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We analyze the quantum discord Q throughout the low temperature phase diagram
of the quantum XY model in transverse field. We first focus on the T = 0 order–
disorder quantum phase transition QPT both in the symmetric ground state and in
the symmetry broken one. Beside it, we highlight how Q displays clear anomalies also
at a noncritical value of the control parameter inside the ordered phase, where the
ground state is completely factorized. We evidence how the phenomenon is in fact of
collective nature and displays universal features. We also study Q at finite temperature.
We show that, close to the QPT, Q exhibits quantum-classical crossover of the system
with universal scaling behavior. We evidence a nontrivial pattern of thermal correlations
resulting from the factorization phenomenon.

Keywords: Quantum phase transitions; quantum information; quantum correlations.

1. Introduction

Correlations provide a characterization of many-body systems.1 In the quantum

realm, beside classical correlations, nonlocal quantum correlations (like entangle-

ment) play a pivotal role. Although entanglement completely describes quantum

correlation for pure states, it is in general more subtle to characterize the pattern

of correlations for mixed states. Indeed the quantitative interplay between classical

and quantum correlations has been formulated only recently with the introduction

of the quantum discord, operatively defining pure quantum correlations in composite

systems.2,3,5–7
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The phase diagram of spin systems displays nontrivial pattern of correlations

dictated by two main features: the quantum critical point (QCP) and the factorizing

point. In fact at zero temperature the system can undergo an order–disorder Quan-

tum Phase Transition (QPT), as long as the control parameter h is tuned across

a critical value hc.
8 It is worth noting that the quantum order arises because su-

perselection rules lead to a symmetry breaking.4 Besides QPT, spin systems may

display a further remarkable phenomenon occurring at h = hf located within the

ordered symmetry broken phase, where the ground state is exactly factorized,9–13

and therefore correlations are exclusively classical. Such factorization consists in a

transition for the two-spin-entanglement15 and is rigorously not accompanied by

any change of symmetry.

In this article we analyze the quantum discord arising of the quantum XY spin

system both at zero and finite temperature. In particular we consider the ground

state with broken symmetry. We show that, besides the usual critical behavior at the

QPT, the quantum discord displays dramatic changes also at the factorizing point,

within the ordered phase (i.e., with nonvanishing spontaneous magnetization). We

complete our study by detecting how the quantum critical and the factorization

point affect the quantum discord at low-temperature, thus opening the way towards

actual observations. The structure of this paper is as follows. In the first section an

overview is given about the current notions of quantum and classical correlation in

a general quantum system. In the second one we introduce a many body system

suitable for our type of analysis; the Hamiltonian of the model is introduced together

with few fundamental features related to its physics. In the third section we show

our analysis and results at zero temperature and then once the temperature is

switched on.

2. Quantum, Classical, and Total Correlations

In a bipartite system AB the total amount of correlations between A and B is given

by the mutual information

I(A : B) ≡ S(ρ̂A) + S(ρ̂B)− S(ρ̂AB) , (1)

where S(ρ̂) = −Tr[ρ̂ ln ρ̂] is the von Neumann entropy. In the classical information,

using the Bayes rule, an equivalent formulation of mutual information is:

J(A : B) ≡ S(A)− S(A|B) , (2)

where the conditional entropy S(A|B) = S(AB) − S(B) quantifies the ignorance

on part A once a measurement on B is performed. But in the quantum realm a

measurement in general perturbs the system and part of the information itself is

lost. So when we consider a quantum composite system the Eq. (2) differs from

Eq. (1). This difference allow us to estimate the relative role of quantum and clas-

sical correlations in quantum composite systems.2,3
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Indeed if we describe a measurement on part B by a set of projectors {B̂k},

then

ρ̂AB
(k) =

1

pk
(̂IA ⊗ B̂k)ρ̂

AB (̂IA ⊗ B̂k) (3)

is the composite state conditioned to the kth outcome with probability pk =

Tr[(̂IA ⊗ B̂k)ρ̂
AB (̂IA ⊗ B̂k)]. This conditioned state is the key ingredient which

distinguishes between classical and quantum correlations: in fact it differs in gen-

eral from the pre-measurement state ρ̂AB as well as mutual information differs from

Classical correlations. Then the amount of classical correlations C is obtained by

finding the set of measurements on {B̂k} that disturbs the least the part A, i.e., by

maximizing C = max{B̂k}
[S(ρ̂A) − S(ρ̂AB|{B̂k})].

