2)

If o(h) = 2 and h ∈ Z(G) then

∣∣FixX (h)
∣∣ = |G| ·

∑
{i|h∈〈gi〉}

1

mi
. (3)

Proof. Since H ∼= Z2 we have NG(H) = CG(H), so Proposition 1.4 implies (2). The proof of (3) is now
immediate. �
2. Some non-generation results

This section contains some non-generation results for finite groups which will be useful in the
sequel of our classification procedure. They are obtained either by direct computation or by using the
GAP4 database of small groups. We will first use them in Section 7. For every group we refer to the
presentation given in the corresponding table of Appendix A.

Lemma 2.1. Let G be a non-abelian finite group containing a unique element � of order 2. Then G is not
(1 | 22)-generated.

Proof. Assume that G is (1 | 22)-generated, with generating vector V = {�1, �2; h1,h2}. Since � is
the only element of order 2 in G , it follows � ∈ Z(G) and �1 = �2 = �, hence [h1,h2] = 1. Therefore
G = 〈�,h1,h2〉 would be abelian, a contradiction. �
Proposition 2.2. Referring to Table 2 of Appendix A, the groups G in cases (2b), (2d), (2h) are not (1 | 22)-
generated.

Proof. It is sufficient to show that G satisfies the hypotheses of Lemma 2.1.

• Case (2b). G = Q 8. Take � = −1.
• Case (2d). G = D4,3,−1. Take � = x2.
• Case (2h). G = SL2(F3). Take � = ( −1 0

0 −1

)
. �

Proposition 2.3. Referring to Table 2 of Appendix A, the groups G in cases (2d), (2e), (2 f ), (2g), (2h), (2i)
are not (1 | 21)-generated.
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Proof. We do a case-by-case analysis.
• Case (2d). G = D4,3,−1.
Looking at the presentation of G , one checks that G ′ = 〈y〉 ∼= Z3. Therefore G contains no commu-

tators of order 2, so it cannot be (1 | 21)-generated.
• Case (2e). G = D6.
We have G ′ = 〈y2〉 ∼= Z3, so G contains no commutators of order 2.
• Case (2 f ). G = D2,8,3.
We have G ′ = 〈y2〉 ∼= Z4 and the only commutator of order 2 is y4. A direct computation shows

that if [h1,h2] = y4 then either 〈h1,h2〉 ∼= D4 or 〈h1,h2〉 ∼= Q 8. In particular 〈h1,h2〉 	= G , hence G is
not (1 | 21)-generated.

• Case (2g). G = Z2 � ((Z2)
2 × Z3) = G(24,8).

We have G ′ = 〈y, w〉 ∼= Z6 and the only commutator of order 2 is y. If [h1,h2] = y then 〈h1,h2〉 ∼=
D4, so G is not (1 | 21)-generated.

• Case (2h). G = SL2(F3).
The group G contains a unique element of order 2, namely � = ( −1 0

0 −1

)
. A direct computation

shows that G ′ ∼= Q 8 and that � can be expressed as a commutator in 24 different ways. Moreover, if
[h1,h2] = � we have 〈h1,h2〉 ∼= Q 8, so G is not (1 | 21)-generated.

• Case (2i). G = GL2(F3).
It is well known that G ′ = SL2(F3); then G ′ contains a unique element of order 2, namely �. Either

by direct computation or by using GAP4, one can check that there are 96 different ways to write
� as a commutator in G . If [h1,h2] = � and both h1 and h2 belong to SL2(F3), then 〈h1,h2〉 ∼= Q 8;
otherwise 〈h1,h2〉 ∼= D4. In both cases 〈h1,h2〉 	= G , hence G is not (1 | 21)-generated. �
Proposition 2.4. Referring to Table 3 of Appendix A, the groups G in cases (3d), (3e), (3i), (3 j), (3l), (3n),
(3o), (3p), (3q), (3r), (3s), (3t), (3u), (3v), (3w) are not (1 | 21)-generated.

Proof. We have already proven the statement in cases (3d), (3e) and (3n): see Proposition 2.3, cases
(2d), (2e) and (2h). Now let us consider the remaining cases.

• Case (3i). G = Z2 × D4.
The group G cannot be generated by two elements, so in particular it cannot be (1 | 21)-generated.
• Case (3 j). G = Z2 � (Z2 × Z4) = G(16,13).
We have G ′ = 〈z2〉 ∼= Z2. By direct computation or by using GAP4 (see Appendix B for the cor-

responding script) we can check that if [h1,h2] = z2 then either 〈h1,h2〉 ∼= D4 or 〈h1,h2〉 ∼= Q 8, so
〈h1,h2〉 	= G .

• Case (3l). G = D2,12,5.
We have G ′ = 〈y4〉 ∼= Z3, so G contains no commutators of order 2.
• Cases (3o) and (3p). G = S4.
We have G ′ = A4. If [h1,h2] has order 2 then 〈h1,h2〉 ∼= D4 or 〈h1,h2〉 ∼= A4, so G is not (1 | 21)-

generated.
• Case (3q). G = Z2 � (Z2 × Z8) = G(32,9).
We have G ′ = 〈yz2〉 ∼= Z4 and the only commutator of order 2 is (yz2)2 = z4. If [h1,h2] = z4 then

〈h1,h2〉 has order 8 or 16, hence 〈h1,h2〉 	= G .
• Case (3r). G = Z2 � D2,8,5 = G(32,11).
We have G ′ = 〈yz2〉 ∼= Z4 and the only commutator of order 2 is (yz2)2 = z4. If [h1,h2] = z4 then

〈h1,h2〉 has order 8 or 16, hence 〈h1,h2〉 	= G .
• Case (3s). G = Z2 × S4.
If [h1,h2] has order 2 then |〈h1,h2〉| � 24, so 〈h1,h2〉 	= G .
• Case (3t). G = G(48,33).
We have G ′ = 〈t, z, w〉 ∼= Q 8 and the only commutator of order 2 is t . If [h1,h2] = t then 〈h1,h2〉 ∼=

D4 or 〈h1,h2〉 ∼= Q 8, so G is not (1 | 21)-generated.
• Case (3u). G = Z3 � (Z4)

2 = G(48,3).
We have G ′ = 〈y, z〉 ∼= (Z4)

2. If [h1,h2] has order 2 then 〈h1,h2〉 ∼= A4, so G is not (1 | 21)-
generated.
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• Case (3v). G = S3 � (Z4)
2 = G(96,64).

We have G ′ = 〈y, z〉 and |G ′| = 48. The elements of order 2 in G ′ are z2, y2z2 y, yz2 y2. If [h1,h2]
has order 2 then |〈h1,h2〉| � 16, so G is not (1 | 21)-generated.

• Case (3w). G = PSL2(F7).
Since G is simple we have G ′ = G . If [h1,h2] has order 2 then either 〈h1,h2〉 ∼= D4 or 〈h1,h2〉 ∼= A4,

so G is not (1 | 21)-generated. �
Proposition 2.5. Referring to Table 3 of Appendix A, the groups G in cases (3i), (3 j), (3s), (3v) are not (1 | 41)-
generated.

Proof. We do a case-by-case analysis.
• Case (3i). G = Z2 × D4.
We have G ′ = 〈(1, y2)〉 ∼= Z2; therefore G contains no commutators of order 4 and so it cannot be

(1 | 41)-generated.
• Case (3 j). G = Z2 � (Z2 × Z4) = G(16,13).
We have G ′ = 〈z2〉 ∼= Z2, so G contains no commutators of order 4 and we conclude as in the

previous case.
• Case (3s). G = Z2 × S4.
We have G ′ ∼= A4, so G contains no commutators of order 4.
• Case (3v). G = S3 � (Z4)

2 = G(96,64).
If [h1,h2] has order 4 then |〈h1,h2〉| � 48, so G is not (1 | 41)-generated. �

Proposition 2.6. Referring to Table 4 of Appendix A, the groups G in cases (4g), (4h), (4i), (4 j), (4k), (4l),
(4o), (4p), (4q), (4s), (4t), (4u), (4v), (4w), (4y), (4z), (4aa), (4ab) are not (1 | 21)-generated.

Proof. Again a case-by-case analysis.
• Cases (4g) and (4h). G = D6.
See Proposition 2.3, case (2e).
• Case (4i). G = D8.
We have G ′ = 〈y2〉 ∼= Z4 and the only commutator of order 2 is y4. If [h1,h2] = y4 then 〈h1,h2〉 ∼=

D4, hence G is not (1 | 21)-generated.
• Case (4 j). G = G(16,9).
We have G ′ = 〈z〉 ∼= Z4 and the only commutator of order 2 is z2. If [h1,h2] = z2 then 〈h1,h2〉 ∼=

Q 8, hence G is not (1 | 21)-generated.
• Cases (4k) and (4l). G = Z3 × S3.
We have G ′ ∼= Z3, so G contains no commutators of order 2.
• Case (4o). G = D4,5,−1.
We have G ′ = 〈y〉 ∼= Z5, so G contains no commutators of order 2.
• Case (4p). G = D4,5,2.
We have G ′ = 〈y〉 ∼= Z5, so G contains no commutators of order 2.
• Case (4q). G = S4.
See Proposition 2.4, cases (3o) and (3p).
• Case (4s). G = SL2(F3).
See Proposition 2.3, case (2h).
• Case (4t). G = D2,16,7.
We have G ′ = 〈y2〉 ∼= Z8 and the only commutator of order 2 is y8. If [h1,h2] = y8 then 〈h1,h2〉 ∼=

D4 or 〈h1,h2〉 ∼= Q 8, hence G is not (1 | 21)-generated.
• Cases (4u) and (4v). G = (Z2)

2
� (Z3)

2 = G(36,10).
We have G ′ = 〈z, w〉 ∼= Z3 × Z3, so G contains no commutators of order 2.
• Case (4w). G = Z6 × S3. We have G ′ ∼= Z3, so G contains no commutators of order 2.
• Case (4y). G = Z4 � (Z3)

2 = G(36,9).
We have G ′ = 〈y, z〉 ∼= Z3 × Z3, so G contains no commutators of order 2.
• Case (4z). G = D4 � Z5 = G(40,8).
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We have G ′ = 〈y2, z〉 ∼= Z10 and the only commutator of order 2 is y2. If [h1,h2] = y2 then
〈h1,h2〉 ∼= D4, hence G is not (1 | 21)-generated.

