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Abstract: The potentialities of the use of the UAV survey as a base for the generation of the context
mesh are illustrated through the experiments on the case study, the Crotone Fortress, proposing a
systematic general methodology and two procedural workflows for the importation of the trian-
gulated model, maintaining its real geographical coordinates, in the Autodesk Revit environment
through a Dynamo Visual Programming script [VPL]. First, the texturisation of the mesh of the
urban context was experimented with, using the real-sized photogrammetric orthoimage as Revit
material; therefore, the reproduction of the discretised detailed areas of the urban context was tested.
They were imported via Dynamo by reading the coordinates of the vertices of every single face that
constitutes the triangulated model and associating to each of them the corresponding real colorimetric
data. Starting from the georeferenced context of the photogrammetric mesh, nine federated BIM
models were produced: the general context models, the detailed models and the architectural model
of the fortress.

Keywords: integrated survey; procedural workflows; colorimetric data; VPL; LOI; built heritage

1. Introduction
1.1. What Is Scan-to-BIM?

In recent years, the digitisation of the built heritage and the related registration pro-
cesses of the surrounding environment have made significant progress and can now quickly
reach a large number of users via multiple devices [1]. Over the past decades, despite
the growing interest in Building Information Modelling (BIM) as one of the most relevant
emerging technologies in the architecture, engineering and construction (AEC) sectors [2],
the application of BIM methodology to the built heritage still poses some unaddressed chal-
lenges, such as interoperability, big data and the lack of automated processes: to provide an
efficient interface between software and physical data, it is then imperative to create flexible
and adaptive data collection systems [3]. Capturing a physical site or space using scan data
to develop an intelligent 3D model using BIM software is known as “Scan-to-BIM” [4,5].
New advanced sensing technologies allow us to address these challenges by gathering
semantic information needed to produce an accurate and detailed 3D model. Although,
when compared to new buildings, existing assets require the acquisition of additional
information for a correct assessment of their current state: models need to be enriched with
more than just geometric data and information, such as historical information, degradation
or deformation analysis and information on performed or to-be-performed maintenance.
All these data are crucial for the maintenance and preservation of the building itself. Ide-
ally, the whole data set coming from a three-dimensional survey is indispensable for the
Scan-to-BIM modelling of the built heritage. Still, in reality, it is rarely possible to use the
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complete raw information. In this sense, researchers are working on the implementation of
Artificial Intelligence (AI) for the semantic subdivision of 3D point clouds. Working with a
classified point cloud makes it possible to speed up architecture’s analysis, maintenance
operations and conservation plans, leading to a semantically enriched hierarchy that can
be preparatory to successive applications such as the reconstruction phase of 3D models
(CAD or BIM) [6].

The association of heterogeneous information to 3D data by means of automated
segmentation and classification methods can help to characterise, describe and better
interpret the object under study, whereas the term semantic segmentation (or simply
classification) for point clouds means to group similar data into subsets (called segments)
that have characteristics/features useful to distinguish, and identify in classes, different
parts [7].

1.2. UAS Photogrammetric Survey

Unmanned Aerial Systems (UASs), known under various names and acronyms, such
as Unmanned Aerial Vehicles (UAVs)—although the latter technically correspond to the sole
drone supporting the system constituted of both the aerial vehicle and the sensor mounted
on it— Remotely Piloted Aerial Systems or simply drones [8], are aircrafts without a pilot
on board, that are being continuously miniaturised and have become widely accessible for
commercial use [9–11]. In the last years, thanks to recent technological developments, Re-
motely Controlled Aerial Vehicles are increasingly used in support of geophysical surveys,
enabling reliable 3D models [12–14]. UAS-based data collection is becoming increasingly
cost-effective due to increased precision and accuracy and the ability to cover large areas
inaccessible by land, with shorter flights and faster acquisition planning [15]. In particular,
aerial photogrammetry from UAS has been used extensively in archaeology and cultural
heritage for the documentation and 3D mapping of sites, thanks to innovative low-cost
systems and high-resolution digital cameras [16,17], enabling the construction of 3D models
with photorealistic textures [18].

For the purposes of the present discussion, the acronym UAV was chosen when
referring to aero-photogrammetric surveying, as it is the most common terminology found
in the literature.

1.3. Integrated 3D Survey Database

With regard to the survey and representation of historical assets, laser scanning is the
most promising tool and is widely used for Scan-to-BIM applications due to its high accu-
racy and speed, proving to be extremely suitable in the acquisition of complex geometries.
Photogrammetry, on the other hand, produces better detail at the graphic/photographic
level, i.e., texture, but requires more processing time and also produces less “dense” results.
LiDAR and photogrammetry can complement each other [19] and are getting tremendous
attention in the development of remote sensing technology. Numerous studies have at-
tempted to use multi-sensor data in various applications, such as for the generation of 3D
building models by integrating terrestrial and aerial data [20,21]. Despite the advantages,
there are some challenges with heterogeneous point cloud data.

Several studies formulate validation criteria for point cloud and semantic segmentation
in relation to BIM [22,23]. There is no shortage of more holistic validation works in which
point cloud data quality criteria are established for Scan-to-BIM and Scan-vs-BIM, with the
Level of Accuracy (LOA) and Level of Development (LOD) being defined [24,25]. Apart
from accuracy, they determine parameters for the completeness and density of the point
cloud needed to model various building elements. For accuracy, researchers directly report
deviations on reference datasets or refer to international specifications such as the LOA and
LOD [22,26,27].
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1.4. State of the Art: Experimental Applications of Scan-to-BIM and Mesh-to-BIM