2,3,5–7 Then the difference be-

tween mutual information and Classical correlations defines the so-called Quantum

Discord

Q(ρ̂AB) ≡ I(A : B)− C(ρ̂AB) . (4)

In the estimate of quantum correlations between subsystem of a bipartite system

the Entanglement has been playing a leading role, in particular about the relevance

of correlations in many body systems. However Quantum Discord differs in general

from Entanglement: for example, even if they are the same for pure states, they

can display a very different behavior in mixed states.

3. The XY Model in Transverse Field

We will consider here an interacting pair of spin-1/2 in the anti-ferromagnetic XY

chain with transverse field h. The Hamiltonian of the model

Ĥ = −
∑

j

(

1 + γ

2
σ̂x
j σ̂

x
j+1 +

1− γ

2
σ̂y
j σ̂

y
j+1 + hσ̂z

j

)

, (5)

describes the competition between two parts: the anisotropy on the xy plane (tuned

by varying γ ∈ (0, 1) and the coupling with external magnetic field h along the z

direction. Using a set of successive transformations (Jordan-Wiegner, Bogoliubov,

Fourier20), the Pauli matrices operators σ̂α
j (α = x, y, x) on sites j can be ex-

pressed in terms of operators such that the Hamiltonian takes the diagonal form

Ĥ = −
∑

k Λkη
†
kηk + const. Here the system is described as a gas of noninteracting

fermions, where η†k (ηk) is the creation (annihilation) operator of a fermion with

momentum k. Furthermore the Jordan–Wiegner transformations allows an analytic

expression for the correlation functions gαα(r) of any two spins in the chain far r

sites with each other (because of translational invariance the distance between them

is all that matters).18,19 In fact the exact solution of XY model has encouraged ex-

tensively studying on the critical phenomena it displays.17–19 In particular, during

the last decade through the analysis of quantum correlations (i.e., Entanglement)

new insights has been made in the description of the physics of the system.21
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3.1. The Phase Diagram

The phase diagram of the XY model is characterized by two values of the applied

field h.8–10,21 It is well-known indeed that for γ ∈ (0, 1] the system displays a

continuum QPT for T = 0, hc = 1, of the Ising universality class with critical

indices ν = z = 1, β = 1/8.8 In fact, for strong enough external fields (h ≫ hc) all

spins tends to be aligned along the z direction, while the opposite limit (h ≪ hc)

give rise to a spontaneous magnetization (Z2-symmetry broken) along a direction

on the xy plane, γ dependent. Then at zero temperature on the left side h < hc
of the phase diagram the system is an ordered ferromagnet and the Z2-symmetry

is broken, while on the right side h > hc the quantum fluctuations leads to the

disordered phase and the system is a quantum paramagnet.

At finite temperature the physics of the whole system is affected from the QCP

h = hc at zero temperature. A V -shaped diagram in the h − T plane emerges,

characterized by the straight lines T = |h− hc| that mark the crossover region be-

tween the so-called Quantum Critical Region (T > |h−hc|) and the Quasi Classical

regions surrounding it.8

Besides the QCP hc there’s another value of the transverse field that characterize

the phase diagram of the XY model. In fact at zero temperature, given a certain

anisotropy γ, there is one specific value hf =
√

1− γ2 where the ground state is

exactly factorized9,10

|Ψγ
GS〉 =

∏

j

|ψγ
j 〉 . (6)

At this particular value of field it seems that, even though the system is in a phase

with very strong quantum correlations, there is a “critical” set of values hf (γ) where

the state is completely classical. This strange occurrence, regarded as a paradox in

the first place,9,10 seems to be strongly connected with the reshuffling of correlations

among the system. In fact, a deep analysis on the behavior of Entanglement has

remarkably shed new light on the relevant physics involved on hf .
11–13 In particular

it has been shown that tuning the external field from h < hf to h > hf the en-

tanglement pattern swaps from parallel to anti-parallel.15 Furthermore, it has been

observed that at zero temperature the bipartite entanglement has a logarithmically

divergent range at hf , together with the fact that at finite temperature there is a

whole region fanning out from hf where no pairwise entanglement survives.16

Then there is strong evidence, that along these critical values of field and Tem-

perature, the behavior of Entanglement, and correlations in general, play a pivotal

role in the physics involved and hence in our understanding of it. In particular it

seems that the interplay of Correlations when the field is tuned across hf is the

only accessible way, so far, to tackle the puzzling physics that leads to the factorized

state (6). In fact we found here that the Quantum Discord allows a fine structure

of the phase diagram around hc, and most important displays a nontrivial scaling

law at the factorization field hf .
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4. Classical and Quantum Correlations in the Model

