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Simulated microgravity affects
directional growth of pollen
tubes in candidate space crops

Maurizio Iovane*, Luigi Gennaro Izzo*, Leone Ermes Romano
and Giovanna Aronne

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
Background: Long-term spacemissions will necessarily require producing viable

seeds to be used for plant cultivation over time under altered gravity conditions.

Pollen is known to play a key role in determining seed and fruit production over

seed-to-seed cycles, but very few studies have evaluated pollen functionality

under altered gravity.

Methods: We performed ground-based experiments to test how simulated

microgravity can affect the directional growth of pollen tubes as a potential

bottleneck in seed and fruit sets. The effect of clinorotation was assessed in the

pollen of Solanum lycopersicum L. cv. ‘Micro-Tom’ and Brassica rapa L. var.

silvestris, both eligible for cultivation in space. Pollen tube length and tortuosity

were compared under 1g and simulated microgravity with a uniaxial clinostat.

Results: The main results highlighted that simulated microgravity significantly

increased pollen tube length and tortuosity compared to 1g conditions. Further,

clinorotation prompted a differential effect on pollen germination between S.

lycopersicum and B. rapa. A more in-depth analysis evaluating the effect of

gravity on the directional growth of pollen tubes excluded gravitropic responses

as responsible for the tube tip position reached after germination.

Discussion: This research provides new insights into how altered gravity can

interfere with plant reproduction and, in particular, microgametophyte

functionality. Our findings represent a basis for further studies aimed at

understanding the effect of real microgravity on plant reproduction and

developing countermeasures to ensure seed-to-seed cultivation in long-term

space missions and achieve self-sufficiency in food supplies from Earth.

KEYWORDS

simulated microgravity, pollen tube, pollen germination, clinostat, space crops, Micro-
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1 Introduction

Future space exploration requires plant-based bioregenerative

life support systems (BLSS) to produce edible biomass and oxygen,

recycle water, absorb carbon dioxide, and support astronauts’

psychological health (Kordyum and Hasenstein, 2021). Indeed,

plants are essential components of BLSS, and for decades, many

experiments with plants have been performed to test the feasibility

of plant cultivation in space (e.g., Zabel et al., 2016; De Pascale et al.,

2021; Romano and Aronne, 2021).

Early efforts to cultivate plants for extended periods in

microgravity resulted in reduced growth and complications in the

transition to the reproductive stage (Kordyum et al., 1983; Kuang

et al., 1995). In 1982, Arabidopsis thaliana became the first plant

species to flower in space and produce seeds (Merkies and

Laurinavichyus, 1983). However, only half of the seeds were

viable and germinated in developing plants without growth

defects (Salisbury, 1999). Environmental constraints such as low

ventilation and high ethylene concentrations have been considered

the main causes of interrupted or reduced reproductive success in

many early experiments in space (De Micco et al., 2013). Recently,

the advancement of plant growth systems has led to numerous

successful seed sets in space and to a seed-to-seed-to-seed cycle of

A. thaliana that was achieved entirely on the International Space

Station (Link et al., 2014).

Overall, plant biology research in space indicates that real and

simulated microgravity do not prevent plant reproduction, but they

can affect the quality of embryos and the development of seedlings

(Kuang et al., 2000b; Musgrave et al., 2000; Link et al., 2014; Izzo

et al., 2022). Various alterations in seeds produced in space include

delayed embryonic development, modification of storage reserves,

delayed starch use in cotyledons, and decreased cell number in

cotyledons (Kuang et al., 2000a; Kuang et al., 2000b; Musgrave et al.,

2005). Currently, the identification of mechanisms by which space

factors can affect plant reproduction is becoming increasingly

critical for plant cultivation in future human settlements on the

Moon and Mars (Kordyum et al., 2020). Indeed, the completion of

the seed-to-seed cycle in the BLSSs is essential to producing viable

seeds to be used for plant cultivation over time independently of

Earth’s supply.

Within the plant reproductive cycle, viable and germinable

pollen is needed to trigger the double fertilization responsible for

seed formation. Indeed, both pollen viability and germination are

positively correlated with fruit and seed set (Paupière et al., 2017;

Herrera et al., 2018). Therefore, possible effects of space factors on

successful seed production can be addressed by defects in pollen

viability and germinability. Previous experiments showed that most

Arabidopsis and Brassica pollen grains produced under

microgravity conditions were viable (Kuang et al., 1996; Kuang

et al., 2000b). Nevertheless, this is not enough to fulfill the

reproductive cycle. Once formed, viable pollen needs to be

transferred to the stigma, posing some challenges in microgravity,

especially for self-incompatible species that require cross-

pollination to succeed in seed production (Kuang et al., 2000a).

