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Abstract
Pharmaceuticals can be considered a global threat to aquatic ecosystems due to their pseudo-persistence and their potential toxicity 
towards non-target species. Amoxicillin (AMX) and carbamazepine (CBZ) and their mixture (1:1) were investigated on the marine 
copepod Tigriopus fulvus (Fischer, 1860) considering both acute and chronic endpoints. While acute and chronic exposure did not 
directly affect survival, reproductive endpoints were affected like the mean egg hatching time that was significantly longer than 
the negative control for treatments with AMX (0.789 ± 0.079 μg/L), CBZ (8.88 ± 0.89 μg/L), and AMX and CMZ as a mixture 
(1.03 ± 0.10 μg/L and 0.941 ± 0.094 μg/L), in that order.
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Introduction

The widespread use of pharmaceuticals improved the 
general quality of life increasing life expectancy as well. 
Despite these benefits, the chemical and (eco)toxicologi-
cal studies have raised an increasing concern over the 
potential threats of pharmaceuticals to both the aquatic 
environment and human health (Kurunthachalam 2012). 
The European Commission (Deloitte Sustainability 
2018) and HELCOM (International Initiative on Water 

Quality-IIWQ 2017) declared pharmaceuticals as emerg-
ing contaminants (ECs).

Pharmaceuticals can enter in the aquatic environment 
through different pathways: discharge of wastewater 
from domestic households, industrial effluents, agri-
cultural effluents, aquaculture, and solid wastes. Sev-
eral studies have shown that numerous pharmaceuticals 
are discharged into water bodies (Corcoran et al. 2010; 
Mutiyar and Mittal 2014; Chen et al. 2015; Mezzelani 
et al. 2018). The concentrations of these products can 
significantly differ amongst countries depending on the 
consumption and population. Their presence in surface 
waters, groundwater, and even marine systems have been 
estimated at ng/L or µg/L concentrations (Tran et  al. 
2017). Moreover, wastewater treatment plants (WWTPs) 
often are not able to remove drugs, favouring their intro-
duction into the aquatic ecosystem (Verlicchi et al. 2012; 
Zhang et al. 2018).

This suggests the need to address potential exposure 
scenarios that could trigger toxic effects on non-target 
organisms (Richardson et al. 2005; Claessens et al. 2013). 
To date, the knowledge about the toxicological effects 
of pharmaceuticals in the aquatic environment must be 
strengthened especially for saltwater species (Chen et al 
2019a; Siciliano et al. 2021).

The present paper focused on the antibiotic amoxicillin 
(AMX) and the antiepileptic carbamazepine (CBZ) (Jones 
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et al. 2002; Lalumera et al. 2004; da Silva Santos et al. 2018; 
Mezzelani et al. 2018, 2020), being the two most frequently 
detected pharmaceuticals in the aquatic environment. Antibi-
otics are widely used both for treatment of human and animal 
diseases. After their administration, they are not fully metabo-
lized so they are discharged from the body both in feces and 
urines. Studies have demonstrated that low concentrations of 
antibiotics can accelerate the evolution of antibiotic-resistant 
bacteria and antibiotic resistance genes, with adverse health 
problems to humans (Liu et al. 2018; Ramesh et al. 2018). In 
Europe, Amoxicillin (AMX) is among the most prescribed 
antibiotics for both human and animal use (Lalumera et al. 
2004; Jones et al. 2002), including aquaculture (Siciliano et al. 
2021). Although they are usually measured at trace concentra-
tions (i.e., ng/L to µg/L in water and µg/kg to mg/kg in soil/
sediment), AMX is a “pseudo-persistent” contaminant due 
to its constant use and release (Daughton and Ternes 1999; 
Hernando et al. 2006).

Carbamazepine (CBZ) is an anticonvulsant drug used 
for the treatment of epilepsy, bipolar disorder, and trigemi-
nal neuralgia (Calcagno et al. 2016). Pomati et al. (2006), 
Qiang et al. (2016), and Verlicchi et al. (2012) reported 
ng/L of CBZ in surface water samples, while Mezzelani 
et al. (2020) observed the presence of 35 ng/g dry weight 
(d.w.) up to 280 ng/g d.w. of CBZ in tissues of aquatic 
invertebrates. CBZ is not fully metabolized by humans, 
and only partially removed in wastewater treatment plants 
(WWTPs) (< 10%) persisting into the environment (Con-
tardo-Jara et al. 2011).