Given the richness in the data made available by the integrated 3D survey databases,
numerous experimental applications have been proposed in an effort to preserve as much
survey data as possible in the transition to BIM modelling. Although no unified method has
yet been identified, the most common practice for a Scan-to-BIM process consists of manual
modelling, involving the insertion of ad hoc created intelligent objects, whose parameters
are adapted to the specific characteristics of the study object. To facilitate this process, many
researchers have opted for custom parametric modelling of objects, based on point clouds
imported via plug-ins within the Autodesk Revit family editor [28]. Nevertheless, there
are several studies concerning the semi-automated generation of NURBS from transform-
ing them into “masses” capable of accommodating photogrammetric textures applied as
decals in Revit [26,29,30], as well as plug-ins developed via Autodesk Revit’s Application
Programming Interface (API), such as GreenSpider, which was created to recognise points
from surveyed points and interpolate them to generate curves and surfaces [31]. The built
heritage typically has complex (non-uniform, thus difficult to parametrise) geometries that
turn their digitisation through conventional methods into imprecise and time-consuming
processes. As technology has advanced, researchers have developed automated approaches
for BIM reconstruction [2]. However, the efficient transformation of remote sensing data
into intelligent parametric as-built models is currently an unsolved challenge [4], still
requiring manual verification to increase their efficiency in a complex environment. Indeed,
even though the modelling/conversion effort required for creating semantic BIMs from
unstructured survey data is high, and the difficulties connected to accurately representing
the variety of complex and irregular objects occurring in existing buildings and the lack of
standards for their representation are notable, the manual modelling and parametrising
of existing architectural elements is still the most accurate way to interpret them. This is
a common practice that aims to develop a library of reusable parametric objects for an
efficient implementation of the Historic Building Information Modelling (HBIM) methodol-
ogy [32]. HBIM is a renowned solution whereby interactive parametric objects representing
architectural elements are constructed from historic data, and these elements (including
detail behind the scan surface) are usually accurately mapped onto integrated survey
data; point cloud segmentation and orthoimages integration are two of the most suitable
approaches for the purpose [33], going in the direction of artificial intelligence algorithm
implementation [34].

Therefore, a fully automated process for extracting semantics from raw data in BIM
still poses a major issue worth being investigated. Notably, there is still a lack of direct
connection between the rich, geometrically accurate graphical data captured on-site and the
discrete synthesis that even an as-built model type is capable of storing and reproducing.
A BIM model often feels too much like an abstraction of the real world, so its practical use
as a support tool for restoration and conservation purposes becomes rather ineffective.

The most recent research, primarily addressed to restoration interventions and aimed
at identifying areas affected by degradation phenomena identified according to shared
protocols, is based on the projection of photogrammetric orthophotos onto BIM objects
that, although geometrically accurate, are not parameterised. Other techniques used to
reproduce “real” textures, to preserve access to intelligent objects with the purpose of
dissemination and preservation of cultural heritage, involve “decal types” [27] or the cre-
ation of textured surface materials through “diffuse maps” derived from photogrammetric
orthoimages. An attempt in this respect, aimed at preserving access to smart objects, was
realised by Ferreyra et al. in developing an application optimised for real-time visualisa-
tion [35]. The research investigates a methodological proposal for linking UAV survey data,
via full-size orthoimages used as “textures”, to the sub-components of a built asset, such as
a façade, and its sub-parts. UAVs can be the basis for the creation of an interactive image
database for the metric reconstruction of 3D geometry. The goal is to establish an actual link
between the collected data and BIM models, thus improving model productivity. Many
studies also concern the semi-automated generation of NURBS, i.e., Rhinoceros, where the
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surveyed three-dimensional model is first transformed into a solid and then exported to a
BIM environment via a VPL script developed in Grasshopper [36,37].

Other applications involved reverse modelling procedures, i.e., the conversion of
numerical models produced from point clouds into mesh surfaces, generating polygonal
connections that allowed for a more fluid and qualitative reliable 3D model of an entire
territory to be further optimised within environments such as 3D GIS [38]. New method-
ologies regarding the replication of unique complex details typical of the built heritage
involve the manual, user-supervised cutting of the photogrammetric model; such portions
of the resulting 3D model (OBJ) are then imported directly into a BIM environment (such as
ACCA software Edificius [39]) and positioned correctly in space, using the point cloud as a
guideline, to be subsequently exported as IFC objects and exported to a software environ-
ment, such as Autodesk Revit, for semantic enhancement. In this case, the limitation of the
proposed methodology relates to the need for employing multiple pieces of software and
the consequent time-consuming nature [40].

1.5. How to Bridge the Gap Identified from a Thorough Analysis of the State of the Art

It then appears clear that, in applying the BIM approach to Cultural Heritage, one of
the main difficulties is that it is not always possible to identify standard constructive rules
for architectural elements. It depends on the complexity of the architecture, its details, the
goal of the BIM and the relevance of the architecture, without forgetting the corresponding
economic effort [41]. Thus, although the long-term aim of BIM modelling is to standardise
the elements as much as possible, when the object to be modelled is typically unique,
as in the case of the urban context, the aim becomes to propose a methodology for the
standardisation of the process in order to reproduce it as authentically as possible. As a
matter of fact, the analysis of state of the art reveals a lack of reliable protocols/systems for
the realisation in a BIM environment of those elements of the built heritage characterised
by a relevant historical, cultural and economic value and by a recognisable unicity.

Therefore, a systematic methodology for the Scan-to-BIM approach is proposed, which
aims at standardising the whole process while also establishing two innovative procedural
practices to reproduce, at different scales of detail, operability and modifiability, textured
photogrammetric meshes of the urban context as well as detailed areas of interest within
a BIM environment. The aim is to move in the direction of filling the gap between the
type of detail a survey can achieve, precisely a photogrammetric one when talking about
colorimetric data, and what can be reproduced in a BIM environment when it comes to
distinctive, rather than unique, features such as the urban context or detailed elements,
such as damaged areas, laying the foundation of a metaphorical eco-systemic monitoring
environment for the management of the built heritage.