Furthermore, once it arrives on the stigma surface, pollen must

germinate and guide its pollen tube across the ovary into the ovule
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to trigger double fertilization and seed formation. In the alternation

between sporophyte (diploid) and gametophyte (haploid)

generation in sexual plant reproduction, pollen represents the

male gametophyte and is therefore an independent organism with

a very short lifespan whose survival is essential to achieve the full

completion of the plant reproductive cycle (Pacini and

Dolferus, 2019).

Pollen is very sensitive to environmental factors that could affect

pollen tube development. The earliest stage of pollen development

was revealed to be the most sensitive to temperature changes, with a

drastic reduction of pollen germination caused by high

temperatures during microsporogenesis (Iovane and Aronne,

2021). Moreover, pollen germination is strongly influenced by

relative humidity and its combination with temperature

conditions (Güçlü and Koyuncu, 2017; Aronne et al., 2021).

Indeed, a drastic loss in pollen viability occurs when pollen is

exposed to a combination of high humidity and high temperature,

whereas this does not happen when pollen is exposed to the same

temperatures but lower humidity levels (Iovane et al., 2022a).

Additionally, the possibility of plants growing and reproducing in

space will depend on their capability to accomplish both sporophyte

and gametophyte generations under altered microgravity

conditions. In this scenario, investigations into how simulated

microgravity can affect pollen germination and tube growth

might provide useful insights into space-related issues in

plant reproduction.

Among the instruments used to simulate microgravity,

clinostats are meant to reduce the effect of constant gravity

acceleration on Earth, and they have been largely used to perform

ground-based experiments on the effects of simulated microgravity

on plant growth and development (Dedolph and Dipert, 1971; Kiss

et al., 2019). Even if clinostats do not reproduce weightlessness,

ground-based research in simulated microgravity provides useful

understandings to predict plant responses in real microgravity (Kiss

et al., 2019). Although plants are known to be extremely sensitive to

gravity (Muthert et al., 2020; Sathasivam et al., 2021), gravitropism

in pollen tubes has not yet been assessed. To date, the

microgametophyte (pollen) tube path towards the ovary is known

to be guided exclusively by chemotropic stimuli due to specialized

pistil tissues (Kandasamy et al., 1994), whereas the possible co-

existence with pollen gravitropism has been generally overlooked.

To date, a few studies have shown that simulated microgravity

affects several aspects of pollen tube development, such as alterations

in sperm cell migration and callose plug formation (De Micco et al.,

2005; De Micco et al., 2006), but gravitropism in pollen tubes has not

yet been assessed. Previous studies were performed under in vitro

conditions where the absence of a Ca2+ gradient allowed isolation of

the effect of simulated microgravity. Thus, to test the hypothesis that

chemotropism always coexists with gravitropism in germinating

pollen, in vitro conditions would be ideal to reveal the effect of

altered gravity in orientating pollen tubes. In the framework of future

spacemissions with seed-to-seed crop cycles, it is crucial to study how

altered gravity could interfere with pollen germination and tube

directional growth to achieve fertilization.

Among candidate space crops, Solanum lycopersicum L. cv.

‘Micro-Tom’ and Brassica rapa L. are two promising crops for
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cultivation on board spacecrafts, mainly for their compact size and

short life cycle (Musgrave et al., 2005; Matsukura et al., 2008;

Shikata and Ezura, 2016; Burgner et al., 2020). ‘Micro-Tom’ is a

macro-thermal fruity crop that has already achieved a seed-to-seed

cycle under simulated microgravity, even though fruit setting was

almost halved under clinorotation (Colla et al., 2007). B. rapa is a

micro-thermal leafy crop that has already been grown from seed to

seed under microgravity conditions on the Mir space station in

1997; however, seeds and siliques formed from the second

generation of plants on board resulted in compromise (Musgrave

et al., 2005). Brassica spp. are close relatives of A. thaliana, and there

is substantial homology between their nuclear genomes (Tatematsu

et al., 2004). Particularly, the pollen of B. rapa L. var. sylvestris has

already been investigated for aberrant callose plug deposition

during tube development under simulated microgravity (De

Micco et al., 2006).