Marine coastal areas are traditionally impacted by con-
taminants from rivers, streams, and wastewater effluents 
(Martínez et al. 2007; Fernández et al. 2016; Fernández-
Rubio et al. 2019). To date, much of the research focused 
on the acute toxicity of pharmaceuticals to freshwater spe-
cies (Liu et al. 2015; Miller et al. 2019), neglecting their 
acute and chronic effects on marine organisms (of indi-
vidual pharmaceuticals and mixtures) (Arnold et al. 2014; 
Gaw et al. 2014; Rodríguez-Mozaz et al. 2017; Franzellitti 
et al. 2019; Mezzelani et al. 2016; Trombini et al. 2016).

Among invertebrate copepods, Tigriopus fulvus (Fischer 
1860) is used as testing species in bioassays because of its 
suitability for laboratory rearing (Faraponova et al. 2005), 
good sensitivity to different toxicants, and data reproducibil-
ity (Faraponova et al. 2005, 2016; Mariani et al. 2006; Tor-
nambè et al. 2012; Prato et al. 2011, 2012, 2013, 2015, 2019; 
Biandolino et al. 2018). This species represents an important 
link in the marine food chain since it feeds on microalgae or 
bacteria, and it is a prey for larger crustaceans, fish larvae, 
and filter-feeding bivalves.

The present study evaluated the acute and chronic toxic-
ity of amoxicillin and carbamazepine as pure substances and 
in mixture (1:1) to the marine copepod T. fulvus including a 
multi-endpoint approach (survival, growth, and reproduction).

Materials and methods

Experimental animals

The harpacticoid copepod T. fulvus, originally obtained from 
cultures coming from the Northern Tyrrhenian Sea, has been 
reared for multiple generations at National Research Council, 
Institute for Water Research (CNR-IRSA) in Taranto (Italy). 
The culture was maintained in natural seawater (NSW, fil-
tered 0.45 μm through cellulose membranes; salinity 38 psu) 
in a thermostatic chamber at 20 ± 1 °C with a 16:8 h L/D 
photoperiod. Tigriopus fulvus was fed twice a week using a 
mixed algal diet: Tetraselmis suecica and Isochrysis galbana 
at 1.5 ×  108 and 3.0 ×  108 cells/L, respectively.

Toxicity tests were carried out on newborn offspring 
(nauplii) originating from synchronized cultures (24–48 h) 
enabling the use of the same developmental stage. To obtain 
the synchronized nauplii, about 200 females with egg sacs 
were collected from the stock culture and transferred to an 
80 μm mesh plankton net fixed on a Plexiglas tube placed in 
a Petri dish, to allow the passage of newly hatched nauplii. 
After 24 h, healthy nauplii (i.e., able to actively swim) were 
randomly selected with a Pasteur pipette under a stereomi-
croscope, washed by gently pipetting them in clean artificial 
saltwater (ASW, filtered at 0.45 μm), and transferred in sterile 
12 multi-well plates (5 mL per well) (Nest Biotech Co., Ltd).

Exposure media preparation

The chemicals and reagents used in this study were pur-
chased from Sigma-Aldrich (Zwijndrecht, the Nether-
lands) and were of analytical grade. Amoxicillin trihydrate 
(CAS 61336–70-7, purity > 99%) and Carbamazepine 
(CAS 298–46–4, purity > 97%) were dissolved in metha-
nol high-performance liquid chromatography (HPLC) 
grade (purity ≥ 99.9) to prepare concentrated stock solu-
tions (1000 mg/L). These solutions were stored at 4 °C in 
amber glass vials for no longer than 2 weeks to minimize 
photodegradation.