1.6. The Paper Structure

From here on, the paper will be organised as follows. In the second section, we deal
with the methodology proposed in a top-down approach, from the proposed systematisa-
tion of the Scan-to-BIM modelling, organised in five subsequential steps (in a nutshell 3DS,
GEO, FSC, ARC, LOI); to the innovative procedural workflows developed for the purpose;
and some final considerations on the achievable Level of Information (LOI). In the third
section, the case study, i.e., the Crotonian “Castle of Charles V”, will be presented together
with the integrated survey conducted, and the specifical HBIM modelling carried out. The
fourth and the fifth sections will concern the results, discussions and the conclusions.

2. Materials and Methods
2.1. Advantages of the Proposed Methodology

Although the long-term purpose of BIM modelling is to standardise as many elements
as possible, when the object to model is unique, as in the case of the urban context, which
is typically different and distinctive from any asset, the aim should focus on standardising
the process to reproduce it most authentically, for further in-depth study.
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Hence, the proposed methodology involves two workflows developed to reproduce
texturized photogrammetric meshes of the urban context, and some detailed areas of
interest within a BIM environment, by parametrising the very components of the mesh
model: its triangular faces. Particularly, this second procedure may come in handy when
one seeks an accurate reproduction of selected areas for future qualitative and quantitative
assessments. The aim is indeed to bridge the gap between the type of detail a survey can
reach, precisely a photogrammetric one, when speaking about the colorimetric data and
what is possible to reproduce in a BIM environment when talking about peculiar rather
than unique elements such as the urban context, or detailed relevant elements, such as
frieze/decorations or damaged areas.

2.2. A Proposal for a Standardised Scan-to-HBIM Approach

A consolidated Scan-to-BIM approach usually involves first surveying the structure
and the surrounding landscape on which to develop a BIM model. For said reason, we
hereby intend to propose a framework for the standardisation of some well and lesser-
known practices implemented in this process to be able to trace data sources and the quality
of their reproduction along the whole modelling process.

The reported tested HBIM methodology, which employs the Autodesk software pack-
age, is meant as a “good operational practice” and can be organised into five sequential
steps as follows:

• Three-dimensional survey (3DS);
• Georeferencing (GEO);
• Federate modelling and Shared Coordinates setting (FSC);
• Architectural modelling (ARQ);
• Level of Information enhancement (LOI).

Each step of the proposed workflow is necessary to the subsequent, but it stays
updatable thanks to the BIM environment. The modelling of the existing heritage is rarely
a straightforward process and may, in some cases, be iterative, thus proving the necessity
of repeating some steps or, at least, exchanging some of them. Remarkably, the LOI phase is
present at different levels, a constant throughout the process, whether performed manually
or via VPL scripts, by populating ad hoc parameters with varying types of information.

2.2.1. 3DS: Three-Dimensional Survey

A three-dimensional survey is imperative when modelling the stratified cultural her-
itage where each detail may have contributed to defining the site’s historic character. An
integrated Laser Scanning—Photogrammetric survey is the most suitable choice. Namely,
for medium-scale applications, TLS (Terrestrial Laser Scanning) and UAV (Unmanned
Aerial Vehicle) surveys are carried out, to be later georeferenced within a common co-
ordinate system via control points measured with topographic instrumentation for their
subsequent integration.

2.2.2. GEO: Georeferencing

The georeferencing of the BIM models can be optimised by directly importing the
mesh models of the surroundings, thanks to VPL (Visual Programming Language) scripts,
in the same coordinate system of the surveyed model. For the visual script to work correctly,
it is advisable to operate a rigid translation to a local coordinate system already at the end of
the photogrammetric workflow and later revert to the global coordinate system by simply
imposing the exact rigid translation—in the opposite sense—to the “Project Base Point”
(PBP) (A Revit project stores the internal coordinates for all the elements that compose
the model in a project. In detail, it is possible to distinguish between two different origin
points: the Project Base Point (PBP) and the Survey Point (SP): the PBP defines the origin
(0,0,0) of the project coordinate system. Use the Project Base Point as a reference point for
measurements across the site; the Survey Point identifies a real-world location near the
model, such as a corner of the project site or the intersection of 2 property lines. It defines the
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origin of the survey coordinate system, which provides a real-world context for the model.
To learn more about Project Base and Survey Points, visit: https://autode.sk/3ygsFXO,
accessed on 21 February 2022) of the Revit projects.

2.2.3. FSC: Federate Modelling and Shared Coordinates Setting

The federate modelling stage requires the particular BIM projects (when operating
within the Autodesk Revit software [42]), such as the architectural, structural and urban
parts that may compose a complete superordinate model, to be linked into a shared
environment, practically consisting of a higher-level project. The first importation of the
sub-models has to employ the PBP as the original reference point, to later “publish” to
them the shared coordinates.

2.2.4. ARC: Architectural BIM Modelling

Though the proposed application will present an architectural BIM model, this stage
may equally apply to an accurate structural and/or mechanical modelling of the object
of study. First, it is fundamental to import the integrated surveyed point clouds into the
Autodesk ReCap Pro [43] environment to be correctly read within a Revit project and used
as guidelines for the proper scan-to-BIM modelling. Then, the proper modelling process
will start by placing already existing parametrised objects to fit the point cloud representing
the surveyed asset or, in their absence, by realising ad hoc “families”.

2.2.5. LOI: Level of Information Enhancement

The acronym LOI is not new to the parametric informative modelling technology; it
stands for “Level of Information”, being seen as part of the equation that, together with the
“Level of Geometric Detail” (LOG), defines the general concept of “Level of Development”
(LOD). The LOI may include a vast amount of data in the form of parameters, which
contribute to describing different aspects of a “smart” object. The current regulation
provides a basic definition of it [25] to be further implemented according to the specific
cases. As already mentioned, the data enrichment of the BIM models occurs along the
whole process; thus, it may seem reductive and probably wrong to place it in the last step.
We will then intend the LOI as the additional information provided thanks to the ad hoc
developed implementation for the proposed methodology.