Research on possible gravitropic responses of pollen is needed

to have a better understanding of how altered gravity can limit seed

and fruit production over repeated seed-to-seed cycles in candidate

space crops. In this context, our study is the first to perform in vitro

pollen germination on a clinostat to isolate the effect of simulated

microgravity and unravel the possible gravitropism of the pollen

tube. Specifically, our aim was to compare the effect of simulated

microgravity and Earth gravity on pollen tube orientation in S.

lycopersicum L. cv. ‘Micro-Tom’ and Brassica rapa L var. sylvestris

as potential bottlenecks in regular seed and fruit development for

cultivation in space.
2 Material and methods

2.1 Plant material

The effect of simulated microgravity on pollen germination and

tube orientation was assessed in S. lycopersicum L. cv. ‘Micro-Tom’

and B. rapa L var. sylvestris, both recognized as candidate space

crops. ‘Micro-Tom’ and Brassica plants were grown from seeds to

flower in two different growth chambers. In ‘Micro-Tom’ plants, a

photosynthetic photon flux density (PPFD) of 400 ± 15 mmol m−2

s−1 was provided by white LEDs in a 16 h d−1 photoperiod. Relative

humidity was kept at 70 ± 5% and the air temperature was set at

22 ± 0.5°C both reported as the optimum for tomatoes (Sato et al.,

2001; Matsuda et al., 2014). As for Brassica plants, the PPFD from

white LEDs was 250 ± 10 mmol m−2 s−1 in a 12 h d−1 photoperiod.

Relative humidity and air temperature were kept at 70 ± 5% and

18 ± 0.5°C, respectively. PPFD was measured during each treatment

using a spectroradiometer (SS-110; Apogee Instruments Inc.,

Logan, UT).
2.2 Pollen sampling and
viability measurement

Pollen was collected from flowers sampled shortly before

anthesis to prevent possible pollen damage once exposed to the

external environment. More specifically, undehisced anthers were
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detached from 200 flower buds per species, distributed in two

different Petri dishes, and left to dehisce in a closed container

filled with dry silica gel. This method sped up pollen release from

anthers and allowed for the production of one bulk sample of pollen

per species within a few hours of flower sampling (Iovane

et al., 2022b).

Before clinorotation, the pollen viability of the bulk samples was

assessed through the diaminobenzidine (DAB) reaction (Dafni,

1992) to ensure that the pollen used for the experiment was of

high quality. We evaluated pollen viability on five pollen samples

per species taken from the respective bulk. Each pollen sample was

spread into a 10 ml droplet of water previously placed on a slide.

One droplet of 10 ml of DAB reagent was added to each pollen

sample, and slides were gently warmed on a heating plate and

mounted. Pollen grains were scored as viable when stained dark/

brown and as not viable when they remained faint/colorless. Each

slide mounting a single pollen sample was photographed under a

light microscope, and pollen viability was scored through image

analyses on six photos per slide. The viability percentage was

measured by counting at least 100 pollen grains per photo on a

total of 30 photos per species (two species × five slides × six photos).
2.3 Pollen germination and
gravity treatments

To test the effect of simulated microgravity on pollen

germination, Petri dishes with germinating pollen were split

between a control (1g) and a clinostat treatment (cl). In the

control treatment, pollen germinated on agar germination

medium inside Petri dishes vertically positioned according to the

1g gravity vector. Simulated microgravity treatment was performed

on a uniaxial clinostat consisting of two metallic supports and two

rotating dishes joined by a rigid shaft. Petri dishes with germinating

pollen were fixed on the rotating shaft at a specific distance from the

rotating axis to obtain ineffective centrifuge acceleration on pollen,

according to a spin velocity of the rigid shaft set at two revolutions

per minute. In vitro pollen germination was tested using two

different agar media optimized for ‘Micro-Tom’ and B. rapa (Sato

et al., 1998; Karapanos et al., 2010). In more detail, pollen from the

bulk samples was placed in 10 Petri dishes per species lined with an

agar medium made of 0.9% agar and 15% sucrose (w/v) for ‘Micro-

Tom’ pollen and 0.9% agar and 20% sucrose (w/v) for B. rapa.
2.4 Microscopy and image analysis of
germinating pollen

The effect of clinorotation on pollen germination and tube

development in agar media was assessed through image analyses

comparing pollen germinability, tube length, and tortuosity index

between control (1g) and clinostat (simulated microgravity)

treatments. Image analysis of germinating pollen was performed

with ImageJ v1.53 software on photos taken with a digital camera

(EOS 60D, Canon) mounted on a light microscope (Olympus® BX-

60). Each photo was taken keeping track of the Petri dish
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orientation with respect to the direction of the gravity vector.