In order to compute Qr between any two spins A and B at distance r along the

chain is the key ingredients are density matrices. In fact the Eq. (4) depends both

on the single site density matrices ρ̂A, ρ̂B and on the two sites density matrix of the

composite subsystem ρ̂AB. Due to the translational invariance along the chain, the

single site density matrix is the same for any spin (dependent only onmz = 〈σz〉/2),

in particular

ρ̂A = ρ̂B =







1

2
+mz 0

0
1

2
−mz






. (7)

Then the single site von Neumann entropy for both spin A and spin B is:

S(ρ̂A) = S(ρ̂B) = Sbin

(

1

2
+mz

)

(8)

where Sbin(p) = −p log p− (1− p) log(1 − p) is the binary Shannon entropy.

On the other hand the expression of ρ̂AB may be cumbersome. In fact, the

general 2 sites reduced density matrix for an Hamiltonian model with global phase

flip symmetry has the following form27–29:

ρ̂r =











A a a F

a B C b

a C B b

F b b D











(9)

in the basis {|00〉, |01〉, |10〉, |11〉}, where |0〉 and |1〉 are eigenstates of σz , and we’ll

shortly see explicitly the matrix elements.

Because of translational invariance, this density matrix depends only on the

distance r between the two spins, ρ̂AB = ρ̂r. In particular note that A and B in

the matrix (9) do not denote the two spins considered, but some of the following

quantities related to the correlators gαβ(r) = 〈σ̂α
j σ̂

β
j+r〉 and gα = 〈σα〉 = 2mα:

A =
1

4
(1 + gz + gzz) ,

D =
1

4
(1− gz + gzz) ,

B =
1

4
(1− gzz) ,

C =
1

4
(gxx + gyy) ,

F =
1

4
(gxx − gyy) .

(10)
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are the parity coefficients, while

a =
1

4
(gx + gxz) ,

b =
1

4
(gx − gxz) ,

(11)

explicit the contribution from the symmetry breaking.

As long as the system is in the Z2-symmetric phase the matrix element in

“low case” are null (a = b = 0). The symmetry breaking manifest itself in a,

b 6= 0.27–29 In the former case the remaining nonvanishing e entries in Eq. (9) can

be evaluated analytically,18,19 and we use a fully analytical approach to compute the

Quantum Discord in the so-called thermal ground state.33 In this state the system

approach the ground state by lowering the temperature towards the limit of T = 0,

but for this reason the symmetry is conserved and the state is not in the “true”

degenerate ground state. In the latter one the Z2-symmetry is lost and beside the

spontaneous magnetization mx, also the nontrivial gxz(r) appears.
30 In this case we

analyze the real ground state by means of numerical methods, i.e., Density Matrix

Renormalization Group (DMRG) for finite systems with open boundaries.31 Once

we have access to the density matrices through the correlation function, we need to

compute the explicit form of the mutual information and the classical correlation in

order to “distill” the amount of pure quantum correlations [i.e., Quantum Discord,

Eq. (4)]. Here we follow the notation used in Ref. 33. Since the reduced density

matrix of the single spin is the same for any site, we have already shown in Eq. (8)

that S(ρ̂A) = S(ρ̂B). Hence the mutual information is:

I(ρ̂AB
r ) = 2S(ρ̂A)−

3
∑

ν=0

λν logλν (12)

where λν(r) are eigenvalues of ρ̂
AB
r , that in terms of correlation functions gαα(r) =

〈σ̂α
j σ̂

αj + r〉 and gz = 2mz are33:

λ0 =
1

4

(

1 + gzz +
√

g2z + (gxx − gyy)2
)

λ1 =
1

4

(

1 + gzz −
√

g2z + (gxx − gyy)2
)

λ2 =
1

4

(

1− gzz + (gxx + gyy)
)

λ2 =
1

4

(

1− gzz − (gxx + gyy)
)

.

(13)

Once the mutual information is known in terms of the correlation functions

[Eq. (12)] we need to find the explicit form for the classical correlations in the

XY model, in order to compute pure quantum correlations, as stated in Eq. (4).