2.3. Procedural Workflows Developed within the Proposed Methodology
2.3.1. Workflows Premises: Global to Local System Transformation and Mesh Simplification

The two proposed procedural workflows, developed within the general Scan-to-BIM
systematised methodology, are to all intents and purposes Mesh-to-BIM approaches. There-
fore, for their effective implementation, some preliminary actions on the mesh surveyed
model must be undertaken. As previously mentioned, when working with topographic
coordinates, within some software not designed to manage this type of coordinates (i.e.,
Meshlab [44], Dynamo [45], etc.), approximation issues in the correct interpretation of the
exact coordinates arise, leading to an incorrect visualisation and consequent reproduction
of the mesh. For this reason, it is advisable to operate a transformation from the global
system to a local one—so that the x, y and z coordinates of the points of the cloud and
accordingly the vertices of the mesh may have the same order of magnitude—by operating
a rigid translation. The rigid translation aiming to shift from a global to a local coordinate
system has to be performed at the end of the photogrammetric process (in our formulation,
Agisoft Metashape [46]), for example, by operating on the GCPs (Ground Control Points)
used to scale and georeference the model: a fixed quantity is to be subtracted from both the
longitude and latitude of the control points in the photogrammetric project. These quanti-
ties will then represent the inverse translation that will be imposed in the BIM environment
by georeferencing the PBP, thus operating the rigid inverse translation.

Mesh simplification is a common practice for minimising model size by reducing the
number of faces while preserving the shape, volume and boundaries. Criteria for mesh

https://autode.sk/3ygsFXO
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decimation are generally user-defined, selecting the reduction method (working on the
number of vertices, edges or faces) and the reduction target; indeed, several commercial
and open-source editing and modelling softwares include a mesh simplification module
for handling this post-processing task efficiently [47]. Therefore, for an average notebook
(Core i7 16GB of RAM, 2GB GPU) to be able to process the developed scripts and manage
the results, it is advisable to keep the mesh faces count under 600,000 units, for the first
method proposed, and under 20,000 units, for the second one, simplifying and splitting in
more than one project the original photogrammetric mesh model (via Agisoft Metashape
and ISTI-CNR MeshLab).

2.3.2. The Workflow A: Importing the Meshes as a Unicum into the BIM Environment

The first proposed workflow involves using a simple VPL (Visual Programming Lan-
guage) script to “import” photogrammetric meshes (OBJ) of large areas of the urban context,
chosen on a case-by-case basis given its distinctive uniqueness, in the BIM environment, and
employing the open-source platform that can be implemented as a plug-in for Autodesk
Revit. Together with their related material, they are generated as instances falling under
the categories “Site” for the predominantly horizontal areas of the urban fabric and “Mass”
for some characteristic vertical elements of the urbanised area. Once “reprojected” in
Revit, the mesh models of the general context can be easily textured through the full-sized
orthophotos [41,47], and imported in the “Material Browser” as colour maps (Figure 1). It
is worth clarifying that, although the most common formats for orthoimages, such as TIFF
and JPG, are equally adequate to be imported as textures into Revit’s material browser,
PNG is the one that leads to the best rendering results, due to the possibility of maintaining
a transparent background and at the same time an optimal resolution/compression ratio.

Remote Sens. 2022, 14, 3688 8 of 25 
 

 

 

Figure 1. Procedural Workflow A scheme. 

2.3.3. The Workflow B: Mesh Model Parametrisation into the BIM Environment 

Even though the second workflow also starts from photogrammetric meshes (PLY-

ASCII encoding) appropriately simplified as explained before, it focuses on selected de-

tailed areas with a much smaller extension to be exported with the relative texture 

(PNG). The raster image representing the texture is first treated separately, reducing the 

colour scale from 256 to a range varying between 8 and 15 (the Abode Photoshop “In-

dexed colours” tool can be employed for the purpose), depending on the variegated 

nature of the image in question, so to reduce to the minimum number necessary the 

subsequent material generation. (When converting into “indexed” colour, the Pho-

toshop tool builds a Colour Lookup Table (CLUT), that appears as a reduced palette, 

which stores and indexes the colours in the image; if a colour in the original image does 

not appear in the table, the program chooses the closest one or simulates the colour 

using available colours. By limiting the panel of colours, indexed colour can reduce file 

size while maintaining visual quality, for example, for a web page [48]).  

Through software capable of editing meshes, such as the ISTI-CNR Meshlab, it is then 

possible to reassign the texture to the mesh, projecting the colours to its vertices and from 

the vertices to its faces (Figure 2). (A polygonal mesh is at least composed of vertices, edges 

Figure 1. Procedural Workflow A scheme.



Remote Sens. 2022, 14, 3688 8 of 23

The first workflow works quite well for larger urban areas that constitute the unique
context of an architectonic asset, specifically whenever they are predominantly horizontal;
on the contrary, this method does not work flawlessly in the case of particularly artic-
ulated areas deemed worth being reproduced precisely together with their colorimetric
information, for their historical value, or so to estimate their extension for further analysis.

2.3.3. The Workflow B: Mesh Model Parametrisation into the BIM Environment

Even though the second workflow also starts from photogrammetric meshes (PLY-ASCII
encoding) appropriately simplified as explained before, it focuses on selected detailed areas
with a much smaller extension to be exported with the relative texture (PNG). The raster
image representing the texture is first treated separately, reducing the colour scale from 256
to a range varying between 8 and 15 (the Abode Photoshop “Indexed colours” tool can be
employed for the purpose), depending on the variegated nature of the image in question,
so to reduce to the minimum number necessary the subsequent material generation. (When
converting into “indexed” colour, the Photoshop tool builds a Colour Lookup Table (CLUT),
that appears as a reduced palette, which stores and indexes the colours in the image; if a
colour in the original image does not appear in the table, the program chooses the closest
one or simulates the colour using available colours. By limiting the panel of colours,
indexed colour can reduce file size while maintaining visual quality, for example, for a web
page [48]).