Germinating pollen was photographed after 24 and 48 h, and

germination scoring was performed through image analyses on

400 photos (two species × two gravity treatments × five Petri dishes

× two germination times × 10 photos). Germination percentages

were assessed by considering as germinated grains those with a

pollen tube longer than the grain diameter. Pollen tube length (L)

was assessed on 600 pollen tubes and scored on 200 photos tracing

the whole length of the pollen tube from the exine apertures to the

pollen tube tip. On the same photos, the pollen tortuosity index was

measured to estimate bending/directionality throughout the pollen

tube path (Figure 1). The tortuosity index (T) was calculated using

the following equation:

T = L=C

where L (length) is the total length of the pollen tube and C

(chord) is the distance between the pollen exine aperture and the

pollen tube tip. The reported tortuosity index can vary from 1 (L =

C) to +∞ (L > C). More specifically, tortuosity values close to 1

indicate that the pollen tube developed straight from the exine to

the tube tip, whereas increasing tortuosity values indicate an

increase in direction changes during elongation of the pollen tube.

Furthermore, to detect a possible gravitropic response of pollen

tubes, we investigated the direction of tube elongation in the control
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and clinostat treatments. For this purpose, we divided the images of

each germinated pollen grain into four quadrants with respect to the

direction of the gravity vector, scored the direction of 300 pollen

tubes inside the agar medium, and calculated the percentage of

pollen tube tips reaching each quadrant (Figure 2).

We hypothesized that the expected frequencies of pollen tube

tip location would be equally distributed across the Petri dish

containing the germination medium (25% in each quadrant). In

the case of P <0.05, the observed frequencies would differ from

those expected, therefore showing a preferential growth direction of

pollen tube tips. Specifically, in the control treatment, a positive or

negative gravitropic response would result if pollen tube tips were

preferentially located in quadrants I or III, respectively.
2.5 Data analysis

Data were analyzed with IBM® SPSS Statistics. Shapiro–Wilk’s

test and Levene’s test were respectively used to assess the normality

and homogeneity of the variances of the datasets. Differences in

pollen germination, tube length, and tortuosity between ground and

clinostat treatments were tested using ANOVA (P <0.05) and the

Brown–Forsythe robust test for equality of means. The observed

and expected frequencies of pollen tube tip location in the different
FIGURE 1

Tortuosity index calculated as L/C—length/chord through image analyses on pollen grains germinated in agar medium. Pollen tube length (L—red
line) was traced throughout the whole length of the pollen tube. The pollen tube chord (C—green line) was traced as the straight line between the
pollen exine aperture and the tube tip.
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quadrants under control and simulated microgravity treatments

were compared through a Chi-square test.

3 Results

The DAB test for pollen viability showed that pollen was well

formed and functional in both species. Moreover, the viability of all

pollen samples taken from the bulk of each species was high and

uniform, ranging between 87%–91% in ‘Micro-Tom’ and 86%–94%

in B. rapa, and no significant differences were detected among

pollen samples intra-species (Figure 3).

Data on pollen germination showed clear differences between

control and clinostat treatments (Figure 4). More specifically, the

two-way ANOVA showed a significant (P <0.05) effect of

germination time, gravity, and their interaction. The two species
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reacted differently to gravity since simulated microgravity reduced

pollen germination in ‘Micro-Tom’ but increased pollen germination

in B. rapa compared to the control condition. However, in both

species, simulated microgravity significantly increased pollen

germination when prolonging pollen incubation from 24 to 48 h,

whereas no differences in pollen germination were found between 24

and 48 h of incubation under the 1g condition.

Thereafter, the pairwise comparison of pollen tube length

between control and clinostat treatments highlighted a similar

response in ‘Micro-Tom’ and B. rapa. Despite the great difference

in tube length, pollen of both species developed longer tubes in

simulated microgravity than in control conditions (Figure 5).

Considering pollen tube length and pollen germination data, results

highlighted that simulated microgravity promoted pollen tube length

in both species despite reducing the germination rate in B. rapa.

As far as pollen tube path in germinated grains, a first visual

overview of pollen tubes showed a clear difference between control

and clinostat treatments, especially in ‘Micro-Tom’ (Figure 6).