Following a procedure similar to Refs. 32–34, we use a set of projectors {B̂k} as

local measurements on the spin B. In particular, working on the computational
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basis {|0〉, |1〉} in the Hilbert space H2
B associated to the spin B, our general set of

projectors is:

{B̂k = V Π̂kV
†} , k = 0, 1 (14)

where Π̂k = |k〉〈k| related to the basis vectors and V ∈ U(2) gives the generalization

to any type of projector on B. As suggested in Ref. 33, it is useful to parametrize

V as follows:

V =









cos
θ

2
sin

θ

2
e−iφ

sin
θ

2
eiφ − cos

θ

2









(15)

where θ ∈ [0, π] and φ ∈ [0, 2π] are respectively the azimuthal and polar axes of a

qubit over the Bloch sphere in H2
B . After a measurement has been performed on B

the reduced density matrix ρ̂AB

{B̂k}
will be in one of the following states:

ρ̂AB
0 =

1

2

(

ÎA +

3
∑

α=1

q0ασ̂
α
A

)

⊗ (V Π̂0V
†)B ,

ρ̂AB
1 =

1

2

(

ÎA +

3
∑

α=1

q1ασ̂
α
A

)

⊗ (V Π̂1V
†)B .

(16)

This expression for the reduced density matrices gives the explicit dependence of the

system A respect to the projective measurement performed on the spin B. Indeed

the coefficient qkα = qkα(θ, φ) in the expansion depend on the projectors used to

perform the measure on B (see Ref. 33 for the explicit form).

We remind here the explicit form for the classical correlations2,3,5–7

C = max
{B̂k}

[S(ρ̂A)− S(ρ̂AB|{B̂k})] . (17)

Maximizing over all possible B̂k is equivalent to find for those values (θ, φ) that

disturb the least the spin A when we make a measure on B. We found (θ = π/2, φ =

0), in agree with Refs. 33 and 35. And following their same method to evaluate

S(ρ̂AB|{B̂k}) we found a simple expression for classical correlations

Cr = Hbin(p1)−Hbin(p2) , (18)

where Hbin(p) is the Shannon entropy and

p1 =
1

2
+mz

p2 =
1

2
+
√

g2xx/4 +m2
z .

(19)
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So by the difference of the mutual information (12) and the latter expression for the

classical correlations (18) we get the simplified expression for the quantum discord

between any two spins in the XY chain in transverse field

Q(ρ̂r) = Hbin(p1) +Hbin(p2)−

4
∑

ν=0

λν logλν . (20)

5. Analysis of Quantum Discord at T = 0

In this section, we show our analysis of quantum correlations both in the thermal

ground state and in the symmetry broken one. In particular we remark differences

and similarities between them, and highlight the interesting features occurring at

the QCP hc = 1 and at the factorizing field hf (if not specified γ = 0.7 in every

picture).

We start by showing the behavior of quantum discord at zero temperature, over

a wide range of external field h centered around the critical value hc where the

QPT occurs. In Fig. 1 we compare, for both the XY model (γ = 0.7 for example)

and the Ising one (inset where γ = 1), the numerical results we got from DMRG

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

h
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Q
r

r = 1
r = 2
r = 3

0 0.5 1 1.5 2
h

0

0.02

0.04

0.06

0.08

0.1

0.12Q
r

0.71 0.715 0.72

0.122

0.123

0.124

0.125

γ = 1

γ = 0.7

Fig. 1. Quantum discordQr(h) between two spins at distance r in the XY model at γ = 0.7 (main
plot and left inset) and γ = 1 (right inset), as a function of the field h. Continuous lines are for the
thermal ground state, while symbols denote the symmetry-broken state obtained by adding a small
symmetry-breaking longitudinal field hx = 10−6 and it was computed with DMRG in a chain of
L = 400 spins; simulations were performed by keeping m = 500 states and evaluating correlators
at the center of the open-bounded chain. For γ = 0.7 and at hf ≃ 0.714, in the symmetric state
all the curves for different values of r intersect, while after breaking the symmetry Qr is rigorously
zero. At the critical point Qr is nonanalytic, thus signaling the QPT. In the paramagnetic phase,
there is no symmetry breaking to affect Qr.
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computation of Qr on the true ground state respect to the analytical values of

the thermal ground state. There is strong evidence that in the disordered phase,

h > hc, no difference occurs between the two state, while in the opposite regime

h < hc two different pattern comes out. In fact in the latter case, the order in the

system is really achieved only in the case where the symmetry of the system is lost.