Through software capable of editing meshes, such as the ISTI-CNR Meshlab, it is then
possible to reassign the texture to the mesh, projecting the colours to its vertices and from
the vertices to its faces (Figure 2). (A polygonal mesh is at least composed of vertices, edges
and faces. In the case of a triangular mesh, its faces have three vertices, located in space
by their coordinates (x, y, z). To compose each triangle, it is therefore necessary to know
the indices of its vertices, intended as the number that identifies the place of each vertex in
the complete list. To learn more about polygonal meshes, visit: https://bit.ly/3Ay99IV,
accessed on 21 February 2022).
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Revit. (PROCESS PARTITIONING **: refers to the choice of partitioning the script in Figure 11 by
repeating the last two steps—Figure 11d—up to eight times in order to monitor the process and for
the hardware to run it efficiently).

On reexporting the resulting 3D model again in a PLY-ASCII format, their direct
reading is allowed; namely, the very same files can be opened via a text pad or imported
into the Microsoft Excel environment to have access to their geometric information. The
numeric data derived in this way are then filtered to retrieve just the face information from
it, which appears as in the following string:

3 I1 I2 I3 6 Tc1 Tc2 Tc3 Tc4 Tc5 Tc6 R G B α (1)

where from left to right, the “3” value indicates the number of vertices of each face; the “I#”
values stand for the index (the number that identifies a vertex) of each vertex that composes
the face in question; the “6” value represents how may float-type texture coordinates are
provided; followed by said coordinates, i.e., the “Tc#” values; and lastly we can find the
numeric values of the colour assigned to each face in the “R”, “G”, “B” and “α” channel
format. For the purposes of the proposed method, only the first and the last 4 digits
will be considered.

Both the mesh in the 3D format (PLY) and its data in the numerical format (XLSX)
are then used as input, together with an original family of triangles with adaptive vertices
(“Triangular Face.RFA”), for its discretised reproduction in the BIM environment through
the second VPL script. Both the adaptive family component and the most complex script
were developed explicitly for the proposed methodology (Figure 3).

In a nutshell, the developed VPL script firstly retrieves the vertices coordinates from
the same mesh in the PLY format and the related vertex indices and face colours from
the spreadsheets. The photogrammetric colour information is then used to generate the
minimum number of unique Revit materials corresponding to the “real” colours via the
R, G, B and alpha channel data. The proper colour material and the vertices of each mesh
model face are then used as input data to set the “photogrammetric colour” parameter
and the “adaptive points” coordinates of the “triangular face” family component used to
recreate a discretised version of the photogrammetric mesh in the BIM environment.

2.4. LOI Enhancement for Future Assessments

It is worth mentioning that both workflows keep an acceptable degree of approxima-
tion along the process, if we take into account the simplifications required by any modelling
approach. Indeed, quantum physicist Niels Bohr would tell us that: “When we measure
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something we are forcing an undetermined, undefined world to assume an experimental value; we
are not measuring the world, we are creating it”.

Additionally, in the case of flat surfaces, both procedures would virtually produce
the same geometrically accurate outputs. Anyway, small vertical imprecision may even be
neglected when we are not interested in reaching the highest level of development for the
selected areas. On the contrary, the consistent difference between the workflows lies in the
discretisation of the imported mesh model by means of the ad hoc developed “Triangular
Face” element (Figure 4). This component is characterised by “adaptive vertices” so as to
be easily placed just by picking three points in the space and a set of “Shared Parameters”.
(Shared Parameters are parameter definitions that can be used in multiple families or
projects. Their definitions are stored in a file independent of any family file or Revit project;
this allows one to access the file from different families or projects. The Shared Parameter is
a definition of a container for information that can be used in multiple families or projects.
To learn more about Shared Parameters, visit: https://autode.sk/3uwHvsh, accessed
on 21 February 2022). The component is also characterised by the “Photogrammetric
Material”, the three sides, i.e., “L1”, “L2” and “L3” set as report parameters; the “Area” to
be calculated via the Heron’s formula by running another simple VPL script that uses “L1”,
“L2” and “L3” as inputs; and the “Comment” set to be manually filled out, thus allowing
their selection, filtering and scheduling in report sheets for possible future assessment.
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3. Results

The presented methodology focused explicitly on the realistic and correctly georef-
erenced modelling of architectural assets and the relative urban context, focusing on the
accurate morphological-colorimetric reproduction of some suitably selected detailed areas.

The proposed techniques were then validated on a medium-scale heritage case study,
with a special focus on detailed areas that allowed us to verify the accuracy of the applica-
tion. After the informative-parametric modelling of the object of study, i.e., the Crotonian
“Castle of Charles V”, via the implementation of the consolidated Scan-to-BIM, the ex-
perimental applications, hereby proposed, were carried out by directly importing the
triangulated models, commonly known as polygonal meshes, obtained from the pho-
togrammetric modelling process. Once the exact georeferencing of both the macro-areas
of the urban context (imported via Workflow A) and the detailed areas (reproduced via
Workflow B) had been carried out by operating on the PBP, it was, therefore, possible to
organise the federation of the architectural model effortlessly. Thus, the triggering moment
of the present work was an integrated TLS-UAV survey of the built environment of the
Crotone city (Calabria, Italy) carried out by the Laboratorio Modelli of the University of
Salerno in July 2021.