More in detail, control pollen developed straighter tubes

compared to the simulated microgravity condition, in which tube

tips changed their direction more frequently throughout the pollen

tube path. The straightness/curviness of pollen tube paths was

compared between control and clinostat by measuring the

tortuosity index in 300 pollen tubes per species. Results showed

that simulated microgravity significantly increased pollen tube

tortuosity compared to control. Moreover, ANOVA reported that

the difference in tortuosity between control and simulated

microgravity was more significant in ‘Micro-Tom’ (P <0.001,

Figure 7A) than in B. rapa (P <0.05, Figure 7B), which is also

highlighted in the box plots showing the distribution of tortuosity

values in the two gravity treatments (Figure 7). Indeed, in ‘Micro-

Tom,’ most of the values of the tortuosity index are distributed

consistently around the median in the control treatment, whereas a

much wider distribution with increasing tortuosity values results in

the clinostat treatment. Differently, the tortuosity index of B. rapa

pollen tubes were similarly distributed around the median both in

control and in simulated microgravity, but still had significantly

higher values in the clinostat treatment.
BA

FIGURE 3

Viability of bulk pollen from flowers of ‘Micro-Tom’ (A) and Brassica rapa (B). Each bar shows the pollen viability of a single pollen sample from the
bulk, expressed as the mean of the viability percentage scored on six photos per sample. ANOVA reported no significant differences intra-species
among pollen samples (P <0.05). Bars represent ± SE.
FIGURE 2

Evaluation of pollen tube tip location with respect to gravity vector
(g) under 1g and clinorotation treatments through image analyses.
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Finally, the evaluation of possible gravitropic responses in

pollen tubes showed no preferential distribution of pollen tube

tips across the Petri dishes, both in control and simulated

microgravity treatments (Figure 8). Specifically, we analyzed data

assuming no gravitropic response of pollen tubes of ‘Micro-Tom’

and B. rapa, therefore hypothesizing an equal distribution (25% in

each quadrant) of tube tips across the Petri dish in both control and

simulated microgravity. The Chi-square test revealed no significant

differences between observed and expected frequencies of pollen

tube tips in the four quadrants, independently of the gravity

treatments and the species tested (Table S1, P <0.05). Therefore,

we confirmed the null hypothesis that the orientation of pollen

tubes of ‘Micro-Tom’ and B. rapa was not subjected to

gravitropic responses.
4 Discussion

Results on initial pollen viability revealed that growing

conditions were optimally set to avoid any interference of abiotic

factors with reproductive features. Indeed, pollen samples of both

species reported viability over 80%, and no significant differences
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intraspecies between pollen samples proved high uniformity in

pollen grains taken from the same bulk (Figure 3). Therefore, the

two bulk pollen samples (one bulk per species) represented a proper

starting point to perform further analyses and compare results

intra- and inter-species concerning further pollen traits under

simulated microgravity conditions.

The viability of pollen grains is not sufficient to predict pollen’s

capability to elongate a pollen tube and achieve fertilization (Dafni

et al., 2005; Pacini and Dolferus, 2019). Our results also

demonstrated that pollen with high viability can germinate under

simulated microgravity with a significantly different ratio according

to the species tested (Figure 4). Considering this, pollen

germination rate may be applied as an inclusion criterion in

ranking space crops for seed-to-seed cultivation in space (Aronne

et al., 2020). Both pollen viability and germination are strongly

correlated with fruit and seed set (Paupière et al., 2017; Herrera

et al., 2018) and are therefore essential to ensuring repeated seed-to-

seed cycles on board a spacecraft.

Since most plant breeding research has been conducted through

the sporophyte, the influence of the gametophytic phase, including

pollen tube development, has been generally overlooked. However,

the possibility of applying gametophytic selection in plant breeding
BA

FIGURE 5

Pollen tube length in clinostat (simulated microgravity) and control (1g) treatments in ‘Micro-Tom’ (A) and Brassica rapa (B) (300 pollen tubes per
species). Each bar shows the mean of 150 pollen tube lengths scored on 50 photos. Significant differences intra-species are reported with different
letters (P <0.05). Bars represent ± SE.
BA

FIGURE 4

Germination of bulk pollen samples from flowers of ‘Micro-Tom’ (A) and Brassica rapa (B). Pollen germination was scored after 24 and 48 h both in
clinostat (simulated microgravity) and control (1g) conditions. Each bar shows the mean pollen germination percentage scored on 50 photos.
Significant differences intra-species are reported with different letters (P <0.05). Bars represent ± SE.
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programs on Earth had already been supported by Hormaza and