• Case (4aa). G = A5.
Since G is simple we have G ′ = G . If [h1,h2] has order 2 then 〈h1,h2〉 ∼= A4, hence G is not

(1 | 21)-generated.
• Case (4ab). G = Z3 × S4.
We have G ′ = A4. If [h1,h2] has order 2 then |〈h1,h2〉| � 36, hence G is not (1 | 21)-generated. �

3. Standard isotrivial fibrations

In this section we establish the basic properties of standard isotrivial fibrations. Definition 3.1 and
Theorem 3.2 can be found in [Se96].

From now on, S will always denote a smooth, projective surface of general type.

Definition 3.1. We say that S is a standard isotrivial fibration if there exists a finite group G acting
faithfully on two smooth projective curves C and F so that S is isomorphic to the minimal desingu-
larization of T := (C × F )/G . The two maps α : S → C/G , β : S → F/G will be referred as the natural
projections. If T is smooth then S = T is called a quasi-bundle, or a surface isogenous to an unmixed
product.

The stabilizer H ⊆ G of a point y ∈ F is a cyclic group ([FK92], p. 106). If H acts freely on C , then
T is smooth along the scheme-theoretic fiber of σ : T → F/G over ȳ ∈ F/G , and this fiber consists of
the curve C/H counted with multiplicity |H|. Thus, the smooth fibers of σ are all isomorphic to C . On
the contrary, if x ∈ C is fixed by some non-zero element of H , then T has a cyclic quotient singularity
over the point (x, y) ∈ (C × F )/G . In this case, the fiber of (x, y) on the minimal desingularization
λ : S → T is an HJ-string (abbreviation of Hirzebruch–Jung string), that is to say, a connected union of
smooth rational curves Z1, . . . , Zn with self-intersection � −2, and ordered linearly so that Zi Zi+1 =
1 for all i, and Zi Z j = 0 if |i − j| � 2 ([BPV84], III 5.4). These observations lead to the following
statement, which describes the singular fibers that can arise in a standard isotrivial fibration (see
[Se96], Theorem 2.1).

Theorem 3.2. Let λ : S → T = (C × F )/G be a standard isotrivial fibration and let us consider the natural
projection β : S → F/G. Take any point over ȳ ∈ F/G and let Λ denote the fiber of β over ȳ. Then

(i) the reduced structure of Λ is the union of an irreducible curve Y , called the central component of Λ, and
either none or at least two mutually disjoint HJ-strings, each meeting Y at one point. These strings are in
one-to-one correspondence with the branch points of C → C/H, where H ⊆ G is the stabilizer of y;

(ii) the intersection of a string with Y is transversal, and it takes place at only one of the end components of
the string;

(iii) Y is isomorphic to C/H, and has multiplicity equal to |H| in Λ.

Evidently, a completely similar statement holds if we consider the natural projection α : S → C/G.

Remark 3.3. The HJ-strings arising from the minimal resolution of RDPs are precisely the An-cycles.

Theorem 3.2 and Remark 3.3 now imply

Corollary 3.4. Let us suppose that T has at worst RDPs, and let Λ be any fiber of β : S → F/G. Then Λ contains
either none or at least two An-cycles. An analogous statement holds if we consider any fiber Φ of α : S → C/G.

It is worth pointing out that a standard isotrivial fibration is not necessarily a minimal surface; in-
deed, the central component of some reducible fiber might be a (−1)-curve. A criterion for minimality
is provided by the following
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Proposition 3.5. If T has at worst RDPs then both fibrations α : S → C/G and β : S → F/G are relatively
minimal. In addition, if either g(C/G) > 0 or g(F/G) > 0 then S is a minimal model.

Proof. Let us suppose that β is not relatively minimal; then there is a singular fiber Λ whose
central component Y is a (−1)-curve. Corollary 3.4 implies that Λ contains (at least) two disjoint
An-cycles Z1, Z2 such that Y Z1 = Y Z2 = 1. Thus by blowing down Y we obtain a surface S ′ with
two (−1)-curves E1, E2 such that E1 E2 = 1, a contradiction because S is of general type (cf. [BPV84],
Proposition 4.6, p. 79). The proof for α is similar. The last part of the statement follows at once
because a fibration over a curve of strictly positive genus is minimal if and only if it is relatively
minimal. �

Now set g′
1 := g(F/G) and g′

2 := g(C/G). By Proposition 1.3 it follows that there exist

– integers 2 � m1 � m2 � · · · � mr such that G is (g′
1 | m1, . . . ,mr)-generated and

– integers 2 � n1 � n2 � · · · � ns such that G is (g′
2 | n1, . . . ,ns)-generated.

Proposition 3.6. If T has at worst RDPs, then

• mi divides 2g(C) − 2 for all i ∈ {1, . . . , r};
• n j divides 2g(F ) − 2 for all j ∈ {1, . . . , s}.

Proof. Take any i ∈ {1, . . . , r}. By Theorem 3.2 there exists a fiber Λ of β : S → F/G having the form
Λ = Y + Z , where Y is a component of multiplicity mi and Z is a (possibly empty) union of (−2)-
curves. Setting Y = mi Y ′ we obtain K SΛ = mi K S Y ′; since Λ is algebraically equivalent to C this
implies 2g(C)− 2 = mi K S Y ′ . Thus mi divides 2g(C)− 2. Clearly, we can prove the second claim in the
same way. �
Corollary 3.7. Assuming that T has at worst RDPs, the following holds:

• if g(C) = 2 then mi = 2 for all i ∈ {1, . . . , r};
• if g(F ) = 2 then n j = 2 for all j ∈ {1, . . . , s}.

Corollary 3.8. Suppose that T has only RDPs. If either g(C) = 2 or g(F ) = 2 then T has at worst nodes.

Proof. If g(C) = 2 then by Corollary 3.7 it follows that the non-trivial stabilizers of the action of G
on F are isomorphic to Z2, and this implies that the singularities of T are at worst nodes. If g(F ) = 2
the argument is the same. �

The invariants of S can be computed using

Proposition 3.9. Let V be a smooth algebraic surface, and let G be a finite group acting on V with only
isolated fixed points. Suppose that the quotient T := V /G has at worst RDPs, and let λ : S → T be the minimal
desingularization. Let tn be the number of singular points of type An in T . Then we have

(i) |G| · K 2
S = K 2

V .

(ii) |G| · e(S) = e(V ) + |G| · ∑n
(n+1)2−1

n+1 tn.

(iii) H0(S,Ω1
S ) = H0(V ,Ω1

V )G .

Proof. (i) This is immediate because G acts on V with only isolated fixed points and the singularities
of T are at worst RDPs.
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(ii) Let π : V → T be the projection, T o be the smooth locus of T and V o := π−1(T o); finally set
So = λ−1(T o). Let p ∈ T be a singularity of type An; since p is covered by |G|

n+1 points in V , we obtain

e
(
V o) = e(V ) −

∑
n

|G|
n + 1

tn.

On the other hand, since G acts on V o without fixed points, we have |G| ·e(So) = e(V o). Finally, notice
that S is obtained from So by attaching all the An-cycles; since every An-cycle Z verifies e(Z) = n +1,
the additivity of the Euler number implies

|G| · e(S) = |G| · e
(

So) + |G| ·
∑

n

(n + 1)tn

= e(V ) + |G| ·
∑

n

(n + 1)2 − 1

n + 1
tn.

(iii) See [Fre71]. �
So we have

Proposition 3.10. Let λ : S → T = (C × F )/G be a standard isotrivial fibration such that T has at worst RDPs.
Denote by tn the number of singular points of type An in T . Then the invariants of S are

• K 2
S = 8(g(C)−1)(g(F )−1)

|G| ;

• e(S) = 4(g(C)−1)(g(F )−1)
|G| + ∑

n
(n+1)2−1

n+1 tn;
• q(S) = g(C/G) + g(F/G).

In particular this implies (cf. [Se96]):

Corollary 3.11. The following are equivalent:

• tn = 0 for any n � 1;
• K 2

S = 2e(S);
• S is a quasi-bundle.

Remark 3.12. By Corollary 3.4 it follows
∑

n tn 	= 1.

4. The case χ(OS ) = 1

Proposition 4.1. Let λ : S → T = (C × F )/G be a standard isotrivial fibration, such that T contains at worst
RDPs. In addition, let us assume χ(O S ) = 1. Then there are the following possibilities:

• 1 � K 2
S � 8 and T contains 8 − K 2

S points of type A1;
• K 2

S = 3 and T contains two points of type A3;
• K 2

S = 2 and T contains one point of type A1 and two points of type A3;
• K 2

S = 1 and T contains two points of type A1 and two points of type A3 .