3.1. The Case Study of the Crotonian “Fortress of Charles V”

The Calabrian fortress known as the “Castle of Charles V” is one of the most impressive
in southern Italy. It represents traces of a quadrangular profile around a hill’s upper slopes,
fortifying them and reinforcing the corners with two circular towers (“Torre Aiutante” and
“Torre Comandante”) and two polygonal bastions (“Bastione Santa Caterina” and “Bastione
San Giacomo”). The case study is the emblem of the historical memory of the Crotonians, as
it was built upon the site of the original Greek acropolis (Króton), firstly transformed into
the Roman citadel and later into medieval fortifications (Figure 5).
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The fort became one of the 75 castles belonging to Roger II’s vassals during the Norman
period. It was accessed through what is now Piazza Castello, due to a partly fixed stone
bridge and a partly wooden drawbridge. After the Swabian conquest, Frederick II decided
to restore the castle with the city port. In the 14th century, the medieval fortress underwent
some adaptations imposed by using artillery; although, the heaviest changes date back to
the end of the 15th century when Ferdinand I ordered the fortification of the most exposed
maritime sites in Calabria. Another major restoration was carried out by Charles V at the
end of the 16th century to comply with the latest fortification criteria, followed by those of
the 17th and 19th.

As time went by and due to the technological advance of war weapons, the castle lost
its strategic military importance. During the 19th century, it was partially dismantled also
because of damage caused by frequent earthquakes. To date, it houses a Civic Museum of
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archaeological interest (to further investigate the historical evolution of Crotone Castle, we
suggest visiting the following web pages: https://bit.ly/3alEJiB; https://bit.ly/3bU1vhS;
https://bit.ly/3ahNHxr; https://bit.ly/3alEJiB, accessed on 21 February 2022).

It is therefore clear that the fortress of Crotone, and even more so its surroundings,
constitute a fundamental part of the identity memory of the city, hence the need to find
the most appropriate way to translate, as close as possible to reality, the alternation of
urbanised volumes that characterise it, and developing at a later stage a further in-depth
study of specific areas of particular historical interest that deserve to be analysed in greater
detail. From this arises, therefore, the need to develop a second procedure that will provide
the tools for a more in-depth qualitative and quantitative analysis of those unique and
unrepeatable elements of the landscape. In detail, the northern and the eastern areas,
chosen for the second method application, represent some of the remaining structures of
the 14th-century adaptation before Charles V’s 15th-century restoration.

3.2. The Integrated Three-Dimensional Survey

TLS and photogrammetric techniques have advantages and disadvantages; discrim-
inating becomes the project budget rather than the required objectives or level of detail.
Photogrammetric techniques require experience, above all in the acquisition phase, in
order to obtain an accurate final result. TLS, on the other hand, while easy to use, requires
experience in setting up the parameters and is a highly time-consuming and costly activity.
The choice of which method to use depends mainly on the complexity of the site to be
investigated, the accuracy requirements and the budget and time available. For this reason,
the integration of multiple techniques is often the most suitable solution.

The initial purpose of the survey campaign was the documentation for its posterior
valorisation of the Crotone Fortress’ exteriors; a reality-based model of the castle and its
surroundings was then acquired employing integrated survey techniques to serve as a
basis for those dissemination activities aimed at promoting the Italian cultural heritage.
The integrated survey, obtained by combining UAV and TLS data, was carried out with
the purpose of filling the gaps in both clouds, consisting of large portions of the castle that
were not surveyed due to dense vegetation. The resulting three-dimensional multiscale
model was, therefore, suitable for the development of sufficiently detailed HBIM models
and for an initial assessment of possible maintenance and restoration work.

With the aim of obtaining full coverage of the area under study, a UAV survey was
planned to be also integrated with a TLS once they had been registered within the same
coordinate system via six common Control Points. The acquisitions obtained in this
way thereby provided an accurate and georeferenced database for the subsequent HBIM
modelling phase of the “Castle of Charles V” (Figure 6).
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3.2.1. The Unmanned Aerial Vehicle (UAV) Survey

Given the case study’s relevance and the intention of realising a texture with future ap-
plications, an aero-photogrammetric survey with the following characteristics was designed.
The drone used was a DJI Phantom 4 Pro equipped with an integrated 20 Megapixels cam-
era with a 1” CMOS sensor (5472 × 3648 pixels, Field of View (FOV) of 84◦, Focal Length of
8.8 mm, Pixel Size of 2.41 µm).

In order to control the metric error and georeference the point cloud in the “EPSG:
32,633—WGS 84/UTM zone 33N”, six GCPs (Ground Control Points) were measured in
nRTK (Network Real-Time Kinematic) mode by means of a Geomax Zenith 25 receiver.
GCP measurement accuracy was contained within a 1.5 cm range both in planimetry and
altimetry for a total error of less than 2.5 cm (Table 1).

Table 1. For the sake of clarity, the table summarises the input and output data of the photogrammetric
survey and subsequent processing. Line 1 and line 3 represent respectively the input and output
variables, while lines 2 and 4 contain the numerical values of the said variables for the specific
photogrammetric survey.

UAV Survey
Input Data

Total
Images

Nadiral Shots
[Flight Plan]

Oblique Shots
[Manual Mode]

Number of
GCPs

GCP Accuracy
[Planimetry]

GCP Accuracy
[Altimetry]

1104 571 533 6 1.5 cm 2.5 cm

Photogrammetric
Output Data

GSD Quality &
Filtering Setting

Dense Point
Cloud Mesh Model Texture Size

1.4 cm/px “Highest” &
“Disabled”

101,640,748
points

20,328,148
faces

10,186,948
vertices 8192 × 8192 px

The photogrammetric shots were carried out both with a flight plan—571 takes,
creating a final square grid for the nadiral images—designed using the DJI Ground-Station
software package, and in manual mode (533 takes, following the outline of the castle
boundary (Table 1)). The choice to also acquire oblique images was necessary for the
implementation of texture information on vertical elevations, and simultaneously increased
the accuracy of the photogrammetric survey [49].