Ecotoxicity

The experimental design of this study was devoted to (i) 
determining the acute toxicity of carbamazepine and amoxi-
cillin as pure substances and their 1:1 mixture, (ii) and eval-
uate their chronic effects with sublethal endpoints using T. 
fulvus. The exposure solutions for individual acute tests of 
AMX and CBZ were prepared as follows: 6.25, 12.5, 25.0, 
50.0, and 100 mg/L (nominal concentrations). The highest 
tested concentration was 100 mg/L because according to 
the EC-Directive 93/67/EEC (European Commission 1993), 
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substances with EC50 values higher than 100 mg/L are not 
considered harmful to aquatic organisms. The binary mix-
tures of the two pharmaceuticals were in a ratio of 1:1.

The individual and combined chronic toxicities of AMX 
and CBZ were examined. To simulate natural conditions in 
aquatic ecosystems and plausible environmental worst-cases 
scenarios, chronic tests were conducted exposing copepods 
to a wide range of concentrations with an increasing factor 
of tenfold. The nominal investigated concentrations were: 
0.1, 1, 10, and 100 μg/L (for both pure substance and the 
mixture). ASW was used as a negative control and to prepare 
testing solutions. Copper sulphate  (CuSO4 ×  5H2O, 0.015, 
0.03, 0.06, 0.12, 0.25, 0.50, 1.00 mg/L of  Cu2+) was used as 
positive control ensuring the validity of the test (UNICHIM 
2396:2014, 2014) (Faraponova et al. 2016). The experimen-
tal conditions of acute and chronic tests are summarised in 
Table S1 (Supplementary Materials).

Acute exposure test (96 h)

Acute tests of naupliar mortality were performed accord-
ing to ISO (1999) and the modifications introduced by 
Prato et al. (2013). Briefly, triplicate groups of ten nauplii 
(≤ 24 h old) were transferred in 12-multiwell plates filled 
with 3 mL of experimental concentrations: ASW (negative 
control), copper (positive control), AMX, CBZ and their 
mixture. Tests solutions were renewed after 48 h. No food 
was supplied during the entire duration of the exposure. The 
mortality of copepods was assessed after 96 h of exposure, 
by inspecting the wells under a stereomicroscope. Nauplii 
were considered dead if they did not actively swim after 20 s 
of observation and light stimulation.

Chronic exposure (28 days)

The individual chronic toxicities of AMX and CBZ and 
their binary mixtures (1:1) to the copepods was investi-
gated with a full life-cycle approach (Kwok et al. 2009). 
Briefly, triplicate groups of 12–13 nauplii (< 24 h) per 
treatment were randomly selected and transferred to 
12-well culture plates containing 4 mL of test solution. 
Spiked test media supplemented with T. suecica  (105 cells/
mL) were renewed (> 80% of the working volume) every 
2 days. Wells were checked daily under a stereomicroscope 
to record mortality and developmental stages until cope-
pods reached the adult stage. The males were discarded 
after mating, and the experiment was continued with ovi-
gerous females only. To measure reproductive endpoints 
seven ovigerous females per treatment were individually 
transferred to a new 12-well culture plate in a volume 
of 2 ml of test solution until the offspring were released. 
Each well was observed daily with a renewal every 48 h 
when the females were transferred to a new culture plate 

with fresh solutions; hatched nauplii were counted under a 
stereomicroscope. In total, 8 life cycle traits were examined: 
lethality, nauplii percentage that reached copepodite stage 
after 5 days, development time to maturation of females (i.e., 
development of the egg sac), sex ratio, hatching time, mean 
brood per female, mean number of nauplii per brood female 
and aborted egg sacs.