Proof. If a minimal surface of general type with χ(O S ) = 1 contains some An-cycle then n � 10
[Mi84]. Thus by Proposition 3.10 we have
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1

2
K 2

S + 3

2
t1 + 8

3
t2 + 15

4
t3 + 24

5
t4

+ 35

6
t5 + 48

7
t6 + 63

8
t7 + 80

9
t8 + 99

10
t9 + 120

11
t10 = e(S).

Noether formula gives e(S) = 12 − K 2
S , so we obtain

41580K 2
S + 41580t1 + 73920t2 + 103950t3 + 133056t4

+ 161700t5 + 190080t6 + 218295t7 + 246400t8

+ 274428t9 + 302400t10 = 332640. (4)

We can check by direct computation that the only non-negative integers K 2
S , t1, . . . , t10 which sat-

isfy (4) are

• 1 � K 2
S � 8, t1 = 8 − K 2

S ;
• K 2

S = 3, t3 = 2;
• K 2

S = 2, t1 = 1, t3 = 2;
• K 2

S = 1, t1 = 2, t3 = 2.

This completes the proof. �
Proposition 4.2. Let λ : S → T = (C × F )/G be as in Proposition 4.1. If S is not a quasi-bundle, then K 2

S � 6.

Proof. Since S is not a quasi-bundle we have K 2
S � 7. On the other hand, if K 2

S = 7 then t1 = 1 and
tn = 0 for n � 2. But this is impossible by Remark 3.12. �

If χ(O S) = 1 then Proposition 3.6 can be refined in the following way.

Proposition 4.3. Let S be as in Proposition 4.1 and let us assume K 2
S = 6 or K 2

S = 5. Then

• mi divides g(C) − 1 for all i ∈ {1, . . . , r}, except at most one;
• n j divides g(F ) − 1 for all j ∈ {1, . . . , s}, except at most one.

Proof. Suppose K 2
S = 6 or K 2

S = 5. Then T contains either 3 or 2 nodes (Proposition 4.1) and by
Theorem 3.2 the corresponding (−2)-curves must belong to the same fiber of β : S → F/G . It follows
that, for all i except one, there is a subgroup H of G , isomorphic to Zmi , which acts freely on C . Now
Riemann–Hurwitz formula applied to C → C/H gives

g(C) − 1 = mi
(

g(C/H) − 1
)
,

so mi divides g(C) − 1. The second statement can be proven in the same way. �
Set m := (m1, . . . ,mr) and n := (n1, . . . ,ns), where we make the usual abbreviations such as

(23,32).

Proposition 4.4. Let us assume χ(O S) = 1 and K 2
S = 6 or K 2

S = 5. Then g(F ) = 2 implies n = (21), whereas
g(C) = 2 implies m = (21).

Proof. If g(F ) = 2 then Corollary 3.7 yields n = (2s). On the other hand, if s � 2 then Proposi-
tion 4.3 implies that 2 divides g(F ) − 1 = 1, a contradiction. An analogous proof works in the case
g(C) = 2. �
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5. Standard isotrivial fibrations with p g = q = 1. Building data

From now on we suppose that λ : S → T = (C × F )/G is a standard isotrivial fibration with pg =
q = 1, such that T has at worst RDPs. Since q = 1, we may assume that E := C/G is an elliptic curve
and that F/G ∼= P

1, that is g′
1 = 0 and g′

2 = 1. Then the natural projection α : S → E is the Albanese
morphism of S and galb = g(F ). Moreover by Proposition 3.5 it follows that S is a minimal model. Let
V = {g1, . . . , gr} be a generating vector for G of type (0 | m1, . . . ,mr), inducing the G-cover F → P

1

and let W = {�1, . . . , �s; h1,h2} be a generating vector of type (1 | n1, . . . ,ns) inducing C → E . Then
Riemann–Hurwitz formula implies

2g(F ) − 2 = |G|
(

−2 +
r∑

i=1

(
1 − 1

mi

))
,

2g(C) − 2 = |G|
s∑

j=1

(
1 − 1

n j

)
. (5)

Proposition 5.1. Let λ : S → T = (C × F )/G be a standard isotrivial fibration with pg = q = 1, such that T
has at worst RDPs. Then

K 2
S

4(g(F ) − 1)
=

s∑
j=1

(
1 − 1

n j

)
. (6)

Proof. Using Proposition 3.10 and the second relation in (5) we obtain

|G| · K 2
S

4(g(F ) − 1)
= 2

(
g(C) − 1

) = |G| ·
s∑

j=1

(
1 − 1

n j

)
,

so the claim follows. �
Proposition 5.2. The case pg = q = 1, K 2

S = 5 does not occur.

Proof. If K 2
S = 5 occurs, Proposition 5.1 gives

(
g(F ) − 1

) s∑
j=1

(
1 − 1

n j

)
= 5

4
. (7)

If s � 2 then g(F ) − 1 � 5
4 , hence g(F ) = 2. This yields

∑s
j=1(1 − 1

n j
) = 5

4 , hence n = (21,41), which

contradicts Proposition 4.4. Therefore we must have s = 1, i.e. n = (n1). This implies

5

4
= (

g(F ) − 1
)(

1 − 1

n

)
� 1

2

(
g(F ) − 1

)
,

hence g(F ) � 3. Using (7), we obtain (1 − 1
n ) = 5

4 if g(F ) = 2 and (1 − 1
n ) = 5

8 if g(F ) = 3; but both
cases are impossible, because n must be a positive integer. �
Proposition 5.3. The case pg = q = 1, K 2

S = 3 does not occur.
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Proof. If K 2
S = 3 then either g(F ) = 3 or g(F ) = 2 [CaCi91,CaCi93]. In the former case Proposition 5.1

implies
∑s

j=1(1 − 1
n j

) = 3
8 , which is impossible. In the latter case we have

∑s
j=1(1 − 1

n j
) = 3

4 , hence

n = (41) which contradicts Corollary 3.7. �
Proposition 5.4. If pg = q = 1 and K 2

S = 2, then T contains only nodes.

Proof. If K 2
S = 2 we have g(F ) = 2 [Ca81,CaCi91,CaCi93]. So the claim follows by Corollary 3.8. �

Summing up and using Proposition 4.1 we obtain

Proposition 5.5. Let λ : S → T = (C × F )/G be a standard isotrivial fibration with pg = q = 1, such that T
has at worst RDPs. Then K 2

S is even and the only singularities of T are 8 − K 2
S nodes.

Now let us observe that the cyclic subgroups 〈g1〉, . . . , 〈gr〉 and their conjugates provide the non-
trivial stabilizers of the action of G on F , whereas 〈�1〉, . . . , 〈�s〉 and their conjugates provide the
non-trivial stabilizers of the actions of G on C . The singularities of T arise from the points in C × F
with non-trivial stabilizer; since the action of G on C × F is the diagonal one, it follows that the set S
of all non-trivial stabilizers for the action of G on C × F is given by

S =
( ⋃

σ∈G

r⋃
i=1

〈
σ giσ

−1〉) ∩
( ⋃

σ∈G

s⋃
j=1

〈
σ� jσ

−1〉) ∩ G×. (8)

Notice that Proposition 5.5 implies that every element of S has order 2. Moreover the (reduced) fiber
of the covering C × F → T over each node has cardinality |G|

2 , so the number of nodes of T is given
by

8 − K 2
S = t1 = 2

|G|
∑
h∈S

∣∣FixC (h)
∣∣ · ∣∣FixF (h)

∣∣.
Proposition 3.10 yields

K 2
S = 8(g(C) − 1)(g(F ) − 1)

|G| , (9)

so we can write down the basic equality

(
g(C) − 1

)(
g(F ) − 1

) + 1

4

∑
h∈S

∣∣FixC (h)
∣∣ · ∣∣FixF (h)

∣∣ = |G|. (10)

We call (G, V , W ) the building data of S . In fact, we have the following structure result.

Proposition 5.6. Let G be a finite group which is both (0 | m1, . . . ,mr)-generated and (1 | n1, . . . ,ns)-
generated, with generating vectors V = {g1, . . . , gr} and W = {�1, . . . , �s; h1,h2}, respectively. Denote by

f : F −→ P
1 = F/G,

h : C −→ E = C/G

the two G-coverings induced by V and W and let g(F ), g(C) be the genera of F and C , that are related to |G|,
m, n by (5). Finally, define S as in (8). Assume moreover that
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• g(C) � 2, g(F ) � 2;
• every element of S has order 2;
• equality (10) is satisfied.

Then the quotient T := (C × F )/G contains exactly 8 − K 2
T nodes and its minimal desingularization S is a

minimal surface of general type whose invariants are

pg(S) = q(S) = 1, K 2
S = 8(g(C) − 1)(g(F ) − 1)

|G| .

Conversely, every standard isotrivial fibration S, with pg(S) = q(S) = 1 and such that T has only RDPs, arises
in this way.

Proof. We have already shown that, if λ : S → T = (C × F )/G is a standard isotrivial fibration with
pg = q = 1, such that T has at worst RDPs, then the assumptions above must be satisfied. Vice versa,
if all the assumptions are satisfied then the quotient T = (C × F )/G is a nodal surface with q(T ) = 1,
whose number of nodes is given by

t1 = 2

|G|
∑
h∈S

∣∣FixC (h)
∣∣ · ∣∣FixF (h)

∣∣
= 2

|G| · 4
(|G| − (

g(C) − 1
)(

g(F ) − 1
)) (

using (10)
)

= 8 − 8(g(C) − 1)(g(F ) − 1)

|G| .