We achieve this condition using a staggered field in the DMRG computation that

leads to the symmetry breaking and gives out the true ground state where quantum

correlations are very small as long as h < hc. In particular it is remarkable that

they start to increase once the field is tuned immediately upper the factorizing field,

where all quantum correlations must vanish, to reach a cuspid-like maximum at the

QCP. On the other hand, the quantum discord on the thermal ground state (solid

lines in Fig. 1) is a smooth function respect to the field. In general it depends on

the distance r between the two spins, but at the factorizing point it gets the same

value for any length scale.36

To go deeper in the analysis let us focus on hc = 1 in the first place. The QPT is

in general marked by a divergent derivative of the quantum discord, with respect to

the field. In particular such divergence is present for any γ in the symmetry broken

state, while on the thermal ground state it holds as long as γ < 1 (see Fig. 2); for

γ = 1, ∂hQr is finite at hc although the ∂2hQr diverges.33 This divergence suggests

that a scaling analysis at the QCP is feasible. In particular in Fig. 3 we show the

finite size scaling ∂hQr=1 for the symmetry-broken ground state in proximity of

hc. We found that z = ν = 1, thus meaning that the transition is in the Ising

universality class.

Turning now into the factorizing field we underline that, for the thermal ground

state, it is the only value where the curves with different r, intersect with each other

Fig. 2. Behavior of ∂hQr in the thermal ground state, with respect to the field for any type of
anisotropy γ. Focusing at the QCP (h = 1), note that for γ < 1 it is divergent, while it remains
finite for γ = 1.
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-1

hc-h

0

2

4

6

8

10

12

∂ hQ
1

Fig. 3. Finite-size scaling of ∂hQ1 for the symmetry-broken state in proximity of the critical
point hc. Displayed data are for γ = 0.7. The first derivative of the quantum discord is a function
of L−ν(h − hm) only, and satisfies the scaling ansatz ∂hQ1 ∼ Lω × F [L−ν(h − hm)], where hm

is the renormalized critical point at finite size L and ω = 0.472. We found a universal behavior
hc − hm ∼ L−1.28±0.03 with respect to γ. Inset: raw data of ∂hQ1 as a function of the transverse
field.

(see up-left inset in Fig. 1).36 Beside this, in the broken symmetry state, not only

we found that all curves vanish in hf , but we numerically estimated the following

particular dependence of Qr close to it:

Qr ∼ (h− hf )
2 ×

(

1− γ

1 + γ

)r

. (21)

Such behavior is consistent with the expression of correlation functions close

to the factorizing line obtained in Ref. 14, and here appears to incorporate the

effect arising from the nonvanishing spontaneous magnetization. Most remarkably,

we found a rather peculiar dependence of Qr on the system size, converging to the

asymptotic value Q
(L→∞)
r with an exponential scaling behavior (see Fig. 4).

6. Quantum Discord at Finite Temperature

Even if both the QCP hc and the factorizing field hf are defined at T = 0, they

influence the whole physics of the system once the temperature is switched on.

Close to hc, the physics is dictated by the interplay between thermal and quantum

fluctuations of the order parameter. As we stated before the cross-over temperature

Tcross = |h − hc|
z fixes the energy scale.8 For T ≪ Tcross the system is described

by a quasi-classical theory, while inside the “quantum critical region” (T ≫ Tcross),

it’s impossible to distinguish between quantum and thermal effects. Here the crit-

ical property arising from the QCP at T = 0 are highly dominating the dynamics
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Q
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(L)

(L
)

h
f

Fig. 4. Scaling of Q1 close to the factorizing field, for γ = 0.7: we found an exponential conver-

gence to the thermodynamic limit, with a universal behavior according to e−αL(h− h
(L)
f

), α ≈ 1

[h
(L)
f

denotes the effective factorizing field at size L, while δ(Q1) ≡ Q
(L)
1 − Q

(L→∞)
1 ]. Due to

the extremely fast convergence to the asymptotic value, already at L ∼ 20 differences with the
thermodynamic limit are comparable with DMRG accuracy. Inset: raw data of Q1 as a function
of h. The cyan line is for L = 30 so that, up to numerical precision, the system behaves at the
thermodynamic limit.