Chemical analysis

Artificial saltwater (Instant Ocean®, pH 8.0 ± 0.1, Salinity, 
38 ± 2 psu, filtered through a GF/C Whatman 1.2 μm mesh) 
was used as dilution water. Before adding ASW, methanol 
was completely evaporated under a gentle stream of nitro-
gen. Three samples per testing concentrations were collected 
prior to toxicity testing and processed as follows. Each sam-
ple was extracted by solid-phase extraction (SPE), 0.5 L of 
the sample was filtered and pre-concentrated on cartridges 
made of polystyrene-divinylbenzene resin (STRATA XL 
6 mL/500 mg—Phenomenex). The cartridges were pre-
conditioned with methanol and then distilled water. The 
analytes were eluted with a solution of 1–5 mL of metha-
nol/acetonitrile (1:1). The extract was then concentrated to 
0.1 mL under nitrogen flow (Multivap8, LabTech, Italy). The 
extract was injected into an HPLC system consisting of a 
20AD XR LC pump, a SIL 2A HT autosampler, and a DAD 
SPD M20A UV detector (All Shimadzu, Japan). HPLC sepa-
rations were performed on a 150 mm × 4.6 mm, 5 µm C18 
column (Phenomenex, USA). The mobile phase consisted of 
a binary mixture of solvents: (A) 95% of ammonium acetate 
solution at pH 4.0 and (B) 5% acetonitrile. Separations were 
performed at room temperature, and the flow rate was main-
tained at 1 mL/min. The compounds were monitored at a 
wavelength of 254 nm. The detection limit (LOD) and limit 
of quantification (LOQ) (ICH, 2005) were 0.002 μg/L and 
0.006 μg/L.

Statistical analyses

Tests were performed in triplicate, repeated on three distinct 
occasions, and statistical analyses were completed using 
Statgraphics software and package software Past3 (version 
1.0). For acute toxicity tests, the 96 h LC50 values, were 
calculated using the Spearman-Karber method (USEPA 
1994—ToxStat software package). No observed and low-
est observed effect concentrations (NOECs and LOECs) 
were calculated for all endpoints using analysis of variance 
(ANOVA) from the observed data. Maximum acceptable 
toxicant concentration (MATC) was calculated as the geo-
metric mean of NOEC and LOEC values. Analysis of vari-
ance (ANOVA) was applied for all the analysed parameters 
to test differences among treatments and between all treat-
ment concentrations. Raw data were tested for normality 
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and homogeneity of variances using Shapiro-Wilks and Bar-
tlett’s tests. Both assumptions were met, data were examined 
by analysis of variance (one-way ANOVA) and a multiple 
comparison procedure (Tukey test) to find significant vari-
ations (p < 0.05) among treatments. When requirements for 
normality and homogeneity were not met, the non-paramet-
ric Kruskal–Wallis test on ranks was applied followed by 
Dunn’s post hoc test. The level of significance was always 
set at α = 0.05. Whenever necessary, nested ANOVA was 
considered to verify if between-runs variance did not differ 
before pooling the data.

Results

Acute toxicity test

The mean percentage of survival in the negative controls 
was > 90% in each experiment, meeting the acceptability cri-
teria established for the test (Faraponova et al. 2016). The 
median lethal concentration  (LC50) of the positive control 
was equal to 0.11 (0.08–0.16; nominal concentration) mg/L 
of  Cu2+ being in accordance with the reference guideline 
(UNICHIM 2396: 2014, 2014).

After 96 h of exposure, the two drugs tested individually 
and in mixture slightly affected survival of T. fulvus. The 
highest mortality rate was equal to 44% in nauplii exposed 
to CBZ (100  µg/L) and 22% in those exposed to MIX 
(100 + 100 µg/L). For AMX, no effect was evidenced even 
at 100 mg/L (nominal concentration). Therefore,  LC50 val-
ues were not determined at the investigated concentrations.

Chronic test

Chemical data

Measured concentrations for AMX, CBZ, and their mix-
ture are summarized in Table 1 including both nominal and 
measured values used in chronic toxicity tests.