Let S be the minimal desingularization of T ; by using Proposition 3.10 and relation (9) we obtain

e(S) = 1

2
K 2

S + 3

2
t1

= 1

2
K 2

S + 3

2

(
8 − K 2

S

)
= 12 − K 2

S .

Thus Noether formula yields χ(O S) = 1, that implies pg(S) = q(S) = 1. Again by (9) we have K 2
S > 0,

hence S is a surface of general type, which must be minimal by Proposition 3.5. �
Remark 5.7. The surface S is a quasi-bundle if and only if S = ∅ (see [Pol08, Proposition 7.2]).

6. Standard isotrivial fibrations with p g = q = 1. The abelian case

The aim of this section is to prove

Theorem 6.1. Let λ : S → T = (C × F )/G be a standard isotrivial fibration with pg = q = 1, which is not
a quasi-bundle, such that T has only RDPs. Assume in addition that the group G is abelian. Then K 2

S = 4,
g(F ) = 2 and there are three cases:

• g(C) = 3, G = Z2 × Z2;
• g(C) = 4, G = Z6;
• g(C) = 7, G = Z2 × Z6 .

All possibilities occur.
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The proof of Theorem 6.1 will be a consequence of the following results.

Proposition 6.2. If G is abelian then

K 2
S = 4, g(F ) = 2, n = (

22).
Proof. Since G is abelian, the G-cover h : C → E is branched in at least two points (Proposition 1.2);
thus

∑s
j=1(1 − 1

n j
) � 1. By using Proposition 5.1 this gives

K 2
S = 4

(
g(F ) − 1

) s∑
j=1

(
1 − 1

n j

)
� 4

(
g(F ) − 1

)
. (11)

Since K 2
S � 6 (Proposition 4.2), we obtain g(F ) = 2 and so K 2

S � 4. Thus Proposition 5.5 implies K 2
S = 6

or K 2
S = 4.

• If K 2
S = 6 then

∑s
j=1(1 − 1

n j
) = 3

2 , that is either n = (23) or n = (42); since g(F ) = 2, both possi-

bilities contradict Proposition 4.4.
• If K 2

S = 4 then
∑s

j=1(1 − 1
n j

) = 1, hence n = (22). �
Corollary 6.3. If G is abelian then |G| is even and |G| � 4.

Proof. By Propositions 3.10 and 6.2 we obtain |G| = 2(g(C)− 1), so |G| is even. If |G| = 2 then g(C) =
2, so S would be a minimal surface of general type with pg = q = 1, K 2

S = 4 and a rational pencil |C |
of genus 2 curves; but this contradicts [Xi85, p. 51]. Thus |G| � 4. �
Proposition 6.4. If |G| = 4 then the only possibility is

G = Z2 × Z2, m = (
25).

This case occurs.

Proof. If |G| = 4 then Proposition 6.2 and relations (5) imply g(C) = 3 and

−2 +
r∑

i=1

(
1 − 1

mi

)
= 1

2
,

so there are two possibilities:

• m = (22,42),
• m = (25).

First let us rule out the case m = (22,42). If it occurs, then G = Z4 = 〈x | x4 = 1〉. Up to automorphisms
of G , we may assume

g1 = g2 = x2, g3 = x, g4 = x3,

�1 = �2 = x2.

Then S = {x2} and by using Corollary 1.5 we obtain

∣∣FixF
(
x2)∣∣ = 6,

∣∣FixC
(
x2)∣∣ = 4.
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It follows that equality (10) is not satisfied, so this case does not occur.
It remains to show that the possibility m = (25) actually occurs. In this case G = Z2 × Z2, because

Z4 is not (0|25)-generated. Our example is the following.
• G = Z2 × Z2, m = (25), g(C) = 3.
Set Z2 × Z2 = 〈x, y | x2 = y2 = [x, y] = 1〉 and

g1 = x, g2 = y, g3 = g4 = g5 = xy,

�1 = �2 = x, h1 = h2 = y.

We have S = {x} and by using Corollary 1.5 we obtain

∣∣FixF (x)
∣∣ = 2,

∣∣FixC (x)
∣∣ = 4.

Equality (10) is satisfied, hence Proposition 5.6 implies that this case occurs. �
Lemma 6.5. If G is cyclic then m1 � 3.

Proof. If G is cyclic then it contains a unique element h of order 2. By Proposition 6.2 we have
n = (22), hence |FixC (h)| = 2 · |G|

2 = |G|. On the other hand, if m1 = 2 then |FixF (h)| � |G|
2 . Since

K 2
S = 4 we have

4 = t1 = 2

|G| · ∣∣FixC (h)
∣∣ · ∣∣FixF (h)

∣∣ � |G|.

Thus G = Z4, which contradicts Proposition 6.4. �
Proposition 6.6. If G is abelian and |G| > 4 there are two possibilities:

• G = Z6 , m = (3,62);
• G = Z2 × Z6 , m = (2,62).

Both cases occur.

Proof. The abelian group G acts as a group of automorphisms on the genus 2 curve F so that
F/G ∼= P

1. Let us look at Table 1 of Appendix A. By using Corollary 6.3 and Lemma 6.5 we may
rule out cases (1a), (1b), (1c), (1d), (1e), (1 f ), (1h), (1i). It remains to show that cases (1g) and (1 j)
occur.

• Case (1g). G = Z6, m = (3,62), g(C) = 4.
Set Z6 = 〈x | x6 = 1〉 and

g1 = x4, g2 = x, g3 = x,

�1 = �2 = x3, h1 = h2 = x.

Then S = {x3} and

∣∣FixF
(
x3)∣∣ = 2,

∣∣FixC
(
x3)∣∣ = 6.

Equality (10) is satisfied, so this case occurs.
• Case (1 j). G = Z2 × Z6, m = (2,62), g(C) = 7.
Let x, y be obvious generators of G of order 2 and 6, respectively, and set
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g1 = x, g2 = y5, g3 = xy,

�1 = �2 = y3, h1 = x, h2 = y.

Then S = {y3} and

∣∣FixF
(

y3)∣∣ = 2,
∣∣FixC

(
y3)∣∣ = 12.

Equality (10) is satisfied, so this case occurs.
The proof of Theorem 6.1 is complete. �

7. Standard isotrivial fibrations with p g = q = 1. The non-abelian case

By Proposition 5.5 we have K 2
S = 6, 4 or 2. We deal with the three cases separately.

7.1. The case K 2
S = 6

Proposition 7.1. If K 2
S = 6 then we have two possibilities:

• g(F ) = 3, n = (41);
• g(F ) = 4, n = (21).

Proof. Formula (6) in this case gives

3

2
= (

g(F ) − 1
) s∑

j=1

(
1 − 1

n j

)
. (12)

If s � 2 then 3/2 � g(F ) − 1, hence g(F ) = 2 which contradicts Proposition 4.4. Then s = 1, i.e.
n = (n1). Using (12) we obtain 3/2 � 1/2(g(F ) − 1) which implies g(F ) � 4. The case g(F ) = 2 is
impossible, otherwise 1 − 1/n = 3/2; therefore either g(F ) = 3 or g(F ) = 4. Using again (12) we see
that we have n = (41) in the former case and n = (21) in the latter one. �
Proposition 7.2. If K 2

S = 6 and g(F ) = 3 there are precisely the following cases:

G IdSmall
Group(G)

m

SL2(F3) G(24,3) (32,6)

Z2 � (Z2 × Z8) G(32,9) (2,4,8)

Z2 � D2,8,5 G(32,11) (2,4,8)

G(48,33) G(48,33) (2,3,12)

Z3 � (Z4)2 G(48,3) (32,4)

PSL2(F7) G(168,42) (2,3,7)

Proof. By Proposition 3.10 we have 3 · |G| = 8(g(C) − 1), so 8 divides |G|. The non-abelian group
G acts as a group of automorphisms on the genus 3 curve F so that F/G ∼= P

1. In addition, since
n = (41), it follows that G must be (1 | 41)-generated. Now let us look at Table 3 of Appendix A; by
using Propositions 2.5 and 4.3 we are only left with cases (3n), (3q), (3r), (3t), (3u), (3w).

• Case (3n). G = SL2(F3), m = (32,6), g(C) = 10.
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Set

g1 =
(

1 0
1 1

)
, g2 =

(
1 −1
0 1

)
, g3 =

(
0 1

−1 1

)
,

�1 =
(

1 −1
−1 −1

)
, h1 =

(
1 0
1 1

)
,h2 =

(
1 −1
0 1

)

and � = ( −1 0
0 −1

)
. Since (g3)

3 = (�1)
2 = � and � ∈ Z(G) it follows S = Cl(�) = {�}. By using Corollary 1.5

we obtain

∣∣FixF (�)
∣∣ = 4,

∣∣FixC (�)
∣∣ = 6

so equality (10) is satisfied and this case occurs.
• Case (3q). G = Z2 � (Z2 × Z8) = G(32,9), m = (2,4,8), g(C) = 13.
Set

g1 = x, g2 = xz, g3 = z7,

�1 = yz6, h1 = x, h2 = z.

Since (�1)
2 = (g3)

4 = z4 and z4 ∈ Z(G), we have S = Cl(z4) = {z4}; moreover z4 /∈ 〈g1〉 and z4 /∈ 〈g2〉,
so we obtain

∣∣FixF
(
z4)∣∣ = 4,

∣∣FixC
(
z4)∣∣ = 8.

Thus equality (10) is satisfied and this case occurs.
• Case (3r). G = Z2 � D2,8,5 = G(32,11), m = (2,4,8), g(C) = 13.
Set

g1 = x, g2 = xz, g3 = z7,

�1 = yz6, h1 = x, h2 = z.