A total of 1104 photogrammetric shots were acquired with an average GSD (Ground
Sample Distance) of approximately 1.4 cm/px, for a total surveyed area of approximately
2.8 hectares. At the end of the photogrammetric process, elaborated within the Agisoft
Metashape environment, executed by fixing the quality at “Highest” and the filter option as
“Disabled”, the following outputs were obtained: a dense point cloud of 101,640,748 units,
a mesh of 20,328,148 faces and 10,186,948 vertices with a texture size of 8192 px (Table 1).

3.2.2. The Terrestrial Laser Scanning (TLS) Survey

The laser survey campaign was carried out employing a phase-distance laser scanner,
the Faro Focus 3D × 330 with an integrated GPS receiver, which, under optimal environ-
mental conditions, provides a scanning range of 0.6 m to 330 m, a measurement speed of up
to 976,000 points/s, a linearity error of ±2 mm, a vertical FOV: 300◦ and a horizontal FOV:
360◦. The instrument was set to acquire scans with an average resolution of 1/5 with a
quality of 3×. A total of 31 TLS stations were set up along the case study perimeter, approx-
imating 600 m and covering a total area of around 3 ha. Proprietary Faro Scene software
was used for data processing. The structured registered information was later exported to
the Autodesk ReCap environment where the GCPs previously measured were used to also
georeference the laser point cloud so as to proceed to import the photogrammetric cloud
within the same project.
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3.3. HBIM Modelling

To achieve a metrically reliable HBIM model, a manual Scan-to-BIM approach—within
the Autodesk Revit environment—was applied, for the modelling of the architectural BIM
objects aiming at keeping them updatable at any time. On the other hand, a Mesh-to-BIM
implementation—via ad hoc, albeit repeatable, VPL scripts, all of which were designed by
the authors employing the Dynamo tool for Revit—was proposed for those unique elements
of the built environment, i.e., the city neighbourhoods surrounding the castle and the area
of the urban context that climbs up the external walls of the fortress, merging with it.

3.3.1. Scan-to-BIM Architectural Modelling

Scan-to-BIM is a reverse-engineering methodology that employs a point cloud as
the basis for parametric modelling of the architectural asset. To import the point cloud
into Autodesk Revit, it was mandatory to use Autodesk Recap Pro as the intermediary
software, where the point cloud was segmented into homogeneous regions to facilitate the
subsequent modelling phase. Due to the irregular geometries and the different construction
phases that characterise the case study, modelling was not a straightforward procedure.
Particularly complex was the setting up of the boundary walls, which presented inhomoge-
neous thicknesses, deviations and a lack of perpendicularity, in addition to being irregular
both in planimetry and elevation. Although the most recent updates of Autodesk Revit
implemented “sloped” and “tapered walls”, as systems families, their full functioning is
far from being achieved; thus, occasional in place mass models were conceived to serve as
reference planes for the correct design of the sharp corners of the walls. Furthermore, “para-
metric voids” were realised as updatable families for juxtaposing the niches and the various
openings. The architectural model of the castle was then named “Castle_CV_Kroton.RVT”
(Figure 7).
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3.3.2. Urban Context Mesh Model Importing via Workflow A

As mentioned in Section 2.3.1, for the mesh model of the urban context to be imported
to Revit, a transformation of the reference coordinate system must be performed to avoid
approximation issues. It was carried out by operating on the six initially measured GCPs by
subtracting a fixed quantity to the x and y coordinates (x = 684,300 m and y = 4,327,900 m),
resulting in the locally translated GCPs reported in Table 2.
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Table 2. The table shows the variation of “X” and “Y” coordinates in the translation from the Global
Georeferenced System to the local one. Notably, the “Z” coordinate stays the same in both systems.

GCPs X (EPSG: 32633) X (Local) Y (EPSG: 32633) Y (Local) Z

1 684,522.6136 222.6136 4,327,983.2232 83.2232 26.8423
2 684,498.0206 198.0206 4,328,019.9652 119.9652 11.2003
3 684,463.0226 163.0226 4,328,109.7702 209.7702 2.5433
4 684,341.4546 41.4546 4,328,044.9662 144.9662 39.3333
5 684,475.1146 175.1146 4,327,969.3752 69.3752 30.7203
6 684,380.7756 80.7756 4,327,968.2842 68.2842 34.5353

Nevertheless, a simplification of the mesh model was also due, and it was accom-
plished via smoothing and decimation tools. This phase’s outputs consist of four context
mesh models. The resulting upper and the lower areas of the mainly horizontal built
environment are respectively made up of 349,999 and 499,999 faces, while the house cluster
placed over the castle—249,999 faces—and the wall continuity opposite to the castle on the
east side—149,999 faces—were treated separately. The four three-dimensional models were
then exported in an OBJ format to be later imported into Revit via the VPL script developed
for Workflow A (Figure 8). It was opted for assigning to the produced BIM instances the
“site” category in the case of the predominantly horizontal mesh models, and “mass” for
the mostly vertical ones, which additionally generated for every instance a related material
under the same name. Finally, the orthoimages with a 1.42 cm/px resolution and realised
separately for each model were used at full-size to texturize them (Figure 9).

The results of the first workflow implementation were then separated into four Revit
projects: “Context_1.1.RVT” (the horizontal lower area of the city neighbourhood), “Con-
text_1.2.RVT” (the horizontal lower area of the city neighbourhood), “Contest_2.1.RVT”
(the cluster of houses over the castle), and “Contest_2.1.RVT” (the city walls to the west of
the castle) (Figure 10).
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3.3.3. Northern and Eastern Detailed Mesh Model Discretising via Workflow B

Given the necessity of keeping the face count strictly under 20,000 units, for a manage-
able implementation of the second workflow, in terms of both the script execution and the
results produced, the preparatory phase of the meshes proved to be even more relevant.
A first decimation was performed still in the photogrammetric software on the northern
and eastern areas selected for the application. Each area was further divided into two sub-
areas due to their excessive extension, resulting in four texturized mesh models: North_1
(19,881 faces), North_2 (19,960 faces), East_1 (16,000 faces) and East_2 (15,722 faces).