Toxicity data

After 28 days of exposure, all copepods tested showed good 
survival percentages (> 95%) for all treatments without 
significant differences from the control (p > 0.05, data not 
shown). Data about the percentage of developed copepodite 
after 5 days are highlighted in Fig. 1 A, B, and C. During 
the first 5 days of exposure, the mean percentage (%) of lar-
val development (from nauplii to copepodites) in the nega-
tive controls was 63 ± 4% (Fig. 1). A significant increase in 
copepodites percentage was observed at 0.080 μg/L, while 
a lower percentage of developed copepodites exposed to 
AMX was shown at 9.540 μg/L and 93.40 μg/L (ANOVA, 

F-ratio = 16, p < 0.05) (Fig. 1A). A significant inhibition 
of the larval development was observed at 8.88 μg/L and 
95.6 μg/L of CBZ (ANOVA, F-ratio = 0.53, p < 0.05) with 
41% and 37% of nauplii developed to the copepodite stage, 
respectively (Fig. 1B). The MIX samples caused a signifi-
cant increase of larval development at 0.08 + 0.75 μg/L of 
CBZ + AMX (ANOVA, F-ratio = 7.14, p < 0.05), while no 
effect was observed at the highest concentrations after 5 days 
of exposure (Fig. 1C). The MATC values were 2.74, 3.34, 
and 0.05 + 0.06 μg/L for AMX, CBZ, and MIX, respectively 
(Table 2).

Amoxicillin, CBZ and their MIX did not significantly 
slow down larval development of T. fulvus after 5 days of 
exposure as shown in Supplementary Materials (Table S2). 
Indeed, the apparent differences between runs are related to 
the intrinsic variability within replicates as suggested by the 
results of the nested analysis of variance displayed in Sup-
plementary Materials (Table S3).

There were no significant differences in sex ratios, which 
varied between 0.8 and 1.4 (data not shown).

The time required for the release of the offspring was 
2.4 ± 0.2 days in the negative controls. A significant con-
centration dependent increase in hatching time was observed 
starting from 0.79 μg/L of AMX (F = 9.50; p < 0.05; Fig. 2), 
with a MATC value of 0.25 μg/L (Table 2). In particular, 
the offspring releases occurred after 3.2 ± 0.4 days at the 
highest concentration of AMX (100 μg/L). CBZ showed 
significant differences only at 8.88 μg/L compared to the 
control and all tested concentrations (F = 2.86, p < 0.05) and 
a MATC value of 3.34 μg/L (Table 2). Mixtures displayed 
a significant increase of time nauplii release starting from 
0.94 + 1.03 μg/L of CBZ + AMX (F = 6.90, p < 0.05; Fig. 2) 

Table 1  Measured concentrations (media ± SD) of carbamazepine 
(CBZ) and amoxicillin (AMX) in chronic toxicity tests with single 
compounds and a mixture (1:1). The data are reported in µg/L (n = 9)

Nominal concentrations Measured concentrations

Experimental design Amoxicillin Carbamazepine

Istant Ocean™ (38 psu) -  < 0.002  < 0.002

AMX 0.1 0.080 ± 0.005 -
1 0.789 ± 0.042 -
10 9.540 ± 0.416 -
100 93.40 ± 3.79 -

CBZ 0.1 - 0.16 ± 0.01
1 - 1.26 ± 0.08
10 - 8.88 ± 0.41
100 - 95.60 ± 3.98

AMX + CBZ 0.1 + 0.1 0.076 ± 0.005 0.084 ± 0.005
1 + 1 0.941 ± 0.059 1.030 ± 0.065
10 + 10 9.214 ± 0.402 8.741 ± 0.399
100 + 100 96.34 ± 2.47 94.67 ± 2.97
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and MATC value of 0.27 and 0.29 μg/L for AMX and CBZ 
(Table 2), respectively. The hatching time data of each run 
test (n = 3) are summarized in Table S4.

As reported in Fig. 3, chronic exposure to AMX led to 
a significant reduction in the mean number of broods per 
female compared to the control at the tested concentrations 

over 0.080 ± 0.005  μg/L (F = 21.6, p < 0.05), with a 
MATC value of 0.25  μg/L (Table  2). The number of 
broods ranged from 5.6 ± 0.5 in the control to 3.9 ± 0.7 at 
93.40 ± 9.34 μg/L (Fig. 3A).