Since (�1)
2 = (g3)

4 = z4 and z4 ∈ Z(G), we have S = Cl(z4) = {z4}; moreover z4 /∈ 〈g1〉 and z4 /∈ 〈g2〉,
so we obtain

∣∣FixF
(
z4)∣∣ = 4,

∣∣FixC
(
z4)∣∣ = 8.

Thus equality (10) is satisfied and this case occurs.
• Case (3t). G = G(48,33), m = (2,3,12), g(C) = 19.
Set

g1 = xz, g2 = zy2, g3 = xy,

�1 = z, h1 = y2, h2 = xy2z.

Since (�1)
2 = (g3)

6 = t and t ∈ Z(G) we have S = Cl(t) = {t}; moreover t /∈ 〈g1〉, so we obtain

∣∣FixF (t)
∣∣ = 4,

∣∣FixC (t)
∣∣ = 12.

Thus equality (10) is satisfied and this case occurs.
• Case (3u). G = Z3 � (Z4)

2 = G(48,3), m = (32,4), g(C) = 19.
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Set

g1 = x, g2 = x−1 y−1, g3 = y,

�1 = yz2, h1 = x, h2 = xyx.

We have (�1)
2 = (g3)

2 = y2, so S = Cl(y2). One checks that |CG(y2)| = 16, hence |S| = 3 (in fact,
S = {y2, xy2x2, x2 y2x}). For every h ∈ S we obtain

∣∣FixF (h)
∣∣ = 4,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
• Case (3w). G = PSL2(F7), m = (2,3,7), g(C) = 64.
It is well known that G can be embedded in S8; in fact G = 〈(375)(486), (126)(348)〉. Set

g1 = (12)(34)(58)(67), g2 = (154)(367), g3 = (1247358),

�1 = (1825)(3647), h1 = (2576348), h2 = (1673428).

The group G contains 21 elements of order 2, which belong to a unique conjugacy class (see [CCPW]
or [Bar99]). Therefore S = Cl(g1) = Cl((�1)

2) and |S| = 21. It follows that for all h ∈ S we have

∣∣FixF (h)
∣∣ = 4,

∣∣FixC (h)
∣∣ = 2,

so equality (10) is satisfied and this case occurs. Notice that in this example the Albanese fiber F
of S is isomorphic to the Klein plane quartic {x0x3

1 + x1x3
2 + x2x3

0 = 0} ⊂ P
2; in particular it is not

hyperelliptic.
This completes the proof of Proposition 7.2. �

Proposition 7.3. If K 2
S = 6 and g(F ) = 4 there are precisely the following cases:

G IdSmall
Group(G)

m

D4 G(8,3) (24,4)

A4 G(12,3) (2,33)

D2,12,7 G(24,10) (2,6,12)

Z3 × A4 G(36,11) (32,6)

D4 � (Z3)2 G(72,40) (2,4,6)

S5 G(120,34) (2,4,5)

Proof. By Proposition 3.10 we have |G| = 4(g(C) − 1), so 4 divides |G|. Moreover, since n = (21), the
group G must be (1 | 21)-generated. Now let us look at Table 4 of Appendix A; by using Proposi-
tions 2.6 and 4.3 we are only left with cases (4c), (4 f ), (4r), (4x), (4ac), (4ad).

• Case (4c). G = D4, m = (24,4), g(C) = 3.
Set

g1 = x, g2 = xy, g3 = x, g4 = xy2, g5 = y,

�1 = y2, h1 = y, h2 = x.

We have S = Cl(�1) = {y2} and
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∣∣FixF
(

y2)∣∣ = 2,
∣∣FixC

(
y2)∣∣ = 4,

so equality (10) is satisfied and this case occurs.
• Case (4 f ). G = A4, m = (2,33), g(C) = 4.
Set

g1 = (12)(34), g2 = (134), g3 = (134), g4 = (123),

�1 = (12)(34), h1 = (123), h2 = (124).

Then S = Cl(�1) = {(12)(34), (13)(24), (14)(23)}. For all h ∈ S we have

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 2,

so equality (10) is satisfied and this case occurs.
• Case (4r). G = D2,12,7, m = (2,6,12), g(C) = 7.
Set

g1 = x, g2 = y5x, g3 = y,

�1 = y6, h1 = x, h2 = y.

We have �1 = (g3)
6; since �1 ∈ Z(G) it follows S = Cl(�1) = {y6}. On the other hand �1 /∈ 〈g1〉 and

�1 /∈ 〈g2〉, so we obtain

∣∣FixF
(

y6)∣∣ = 2,
∣∣FixC

(
y6)∣∣ = 12.

Thus equality (10) is satisfied and this case occurs.
• Case (4x). G = Z3 × A4, m = (32,6), g(C) = 10.
Set Z3 = 〈z | z3 = 1〉 and

g1 = (
z, (123)

)
, g2 = (

z, (234)
)
, g3 = (

z, (12)(34)
)
,

�1 = (
1, (12)(34)

)
, h1 = (

1, (123)
)
, h2 = (

z, (14)(23)
)
.

Since �1 = (g3)
3 we obtain S = Cl(�1) and so |S| = 3. For all h ∈ S we have

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 6,

so equality (10) is satisfied and this case occurs.
• Case (4ac). G = D4 � (Z3)

2 = G(72,40), m = (2,4,6), g(C) = 19.
Set

g1 = xzy, g2 = y, g3 = y2z2x,

�1 = y2, h1 = xy, h2 = xz.

We have �1 = (g2)
2 and so S = Cl(�1); since |CG(�1)| = 8, it follows |S| = 9. Moreover g1 /∈ Cl(�1) and

(g3)
3 /∈ Cl(�1), hence for all h ∈ S we have

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
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• Case (4ad). G = S5, m = (2,4,5), g(C) = 31.
Set

g1 = (12), g2 = (1543), g3 = (12345),

�1 = (14)(35), h1 = (145), h2 = (1432).

We have �1 = (g2)
2, hence S = Cl(�1) and |S| = 15. For all h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4,

so equality (10) is satisfied and this case occurs.
This completes the proof of Proposition 7.3. �

7.2. The case K 2
S = 4

Proposition 7.4. If K 2
S = 4 then we have two possibilities:

• g(F ) = 2, n = (22);
• g(F ) = 3, n = (21).

Proof. If K 2
S = 4 then Proposition 5.1 gives

(
g(F ) − 1

) s∑
j=1

(
1 − 1

n j

)
= 1.

If s � 2 then g(F ) − 1 � 1, which implies g(F ) = 2 and n = (22). So we may assume s = 1, i.e.
n = (n1). In this case we have 1

2 (g(F ) − 1) � 1, then g(F ) � 3. On the other hand, g(F ) = 2 gives
1 − 1

n = 1, a contradiction; therefore g(F ) = 3 and n = (21). �
In Proposition 6.2 we have proven that if G is abelian then K 2

S = 4 and galb = 2. However we can
also obtain the same invariants with non-abelian G:

Proposition 7.5. If K 2
S = 4, g(F ) = 2 and G is not abelian there are precisely the following cases:

G IdSmall
Group(G)

m

S3 G(6,1) (22,32)

D4 G(8,3) (23,4)

D6 G(12,4) (23,3)

D2,8,3 G(16,8) (2,4,8)

Z2 � ((Z2)2 × Z3) G(24,8) (2,4,6)

GL2(F3) G(48,29) (2,3,8)

Proof. By Proposition 3.10 we have |G| = 2(g(C) − 1). Moreover, since n = (22), it follows that G
is (1 | 22)-generated. Let us look at Table 2 of Appendix A. Using Proposition 2.2 we can rule out
cases (2b), (2d) and (2h). Now we check the remaining possibilities.

• Case (2a). G = S3, m = (22,32), g(C) = 4.
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Set

g1 = (12), g2 = (12), g3 = (123), g4 = (132),

�1 = �2 = (12), h1 = h2 = (13).

We have S = Cl(�1) = {(12), (13), (23)} and for every h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 2.

Thus equality (10) is satisfied and this case occurs.
• Case (2c). G = D4, m = (23,4), g(C) = 5.
Set

g1 = x, g2 = xy, g3 = y2, g4 = y,

�1 = �2 = x, h1 = h2 = y.

We have S = Cl(�1) = {x, xy2} and for every h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
• Case (2e). G = D6, m = (23,3), g(C) = 7.
Set

g1 = x, g2 = xy, g3 = y3, g4 = y2,

�1 = xy, �2 = xy5, h1 = x, h2 = y2.

We have S = Cl(�1) = {xy, xy3, xy5} and for every h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
• Case (2 f ). G = D2,8,3, m = (2,4,8), g(C) = 9.
Set

g1 = x, g2 = xy7, g3 = y,

�1 = x, �2 = xy6, h1 = x, h2 = y.

We have S = Cl(�1) = {x, xy2, xy4, xy6}. Moreover (g2)
2 = (g3)

4 = y4 and y4 /∈ S , hence for every
h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
• Case (2g). G = Z2 � ((Z2)

2 × Z3) = G(24,8), m = (2,4,6), g(C) = 13.
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Set

g1 = x, g2 = wxz, g3 = zw,

�1 = �2 = x, h1 = z, h2 = w.