Herrero (1992), who highlighted the overlap in the genetic

expression between the sporophyte and the gametophyte in

relation to different abiotic stresses (Mulcahy, 1984; Ottaviano

and Mulcahy, 1989; Ottaviano et al., 1990). Therefore, the

selection of space candidate species and cultivars with the highest

germination rate of pollen developed under altered gravity

conditions can be considered a potential application of

gametophytic selection in a space environment. Since it can be

performed in a small environment and over a short period, this

breeding procedure could be conducted by astronauts with the aim

of screening and selecting species and cultivars that best adapt to

real microgravity (De Micco et al., 2013).

To date, research has shown that simulated microgravity affects

several aspects of pollen tube development (De Micco et al., 2005;

De Micco et al., 2006), but how the gravity vector could affect pollen

tube movements is still unknown. Despite this study proving a clear

effect of simulated microgravity on the tortuosity of pollen tube

movements (Figure 6), our results excluded gravitropism as a pollen

tube response affecting the final position of tube tips in the

germination medium (Figure 8).
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How clinorotation affect the tortuosity of pollen tubes might be

addressed by the key role of the cytoskeleton in coordinating vesicle

trafficking responsible for pollen tube elongation (Sack, 1991). More

specifically, clinorotation may have altered the production of

metabolites related to pollen tube development, such as starch

and callose, involved in the same ultrastructural changes

occurring in the actin cytoskeleton of pollen tubes during the self-

incompatibility reactions (De Micco et al., 2006; Cai and Del Duca,

2019). Indeed, the actin filaments located in the sub-apical portion

of elongating pollen tubes are reported to be involved in the vesicle

trafficking responsible for the formation and maintenance of the

tube apex (Vidali et al., 2009; Qin and Yang, 2011; Hepler and

Winship, 2014; Fu, 2015). Actin filaments of the cytoskeleton have a

crucial role in tube development and growth direction, but how

altered gravity can regulate the directionality of pollen tubes

remains to be determined (Cheung et al., 2010).

To date, the microgametophyte (pollen) tube path towards the

ovary is known to be mainly driven by chemotropic stimuli related

to the Ca2+ gradient throughout the style (Kandasamy et al., 1994;

Kim et al., 2019), whereas the possible co-existence with pollen

gravitropism has been generally overlooked. Despite in vitro
BA

FIGURE 7

Pollen tube tortuosity of ‘Micro-Tom’ (A) and Brassica rapa (B) (300 pollen tubes per species) in clinostat (simulated microgravity) and control (1g)
treatments. Each boxplot shows the values of 150 pollen tubes (***P <0.001; *P <0.05).
BA

FIGURE 6

‘Micro-Tom’ pollen grains germinated in simulated microgravity (A) and in control (B) treatments.
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conditions being assumed to mimic the natural state of pollen

during pollen tube elongation, functional differences with in vivo or

in semi-vivo conditions might occur. For instance, pollen tubes

elongate faster, tubes live longer, and sperm cells (in bicellular

species) form sooner and more reliably in vivo than in vitro (Kakani

et al., 2005; Shi et al., 2018). Pollen tube growth in vivo involves

interactions with pistil tissues, especially at critical stages such as

tube reorientation and the cessation of growth. Thus, considering

the role of chemotropism in the directional growth of pollen tubes,

we performed the experiment in vitro to isolate the effect of the

gravity vector on pollen tube directionality and exclude

interferences related to chemotropic stimuli occurring in vivo.

Overall, our analyses investigating male gametophyte

functionality in simulated microgravity suggested that pollen

germination and tube directional growth are affected by changes

in gravity and highlighted different responses between ‘Micro-Tom’

and B. rapa. To date, research has never considered gravitropism as

a driver for pollen tube movement. Our in vitro germination tests

represented the best first approach to exclude possible chemotropic

interferences and isolate the effect of the altered gravity vector on

the directional growth of pollen tubes.

Even though our results excluded gravitropism in pollen tubes,

further tests are necessary to confirm our results in real
Frontiers in Plant Science 08
microgravity conditions and in other candidate space crops. In

conclusion, a better understanding of how gravity can interfere with

plant reproduction is needed to ensure seed and fruit production

over repeated seed-to-seed-to-seed cycles, and it is a first step

towards self-sufficiency from Earth supplies in long-term

space missions.
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