Fig. 5. Quantum discord in the thermal state of the Ising model with γ = 1, as a smooth function
of temperature T and of the external field h.

of the system, and we would aspect that quantum correlations show some par-

ticular pattern as well as they do at hc. In fact close to hf and at small T , the

bipartite entanglement remains vanishing in a finite nonlinear cone in the h − T

plane.16,21 Thermal states, though, are not separable, and entanglement is present

in a multipartite form.26 In this regime the bipartite entanglement results to be

nonmonotonous, and a reentrant swap between parallel and antiparallel entangle-
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1.004

1.008

1.012

1.016γ = 0.7 ,  x = 0.065 

γ = 1 ,  x = -0.0059 

Fig. 6. Finite-temperature scaling of the quantum discord for the thermal state close to the
critical point. The logarithmic scaling is verified: along the critical line we found ∂hQ1|hc

∼
x ln(T ) + k, with x = 0.065 for γ = 0.7. The scaling function F shows a data collapse close to
the critical point. Inset: same analysis for the Ising case (γ = 1); we found an analogous scaling
behavior with x = −0.0059.

ment is observed.16 At finite temperature, the Z2-Symmetry is preserved all over

the values of h (there is no longer a symmetry broken phase). This means that if

the system lies in the ground state at T = 0 (symbols lines in Fig. 1), once the

temperature is switched on we get a jump of Qr all along the phase h < hc. After

that it behaves as a smooth function decaying with temperature (Fig. 5). Such dis-

continuity is also observed in the entanglement, even if in that case it is much less

pronounced and occurs only for h < hf .
27–29 We now analyze how criticality and

factorization modify the fabric of pure quantum correlations in the h− T plane.

We start by focusing on the finite-temperature scaling of the quantum discord

close to the critical point hc. In the first place we verified the logarithmic scaling

∂hQr|hc
∼ x ln(T ) + k along the critical line, h = 1 in the h − T plane (see Fig. 9

), where the value of x depends on the degree of anisotropy γ. Once x is given (for

example we found x = 0.065 for r = 1, γ = 0.7, Fig. 6), by properly tuning the

ratio T/Tcross, where Tcross ≡ |h− hc|, we verified the scaling ansatz

∂hQr = T xF

(

T

Tcross

)

. (22)

In particular in Fig. 6 we show how different curves, related to different values

of T/Tcross, collapse when approaching the critical point. Remarkably in the Ising

case (inset) the scaling is verified as well, even if the derivative ∂hQ1 is finite at hc.

To explore the behavior of correlations along the h− T plane we studied how the

quantum discord varies on the phase diagram just above the QCP. In the first place
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Fig. 7. Schematic representation for the directional derivative on the phase diagram. It allows
to study how quantities vary along straight lines coming out from the critical point with slope
u ≡ (cosα, sinα).

Fig. 8. Density plot in the h− T plane of DuQ1 close to hc; The vertical line starting from the
QCP shows that Q1 tends to be constant inside the quantum critical region.

we analyze how the derivative respect to field behaves along the directions fanning

out from hc. In Fig. 7 we sketch a cartoon to describe the directional derivative

DuQ = |∂TQ sinα+∂aQ cosα| we used to describe how Q1 varies close to the QCP.

From the pattern of DuQ1 at low temperature (Fig. 8) we see how the presence

of the QPT charaterizes the whole phase diagram. The black vertical line starting

from the QCP highlights the fact that the quantum discord remains constant along

the critical line h = 1: in a sense, close to such region h ≈ 1, quantum correlations

are particularly “rigid”. This explains their robustness up to finite temperatures,

particularly along slopes within the quantum critical region. On the other hand, out

of the quantum critical region, the variation of Q1 is drastically increased. We also

point out the peculiar asymmetric behavior between the two semiclassical regions

(in the ordered phases DuQ1 is generally higher than in the paramagnetic phase).
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Fig. 9. Density plot in the h− T plane of ∂T [Q1/C1] close to hc; along the critical line the ratio
Q1/C1 is constant with respect to the temperature. The solid straight line (T = |h− hc|) marks
the boundary of the quantum critical region.