We have S = Cl(�1); since CG(�1) = 〈x, y〉 ∼= Z2 × Z2, it follows |S| = 6. Moreover (g2)
2 /∈ Cl(�1) and

(g3)
3 /∈ Cl(�1), so for every h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
• Case (2i). G = GL2(F3), m = (2,3,8), g(C) = 25.
Set

g1 =
(

1 1
0 −1

)
, g2 =

(
0 −1
1 −1

)
, g3 =

(−1 1
−1 −1

)
,

�1 = �2 =
(

1 1
0 −1

)
, h1 =

(
0 −1
1 −1

)
, h2 =

(
1 0
0 1

)

and � = ( −1 0
0 −1

)
. We have S = Cl(�1) and CG(�1) ∼= Z2 × Z2, hence |S| = 12. Moreover (g3)

4 = � /∈
Cl(�1), so for all h ∈ S we obtain

∣∣FixF (h)
∣∣ = 2,

∣∣FixC (h)
∣∣ = 4.

Thus equality (10) is satisfied and this case occurs.
This completes the proof of Proposition 7.5. �

Proposition 7.6. If K 2
S = 4 and g(F ) = 3 there are precisely the following cases:

G IdSmall
Group(G)

m

D4 G(8,3) (22,42)

D4 G(8,3) (25)

A4 G(12,3) (22,32)

D2,8,5 G(16,6) (2,82)

D4,4,−1 G(16,4) (43)

Z2 × A4 G(24,13) (2,62)

Proof. By Proposition 3.10 we have |G| = 4(g(C) − 1), so 4 divides |G|. Moreover, since n = (21), the
group G is (1 | 21)-generated. Now let us look at Table 3 of Appendix A; by using Proposition 2.4 we
are only left with cases (3b), (3c), (3 f ), (3g), (3h), (3m).

• Case (3b). G = D4, m = (22,42), g(C) = 3.
Set

g1 = x, g2 = x, g3 = y, g4 = y3,

�1 = y2, h1 = x, h2 = y.

We have S = Cl(�1) = {y2} and
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∣∣FixF
(

y2)∣∣ = 4,
∣∣FixC

(
y2)∣∣ = 4,

so equality (10) is satisfied and this case occurs.
• Case (3c). G = D4, m = (25), g(C) = 3.
Set

g1 = y2, g2 = xy, g3 = xy3, g4 = x, g5 = x,

�1 = y2, h1 = x, h2 = y.

We have S = Cl(�1) = {y2} and

∣∣FixF
(

y2)∣∣ = 4,
∣∣FixC

(
y2)∣∣ = 4,

so equality (10) is satisfied and this case occurs.
• Case (3 f ). G = A4, m = (22,32), g(C) = 4.
Set

g1 = (12)(34), g2 = (12)(34), g3 = (123), g4 = (132),

�1 = (12)(34), h1 = (123), h2 = (124).

We have S = Cl(�1) = {(12)(34), (13)(24), (14)(23)} and for all h ∈ S we obtain

∣∣FixF (h)
∣∣ = 4,

∣∣FixC (h)
∣∣ = 2,

so equality (10) is satisfied and this case occurs.
• Case (3g). G = D2,8,5, m = (2,82), g(C) = 5.
Set

g1 = x, g2 = xy−1, g3 = y,

�1 = y4, h1 = x, h2 = y.

Since �1 = (g2)
4 = (g3)

4 and �1 ∈ Z(G), it follows S = Cl(�1) = {y4}. We have

∣∣FixF
(

y4)∣∣ = 4,
∣∣FixC

(
y4)∣∣ = 8,

so equality (10) is satisfied and this case occurs.
• Case (3h). G = D4,4,−1, m = (43), g(C) = 5.
Set

g1 = x, g2 = x−1 y−1, g3 = y,

�1 = y2, h1 = x, h2 = y.

Since �1 = (g3)
2 and �1 ∈ Z(G) we have S = Cl(�1) = {y2}. Moreover �1 /∈ 〈g1〉 and �2 /∈ 〈g2〉, so we

obtain

∣∣FixF
(

y2)∣∣ = 4,
∣∣FixC

(
y2)∣∣ = 8.

Thus equality (10) is satisfied and this case occurs.
• Case (3m). G = Z2 × A4, m = (2,62), g(C) = 7.
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Let Z2 = 〈z | z2 = 1〉 and set

g1 = (
1, (12)(34)

)
, g2 = (

z, (123)
)
, g3 = (

z, (234)
)
,

�1 = (
1, (12)(34)

)
, h1 = (

z, (123)
)
, h2 = (

z, (124)
)
.

We have S = Cl(�1) = {(1, (12)(34)), (1, (13)(24)), (1, (14)(23))}. For all h ∈ S we obtain

∣∣FixF (h)
∣∣ = 4,

∣∣FixC (h)
∣∣ = 4,

so equality (10) is satisfied and this case occurs.
This completes the proof of Proposition 7.6. �

7.3. The case K 2
S = 2

Lemma 7.7. If K 2
S = 2 then n = (21).

Proof. If K 2
S = 2 we have g(F ) = 2 [Ca81,CaCi91,CaCi93]. Therefore by Proposition 5.1 we obtain∑s

j=1(1 − 1
n j

) = 1
2 , that is n = (21). �

Proposition 7.8. If K 2
S = 2 there are precisely the following possibilities:

G IdSmall
Group(G)

m

Q 8 G(8,4) (43)

D4 G(8,3) (23,4)

Proof. Proposition 3.10 yields |G| = 4(g(C) − 1), so 4 divides |G|. Since n = (21), G must be (1 | 21)-
generated. Now let us look at Table 2 of Appendix A. By using Proposition 2.3 we may rule out
cases (2d), (2e), (2 f ), (2g), (2h) and (2i), so the proof will be complete if we show that cases (2b)

and (2c) occur.
• Case (2b). G = Q 8, m = (43), g(C) = 3.
Set

g1 = j, g2 = i, g3 = k,

�1 = −1, h1 = i, h2 = j.

We have S = Cl(�1) = {−1} and

∣∣FixF (−1)
∣∣ = 6,

∣∣FixC (−1)
∣∣ = 4,

so equality (10) is satisfied and this case occurs.
• Case (2c). G = D4, m = (23,4), g(C) = 3.
Set

g1 = xy2, g2 = xy3, g3 = y2, g4 = y,

�1 = y2, h1 = x, h2 = y.
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We have S = Cl(y2) = {y2} and

∣∣FixF
(

y2)∣∣ = 6,
∣∣FixC

(
y2)∣∣ = 4,

so equality (10) is satisfied and this case occurs. �
Proposition 7.8 shows that there exist two families of standard isotrivial fibrations with pg = q = 1,

K 2
S = 2. The first family, that we denote by MD4 , has dimension 2 because it depends on the choice

of four points on P
1 and one point on E (up to projective equivalence); the second family, that we

denote by MQ 8 , has dimension 1 because it depends on the choice of three points on P
1 and one

point on E . Now we can provide a geometric description of MD4 and MQ 8 ; to this purpose, let us
recall some facts about surfaces of general type with pg = q = 1, K 2

S = 2 (see [Ca81] and [CaCi91] for
further details). Let (E,⊕,0) be an elliptic curve E with group law ⊕ and identity element 0, and let

E(2) = Sym2(E) = {x + y | x, y ∈ E}

be its double symmetric product. Then the Abel–Jacobi map E(2) → E , x + y → x ⊕ y gives to E(2) the
structure of a P

1-bundle over E . For any a ∈ E , let us consider the following divisors on E(2):

fa := {x + y ∈ E | x ⊕ y = a};
ha := {x + a | x ∈ E}.

In both cases the corresponding algebraic equivalence classes do not depend on a, hence we may
denote them by f and h, respectively. We have NS(E(2)) = Zf ⊕ Zh. The antibicanonical system
|−2K E(2) | = |4h0 − 2f0| is a linear pencil, whose general elements are smooth elliptic curves of the
form

ba := {
x + (x ⊕ a)

∣∣ x ∈ E
}
, a ⊕ a 	= 0.

If ÷a denotes the inverse element of a ∈ E , we have ba = b÷a . It follows that the singular members of
|−2K E(2) | are precisely the three double curves 2bξ1 ,2bξ2 ,2bξ3 , where the ξi are the three 2-torsion
points of E different from 0. The bξi are three divisors on E(2) which are algebraically but not linearly
equivalent to 2h0 − f0 (in fact, bξi ∈ |2h0 − fξi |). In [Ca81] it is shown that any surface S of general
type with pg = q = 1, K 2

S = 2 is a double cover of E(2) branched along a divisor B algebraically
equivalent to 6h − 2f and having at worst simple singularities. In particular the Albanese pencil {F }
of S is the pullback of the ruling {f} of E(2) . Since the group of translations of E acts transitively on
the set of linear equivalence classes of divisors algebraically equivalent to 6h − 2f, we may assume
B ∈ |6h0 − 2f0|. Therefore the surfaces in MD4 and MQ 8 must correspond to special curves with six
nodes in the linear system |6h0 − 2f0|. Indeed we can prove

Proposition 7.9. Let S be the double cover of E(2) branched along a curve B ∈ |6h0 − 2f0|. Then the following
holds.

(i) If S ∈ MD4 we have

B = B′ + bξi + fξi ,

where B′ ∈ |−2K E(2) | and i ∈ {1,2,3}.
(ii) If S ∈ MQ 8 we have

B = bξ1 + bξ2 + bξ3 + f0.
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In both cases the isotrivial fibration |C | of S is obtained as the pullback of the antibicanonical pencil |− 2K E(2) |
of E(2) .