The triangulated models were then exported, each in a PLY (ASCII encoding) format
together with their textures (PNG). The raster images that represented the textures were
then also simplified, in Adobe Photoshop, by “indexing” their colour scale from 8 to a
maximum of 15, depending on the variety of colours in the images. Once the mesh edges
and vertices had been thoroughly “cleaned” and “repaired”, employing suitable MeshLab
filters, the respective textures were reapplied to project them to the vertices later and from
the vertices to the faces. Once the meshes had been reexported in the PLY-ASCII format,
the numerical information that describes them was imported into Microsoft Excel to be
sorted out, as explained in Section 2.3.3.

Each of the four meshes was then reproduced in a single Revit project, using both
the mesh in the PLY format and the related numeric data in XLSX as inputs for the VPL
script (Figure 11): the former for determining and transforming the vertices into Dynamo
points, the latter to retrieve the indices and the colours of the faces in order to generate
triangles, belonging to the “Triangular Face.RFA” family, placed via their adaptive points,
corresponding, in sequences of three, to the vertices of the meshes according to the order
given by the indices.Remote Sens. 2022, 14, 3688 19 of 25 
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After the generation of the triangular instances, the subsequent step was to assign the
effective colours, as the newly realised Revit Materials, to the “Photogrammetric Color”
parameter. Lastly, the adaptive triangles to be created were partitioned into 2000-unit
batches for the hardware to be able to process the script.

At the end of the second workflow application, four independent Revit projects,
“North_1.RVT”, “North_2.RVT”, “East_1.RVT” and “East_2.RVT” were produced, too
(Figure 12).
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3.3.4. Georeferencing and Federated Models Setting Up

The georeferencing of the eight models produced by the implementation of the first
and the second workflow within the Revit environment was as simple as assigning to
the Project Base Point (PBP) of each project the coordinates previously subtracted to the
GCPs in Agisoft Metashape, taking into account that the “x” value represents the longi-
tude, i.e., to the “E/O” coordinate, while the “y” corresponds to the latitude, i.e., to the
“N/S” coordinate.

Therefore, it was sufficient to subsequently link these eight projects into another one
using the PBP as a reference to make them perfectly fit, having correctly placed them
back in the georeferenced coordinates system “EPSG: 32633” (Figure 13). The BIM mesh
models of the surroundings served then as guidelines to georeference the architectural BIM
model of the fortress, too. At the end of the process, the now nine models, all together
linked within a superordinate Revit project, shared the same coordinate system, that was
eventually “published” back to them to store it (Figure 14).
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4. Discussion

This type of documentation, which goes in the direction of as-built modelling, is
proposed as a valid support tool for management and maintenance purposes, as well as an
effective means of updating the actual state of knowledge about the built environment.

The results achieved prove how the proposed study provides an efficient semi-
automated approach to extract geometric information from a complex topography acquired
with laser scanning and photogrammetry data to create a BIM as-built model based on
the extracted information to perform a correct contextualization. This approach allows the
obtaining of the necessary parameters to create BIM models of historical architecture with
complex shapes from an integrated point cloud.

The possibility to build an actual bridge between the surveyed database and the BIM
models, where the data can be enriched as required, moves in the direction of concretely
employing the informative models as support tools for restoration and refurbishment
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projects. Hence, the incorporation of photogrammetry-derived mesh models and materials
into the BIM environment makes it possible to directly measure them with a good degree of
approximation. Depending on the required level of detail, it is then possible to obtain both
a contextualization precise enough and a morphologically and colorimetrically accurate
reproduction of selected areas of detail, for those elements of the built environment with a
typically unique formal and cultural value; thus, it is worthwhile for informative modelling
within a wider monitoring system. In particular, the modelling procedure developed for
“Workflow A”, here carried out on parts of the context, is reproducible for any unique detail
that can be catalogued under a “Category” other than “Site”.

On the other hand, in case more detailed modelling of the selected areas along with
their realistic colorimetric data are required, due to their particular historical value or
should they be affected by degenerative decays and thus in need of urgent intervention,
they could be reproduced into the BIM environment no longer as a unicum, but rather
as discretised elements storing “Shared Parameters” that would allow performing any
sort of filtering and assessment. The parameters assigned to the triangles are updatable
and increasable on a case-by-case basis, and by customising them, e.g., by filling in the
“Comment” parameter, it would be possible to select, visually filter and group them while
also calculating their cumulative area (Figure 15).
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5. Conclusions

Although the automation of the protocols used to generate these procedures still
has a long way to go, they are fundamental in defining the basis from which to develop
multimedia systems capable of reproducing the complex spatial relationships that exist
between the built environment and historical architectural artefacts. Borrowing from
Werner Heisenberg: “We have to remember that what we observe is not nature in itself but
nature exposed to our method of questioning”. Hence, the information digitisation of complex
territorial realities aims to promote programmes for the renewal of the historical heritage;
updating the existing database; and developing, through 3D digital systems, conservation
and restoration techniques for the architectural heritage [39].

Future developments will certainly try to combine TLS and close-range photogram-
metry data for indoor applications. This type of integrated data will initially be used for
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the manual BIM model of the main structure but also represents an interesting challenge
if used as the source for the proposed procedural workflows, implementing triangulated
mesh models derived from both the laser and the entire integrated data set.

The management of the existing heritage cannot be dissociated from a thorough
investigation of the state of preservation of materials and a detailed 3D reconstruction.
The morphological and colorimetric reconstruction of peculiar and complex structures,
elements and friezes in the BIM environment is essential for the construction of databases
to archive data and facilitate the planning of restoration or partial, although identifiable,
reconstructions [40].

Indeed, the semi-automated implementations proposed here can be easily applied in
subsequent case studies to improve the automation of the methodology and further develop
its potential to accurately estimate the geometric dimensions of any area under study.
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