Furthermore, to make a more accurate analysis we look at the interplay between

quantum discord and classical correlations. In particular we analyze how this ratio

Q1/C1 varies with the temperature, exploiting the respective sensitivity to thermal

fluctuations arising at finite temperature. Accordingly with the phase diagram re-

lated to the QPT, a V shaped pattern comes out (see Fig. 9). In particular along

the critical line, inside the quantum critical region, we found ∂T [Q1/C1] = 0. Then

apparently the ratio between correlations is constant even though the temperature

is switched on, as long as the field is tuned at the critical value hc. Beside this,

the whole crossover region from a phase to another is marked as the highest vari-

ation in the nature of correlations in the system. In conclusion we analyze how

the factorizing field affects the physics of the system at nonzero temperature. As

we emphasized before, the Z2-symmetry is preserved on the thermal state. In par-

Fig. 10. Average quantum discord displacement: ∆Qr = 2
∑m

i,j=1 |Qri − Qrj |/m(m − 1) for
m = 5 fanning out from the factorizing point hf ∼ 0.714, where all correlations coincide at any
length scale r, as evidenced in the left inset of Fig. 1. Here γ = 0.7.
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ticular we highlighted also that for the thermal ground state, the factorizing field

was the unique value where the quantum discord is the same at any length scale

r. Here we found that indeed this feature is present even after the temperature is

switched on. In fact in Fig. 10 we propose ∆Qr = 2
∑m

i,j=1 |Qri − Qrj |/m(m− 1)

as a measure of the robustness of this characteristic at nonzero temperature. We

consider different distances between the couple of spin A and B, and we take the

average of the difference between the respective quantum discord. There is strong

evidence in Fig. 10 that for a finite range of temperature this difference is still zero

(i.e., the quantum discord for different r is still the same only at hf ).

Here we emphasize that the robustness and sensitivity of the quantum discord

to nonzero temperature, encourage the implementation of suitable experiments that

could give good feedback of our analysis.

7. Discussions

We studied pure quantum correlations quantified by the quantum discord Qr in the

quantum phases involved in a symmetry-breaking QPT. In the ordered phase, al-

though Qr results relatively small in the symmetry broken state as compared to the

thermal ground state, it underlies key features in driving both the order–disorder

transition across the QPT at hc, and the correlation transition across the factoriz-

ing field hf . The critical point is characterized by a nonanalyticity of Qr found in

the Ising universality class. Close to hf , Qr displays uniquely nontrivial properties:

in the thermal ground state quantum correlations are identical at all scales; for the

symmetry broken state the factorization can be interpreted as a collective reshuffling

of quantum correlations. We point out that hf marks the transition between two

“phases” characterized by a different pattern of entanglement.15,16 Accordingly our

data provide evidence that such a correlation transition phenomenon is of collective

nature, governed by an exponential scaling law. We observe that the scaling close

to hf cannot be algebraic because the correlation functions decay exponentially in

the gapped phases. We notice however that, due to the peculiar phenomenology of

the factorizing phenomenon, it can be specific for scaling beyond the generic expo-

nential behavior that is observed in gapped phases. For finite L different ground

states for the two parity sectors intersect.22,23 The ground state energy density is

diverging for all L (such divergence, though, vanishes in the thermodynamic limit).

Indeed we found that the factorization occurs without any violation of adiabatic

continuity. Accordingly, the ground state fidelity F(h), which can detect both sym-

metry breaking and nonsymmetry breaking QPT, is a smooth function at hf .
40 We

remark that this can occur without closing a gap and changing the symmetry of

the system, as a signature of the fact that quantum phases and entanglement are

more subtle than what the symmetry-breaking paradigm says. Such a behavior is

particularly relevant in the context of QPTs involving topologically ordered phases

where a QPT consists in the change of the global pattern of entanglement, instead

of symmetry.37–39
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We analyze the phase diagram at low T . A discontinuity of Qr with T is evi-

denced in the whole ordered phase h < hc. We proved that Qr displays universal

features, identifying the quantum critical region, as that one where the quantum

discord (relatively to classical correlation) is frozen out to the T = 0 value. In par-

ticular we notice that in each phase the ratio between correlations is stable respect

to the temperature, while the highest variation are in particular in the crossover

region on the right of hc, where the system is running out of the critical region into

the quasi-classical one just above the disordered phase of the paramagnet. This

aspect shows that this type of quantum correlations allows a fine structure of the

phase diagram according to the behavior of the gap ∆ ≶ 0 in the low temperature

limit T ≪ |∆|, that takes into account that the mechanism leading to the two cor-

responding semiclassical regimes driven from quantum (∆ > 0) or thermal (∆ < 0)

fluctuations.8

We have found that a nontrivial pattern of quantum correlations fans out from

the factorization of the ground state as well.
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