Proof. Since C2 = 0 and C F = 8, it follows that the image of |C | in E(2) via the double cover S → E(2)

is a linear pencil whose general element c verifies c2 = 0, cf = 4. This implies |c| = |− 2K E(2) | [CaCi93,
p. 404]. Moreover, since n = (21), exactly one component of B is algebraically equivalent to f. If
S ∈ MD4 then m = (22,4), so exactly one of the curves bξi is contained in B; this implies (i). If
S ∈ MQ 8 then m = (43), so all the bξi are components of B; this implies (ii). �

Notice that in both cases all the components of B not contained in {f} are invariant under trans-
lation in E(2); this explains why the Albanese pencil of S turns out to be isotrivial.

Acknowledgments

The author wishes to thank I. Bauer, A. Broughton, G. Carnovale, F. Catanese, C. Ciliberto, G. Infante,
J. Van Bon for useful discussions and suggestions. Part of this research was done during the winter
semester of the academic year 2006–2007, when the author was visiting the Department of Mathe-
matics at the Imperial College (London, UK) and was supported by an “Accademia dei Lincei” grant.
He is especially grateful to A. Corti for his warm hospitality.

Appendix A

This appendix contains the classification of finite groups of automorphisms acting on Riemann
surfaces of genus 2, 3 and 4 so that the quotient is isomorphic to P

1. In the last two cases we listed
only the non-abelian groups. Tables 1–3 are adapted from [Br90, pp. 252, 254, 255], whereas Table 4
is adapted from [Ki03, Theorem 1] and [Vin00]. For every G we give a presentation, the vector m of
branching data and the IdSmallGroup(G), that is the number of G in the GAP4 database of small
groups. The author wishes to thank S.A. Broughton who kindly communicated to him that the group
G(48,33) (Table 3, case (3t)) was missing in [Br90].

Table 1
Abelian groups of automorphisms acting with rational quotient on Riemann surfaces of genus 2.

Case G IdSmall
Group(G)

m

(1a) Z2 G(2,1) (26)

(1b) Z3 G(3,1) (34)

(1c) Z4 G(4,1) (22,42)

(1d) Z2 × Z2 G(4,2) (25)

(1e) Z5 G(5,1) (53)

(1 f ) Z6 G(6,2) (22,32)

(1g) Z6 G(6,2) (3,62)

(1h) Z8 G(8,1) (2,82)

(1i) Z10 G(10,2) (2,5,10)

(1 j) Z2 × Z6 G(12,5) (2,62)
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Table 2
Non-abelian groups of automorphisms acting with rational quotient on Riemann surfaces of genus 2.

Case G IdSmall
Group(G)

m Presentation

(2a) S3 G(6,1) (22,32) 〈x, y | x = (123), y = (12)〉
(2b) Q 8 G(8,4) (43) 〈i, j,k | i2 = j2 = k2 = −1, i j = k, jk = i,ki = j〉
(2c) D4 G(8,3) (23,4) 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
(2d) D4,3,−1 G(12,1) (3,42) 〈x, y | x4 = y3 = 1, xyx−1 = y−1〉
(2e) D6 G(12,4) (23,3) 〈x, y | x2 = y6 = 1, xyx−1 = y−1〉
(2 f ) D2,8,3 G(16,8) (2,4,8) 〈x, y | x2 = y8 = 1, xyx−1 = y3〉
(2g) G = Z2 � ((Z2)2 × Z3) G(24,8) (2,4,6) 〈x, y, z, w | x2 = y2 = z2 = w3 = 1,

[y, z] = [y, w] = [z, w] = 1,

xyx−1 = y, xzx−1 = zy, xwx−1 = w−1〉
(2h) SL2(F3) G(24,3) (32,4) 〈x, y | x = ( 1 1

0 1), y = ( 0 1
−1 −1)〉

(2i) GL2(F3) G(48,29) (2,3,8) 〈x, y | x = ( 1 1
0 −1), y = ( 0 −1

1 −1)〉

Table 3
Non-abelian groups of automorphisms acting with rational quotient on Riemann surfaces of genus 3.

Case G IdSmall
Group(G)

m Presentation

(3a) S3 G(6,1) (24,3) 〈x, y | x = (12), y = (123)〉
(3b) D4 G(8,3) (22,42) 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
(3c) D4 G(8,3) (25) 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
(3d) D4,3,−1 G(12,1) (42,6) 〈x, y | x4 = y3 = 1, xyx−1 = y−1〉
(3e) D6 G(12,4) (23,6) 〈x, y | x2 = y6 = 1, xyx−1 = y−1〉
(3 f ) A4 G(12,3) (22,32) 〈x, y | x = (12)(34), y = (123)〉
(3g) D2,8,5 G(16,6) (2,82) 〈x, y | x2 = y8 = 1, xyx−1 = y5〉
(3h) D4,4,−1 G(16,4) (43) 〈x, y | x4 = y4 = 1, xyx−1 = y−1〉
(3i) Z2 × D4 G(16,11) (23,4) 〈z | z2 = 1〉 × 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
(3 j) Z2 � (Z2 × Z4) G(16,13) (23,4) 〈x, y, z | x2 = y2 = z4 = 1, [x, z] = [y, z] = 1, xyx−1 = yz2〉
(3k) D3,7,2 G(21,1) (32,7) 〈x, y | x3 = y7 = 1, xyx−1 = y2〉
(3l) D2,12,5 G(24,5) (2,4,12) 〈x, y | x2 = y12 = 1, xyx−1 = y5〉
(3m) Z2 × A4 G(24,13) (2,62) 〈z | z2 = 1〉 × 〈x, y | x = (12)(34), y = (123)〉
(3n) SL2(F3) G(24,3) (32,6) 〈x, y | x = ( 1 1

0 1), y = ( 0 1
−1 −1)〉

(3o) S4 G(24,12) (3,42) 〈x, y | x = (1234), y = (12)〉
(3p) S4 G(24,12) (23,3) 〈x, y | x = (1234), y = (12)〉
(3q) Z2 � (Z2 × Z8) G(32,9) (2,4,8) 〈x, y, z | x2 = y2 = z8 = 1, [x, y] = [y, z] = 1, xzx−1 = yz3〉
(3r) Z2 � D2,8,5 G(32,11) (2,4,8) 〈x, y, z | x2 = y2 = z8 = 1, yzy−1 = z5, xyx−1 = yz4, xzx−1 = yz3〉
(3s) Z2 × S4 G(48,48) (2,4,6) 〈z | z2 = 1〉 × 〈x, y | x = (12), y = (1234)〉
(3t) G(48,33) G(48,33) (2,3,12) 〈x, y, z, w, t | x2 = z2 = w2 = t, y3 = 1,

t2 = 1, yzy−1 = w, ywy−1 = zw, zwz−1 = wt,
[x, y] = [x, z] = 1〉

(3u) Z3 � (Z4)2 G(48,3) (32,4) 〈x, y, z | x3 = y4 = z4 = 1, [y, z] = 1, xyx−1 = z, xzx−1 = (yz)−1〉
(3v) S3 � (Z4)2 G(96,64) (2,3,8) 〈x, y, z, w | x2 = y3 = z4 = w4 = 1,

[z, w] = 1, xyx−1 = y−1, xzx−1 = w,

xwx−1 = z, yzy−1 = w, ywy−1 = (zw)−1〉
(3w) PSL2(F7) G(168,42) (2,3,7) 〈x, y | x = (375)(486), y = (126)(348)〉
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Table 4
Non-abelian groups of automorphisms acting with rational quotient on Riemann surfaces of genus 4.

Case G IdSmall
Group(G)

m Presentation

(4a) S3 G(6,1) (26) 〈x, y | x = (12), y = (123)〉
(4b) S3 G(6,1) (22,33) 〈x, y | x = (12), y = (123)〉
(4c) D4 G(8,3) (24,4) 〈x, y | x2 = y4 = 1, xyx−1 = y−1〉
(4d) Q 8 G(8,4) (2,43) 〈i, j,k,−1 | i2 = j2 = k2 = −1, i j = k, jk = i, ki = j〉
(4e) D5 G(10,1) (22,52) 〈x, y | x2 = y5 = 1, xyx−1 = y−1〉
(4 f ) A4 G(12,3) (2,33) 〈x, y | x = (12)(34), y = (123)〉
(4g) D6 G(12,4) (25) 〈x, y | x2 = y6 = 1, xyx−1 = y−1〉
(4h) D6 G(12,4) (22,3,6) 〈x, y | x2 = y6 = 1, xyx−1 = y−1〉
(4i) D8 G(16,7) (23,8) 〈x, y | x2 = y8 = 1, xyx−1 = y−1〉
(4 j) G(16,9) G(16,9) (42,8) 〈x, y, z, w | x2 = y2 = z2 = w, w2 = 1,

xzx−1 = z−1, yzy−1 = z−1, yxy−1 = (xz)−1〉
(4k) Z3 × S3 G(18,3) (22,32) 〈z | z3 = 1〉 × 〈x, y | x = (12), y = (123)〉
(4l) Z3 × S3 G(18,3) (3,62) 〈z | z3 = 1〉 × 〈x, y | x = (12), y = (123)〉
(4m) Z2 � (Z3)2 G(18,4) (22,32) 〈x, y, z | x2 = y3 = z3 = 1, xyx−1 = y−1, xzx−1 = z−1, [y, z] = 1〉
(4n) Z2 × D5 G(20,4) (23,5) 〈z | z2 = 1〉 × 〈x, y | x2 = y5 = 1, xyx−1 = y−1〉
(4o) D4,5,−1 G(20,1) (42,5) 〈x, y | x4 = y5 = 1, xyx−1 = y−1〉
(4p) D4,5,2 G(20,3) (42,5) 〈x, y | x4 = y5 = 1, xyx−1 = y2〉
(4q) S4 G(24,12) (23,4) 〈x, y | x = (1234), y = (12)〉
(4r) D2,12,7 G(24,10) (2,6,12) 〈x, y | x2 = y12 = 1, xyx−1 = y7〉
(4s) SL2(F3) G(24,3) (3,4,6) 〈x, y | x = ( 1 1

0 1), y = ( 0 1
−1 −1)〉

(4t) D2,16,7 G(32,19) (2,4,16) 〈x, y | x2 = y16 = 1, xyx−1 = y7〉
(4u) (Z2)2

� (Z3)2 G(36,10) (23,3) 〈x, y, z, w | x2 = y2 = z3 = w3 = 1,

yzy−1 = z2, xwx−1 = w2,

[x, y] = [x, z] = [y, w] = [z, w] = 1〉
(4v) (Z2)2

� (Z3)2 G(36,10) (2,62) 〈x, y, z, w | x2 = y2 = z3 = w3 = 1,

yzy−1 = z2, xwx−1 = w2,

[x, y] = [x, z] = [y, w] = [z, w] = 1〉
(4w) Z6 × S3 G(36,12) (2,62) 〈z | z6 = 1〉 × 〈x, y | x = (12), y = (123)〉
(4x) Z3 × A4 G(36,11) (32,6) 〈z | z3 = 1〉 × 〈x, y | x = (12)(34), y = (123)〉
(4y) Z4 � (Z3)2 G(36,9) (3,42) 〈x, y, z | x4 = y3 = z3 = 1, xyx−1 = yz2, xzx−1 = y2 z2, [y, z] = 1〉
(4z) D4 � Z5 G(40,8) (2,4,10) 〈x, y, z | x2 = y4 = z5 = 1, xyx−1 = y−1, xzx−1 = z, yzy−1 = z−1〉
(4aa) A5 G(60,5) (2,52) 〈x, y | x = (12)(34), y = (12345)〉
(4ab) Z3 × S4 G(72,42) (2,3,12) 〈z | z3 = 1〉 × 〈x, y | x = (12), y = (1234)〉
(4ac) D4 � (Z3)2 G(72,40) (2,4,6) 〈x, y, z, w | x2 = y4 = z3 = w3 = 1,

xyx−1 = y−1, xzx−1 = w,

yzy−1 = w, ywy−1 = z2, [z, w] = 1〉
(4ad) S5 G(120,34) (2,4,5) 〈x, y | x = (12), y = (12345)〉
Appendix B

The following is the GAP4 script that we used in order to check that the group G = Z2 � (Z2 ×
Z4) = G(16,13) is not (1 | 21)-generated (see Proposition 2.4, case (3 j)). In fact, the output shows
that if [h1,h2] has order 2 then either 〈h1,h2〉 ∼= G(8,3) = D4 or 〈h1,h2〉 ∼= G(8,4) = Q 8. Completely
similar scripts can be used in order to check the other results stated in Propositions 2.3–2.6, although
in almost all cases it is also possible to carry out the computations “by hand.”

gap> f:=FreeGroup("x", "y", "z");
<free group on the generators [x,y,z]>
gap> x:=f.1; y:=f.2; z:=f.3;
x
y
z
gap> G:=f/[x^2, y^2, z^4,
Comm(x,z), Comm(y,z), x*y*x^-1*(y*z^2)^-1]; # insert the presentation
of G
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<fp group on the generators [x,y,z]>
gap> x:=G.1; y:=G.2; z:=G.3;
x
y
z
gap> IdSmallGroup(G); # check the IdSmallGroup(G)
[16,13]
gap> for h1 in G do
> for h2 in G do
> H:=Subgroup(G, [h1,h2]);
> if Order(h1*h2*h1^-1*h2^-1)=2 then # check whether [h1,h2] has order 2
> Print(IdSmallGroup(H), " "); # identify the subgroup generated by h1
and h2
> fi; od; od; Print("\n");
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
[8,3] [8,3] [8,4] [8,3] [8,4] [8,3] [8,4] [8,4]
[8,3] [8,4] [8,4] [8,3] [8,3] [8,4] [8,4] [8,3]
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
[8,3] [8,4] [8,4] [8,3] [8,3] [8,4] [8,4] [8,3]
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
[8,3] [8,3] [8,4] [8,3] [8,4] [8,3] [8,4] [8,4]
[8,3] [8,4] [8,4] [8,3] [8,3] [8,4] [8,4] [8,3]
[8,3] [8,4] [8,4] [8,3] [8,3] [8,4] [8,4] [8,3]
[8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3] [8,3]
gap>

References

[BaCaGr06] I. Bauer, F. Catanese, F. Grunewald, The classification of surfaces with pg = q = 0 isogenous to a product of curves,
e-print math.AG/0610267, 2006, Pure Appl. Math. Q., volume in honour of F. Bogomolov’s 60-th birthday, in press.

[BaCaPi06] I. Bauer, F. Catanese, R. Pignatelli, Complex surfaces of general type: Some recent progress, in: Global Methods in
Complex Geometry, Springer-Verlag, 2006, pp. 3–58.

[BPV84] W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, 1984.
[Bar99] R. Barlow, Zero-cycles on Mumford’s surface, Math. Proc. Cambridge Philos. Soc. 126 (1999) 505–510.
[Bre00] T. Breuer, Characters and Automorphism Groups of Compact Riemann Surfaces, Cambridge University Press, 2000.
[Br90] S.A. Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1990) 233–270.
[Ca81] F. Catanese, On a class of surfaces of general type, in: Algebraic Surfaces, CIME, Liguori, 1981, pp. 269–284.
[Ca99] F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, in: Contemp. Math.,

vol. 241, 1999, pp. 97–119.
[Ca00] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122 (2000)

1–44.
[CaCi91] F. Catanese, C. Ciliberto, Surfaces with pg = q = 1, Sympos. Math. 32 (1991) 49–79.
[CaCi93] F. Catanese, C. Ciliberto, Symmetric product of elliptic curves and surfaces of general type with pg = q = 1, J.

Algebraic Geom. 2 (1993) 389–411.
[CaPi06] F. Catanese, R. Pignatelli, Fibrations of low genus I, Ann. Sci. Ecole Norm. Sup. 39 (6) (2006) 1011–1049.
[CarPol] G. Carnovale, F. Polizzi, The classification of surfaces of general type with pg = q = 1 isogenous to a product, e-print

arXiv: 0704.0446, 2007, Adv. Geom., in press.
[CCPW] J.H. Conway, R.T. Curtis, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
[FK92] H.M. Farkas, I. Kra, Riemann Surfaces, 2nd edition, Grad. Texts in Math., vol. 71, Springer-Verlag, 1992.
[Fre71] E. Freitag, Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen I, J. Reine Angew. Math. 247 (1971)

97–117.
[GAP4] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4, http://www.gap-system.org, 2006.
[H71] W.J. Harvey, On the branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971) 387–399.
[Is05] H. Ishida, Bounds for the relative Euler–Poincaré characteristic of certain hyperelliptic fibrations, Manuscripta

Math. 118 (2005) 467–483.
[Ki03] H. Kimura, Classification of automorphism groups, up to topological equivalence, of compact Riemann surfaces of

genus 4, J. Algebra 264 (2003) 26–54.

http://www.gap-system.org


F. Polizzi / Journal of Algebra 321 (2009) 1600–1631 1631
[KuKi90] A. Kuribayashi, H. Kimura, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra 134 (1)
(1990) 80–103.

[KuKu90] I. Kuribayashi, A. Kuribayashi, Automorphism groups of compact Riemann surfaces of genera three and four, J. Pure
Appl. Algebra 65 (3) (1990) 277–292.

[Mi84] Y. Miyaoka, The maximum number of quotient singularities on surfaces with given numerical invariants, Math.
Ann. 268 (1984) 159–171.

[Pol05] F. Polizzi, On surfaces of general type with pg = q = 1, K 2
S = 3, Collect. Math. 56 (2) (2005) 181–234.

[Pol08] F. Polizzi, On surfaces of general type with pg = q = 1 isogenous to a product of curves, Comm. Algebra 36 (6)
(2008) 2023–2053.

[Ri07] C. Rito, On surfaces with pg = q = 1 and non-ruled bicanonical involution, Ann. Sc. Norm. Super. Pisa Cl. Sci.
(5) 6 (1) (2007) 81–102.

[Se90] F. Serrano, Fibrations on algebraic surfaces, in: A. Lanteri, M. Palleschi, D.C. Struppa (Eds.), Geometry of Complex
Projective Varieties, Cetraro, 1990, Mediterranean Press, 1993, pp. 291–300.

[Se96] F. Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Appl. CLXXI (1996) 63–81.
[Vin00] C.R. Vinroot, Symmetry and Tiling groups for genus 4 and 5, Rose–Hulman Inst. Technol. Undergrad. Math. J. 1 (1)

(2000).
[Xi85] G. Xiao, Surfaces fibrees in courbes de genre deux, Lecture Notes in Math., vol. 1137, 1985.


	Standard isotrivial fibrations with pg=q=1
	Introduction
	Algebraic background
	Some non-generation results
	Standard isotrivial fibrations
	The case chi(OS)=1
	Standard isotrivial fibrations with pg=q=1. Building data
	Standard isotrivial fibrations with pg=q=1. The abelian case
	Standard isotrivial fibrations with pg=q=1. The non-abelian case
	The case KS2=6
	The case KS2=4
	The case KS2=2

	Acknowledgments
	References