A significant decrease in the number of broods was also 
observed in CBZ treatments at 0.16, 1.26, and 8.88 μg/L 
(F = 12.9, p < 0.05), while at 95.60 ± 9.56 μg/L, the num-
ber of broods was almost equal to the control (Fig. 3A). 
The calculated MATC value was equal to 0.11  μg/L 
(Table 2). The exposure to the MIX showed a significant 
decrease starting from 1.030 to 0.941 μg/L of AMX and 
CBZ (F = 161, p < 0.05), respectively. The mean num-
ber of broods per female at the highest concentration 
was 4.1 ± 0.8 (Fig. 3A). AMX, CBZ, and MIX did not 
affect the average number of nauplii produced per brood 
(p > 0.05; Fig. 3B).

At the end of the experiment, the total number of nau-
plii per female in the control was 113.5 ± 24.6 (Fig. 3C). 
A significant decrease of nauplii per female was observed 
for AMX treatment at 9.540 µg/L and 93.40 µg/L (88.1 and 
73.9, respectively) (F = 11.84, p < 0.05) and for MIX starting 
from 0.94 + 1.03 µg/L of AMX + CBX (F = 4.03, p < 0.05; 
Fig. 3C). The calculated MATC value for AMX was equal 
to 2.74 μg/L (Table 2).

Reproductive failure, defined as the percent of broods 
per females unable to produce viable offspring (aborted 
egg sacs) significantly increased at the maximum tested 
concentration of AMX and CBZ, (F = 7.3 and 4, respec-
tively; p < 0.05) compared with lower exposures and controls 
(p < 0.05), while exposure to the MIX showed a significant 
increase at 9.2 + 8.7 and 96.3 + 94.7 µg/L of AMX + CBX 
(F = 61.7, p < 0.05; Fig. 3D). The estimated MATC val-
ues were 29.8 and 29.1 for AMX and CBZ, in that order 
(Table 2).

The effect of carbamazepine (CBZ), amoxicillin (AMX), 
and their mixture 1:1 (MIX) on number of broods per 
female; number of nauplii per brood and per female; and 
aborted sacs data of each run test (N = 3) are summarized in 
Tables S5–S6 (Supplementary Materials).

Fig. 1  Percentage (%) of T. fulvus larval development (from nauplii 
to copepodites) during the first 5 days after the exposure to A amoxi-
cillin (AMX), B carbamazepine (CBZ), and C their mixture (MIX). 

Concentrations are in μg/L; effect data are reported as mean ± SD 
(n = 3) of three runs, each replicated three times (n = 9), Tukey’s test 
(*p < 0.05)

Table 2  Maximum acceptable tolerance concentration (MATC) of 
amoxicillin (AMX), carbamazepine (CBZ), and their mixture 1:1 
(MIX) on various endpoints

MATC (μg/L)

AMX CBZ MIX

Larval development 2.74 3.34 0.05 + 0.06
Hacthing time 0.25 3.34 0.27 + 0.29
Brood per female 0.25 0.11 0.27 + 0.29
Nauplii per brood  > 100  > 100  > 100
Nauplii per female 2.74  > 100 0.27 + 0.29
Aborted sacs 29.8 29.1 2.94 + 3.00

Fig. 2  Hatching time (days) of T. fulvus exposed to amoxicillin 
(AMX), carbamazepine (CBZ), and their mixture 1:1 (MIX). Con-
centrations are in μg/L and effect data are reported as mean ± SD 
(n = 9), Tukey’s test (*p < 0.05)
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Discussion

AMX is a bactericide capable of inhibiting certain enzymes 
responsible for the synthesis of the cell walls of bacteria, 
determining cell lysis (Kaur et al. 2011), while the effects 
triggered by CBZ on marine invertebrates exposed to a range 
of environmentally realistic concentrations of CBZ (0.3–3.0 
and 6.0–9.0 μg/L), showed alterations of the oxidative sta-
tus, lipid peroxidation, impairment of immune system and 
genotoxic damage (Almeida et al. 2014, 2015, 2017; Freitas 
et al. 2016).

Individual  LC50 values of acute tests with AMX and 
CBZ were > 100 mg/L. Therefore, based on the EC Direc-
tive 93/67 which classifies the substances according to their 
values of EC50/LC50, these substances are considered not 
harmful to aquatic organisms.

Our results confirm those reported in literature: AMX 
did not cause acute toxicity up to 100 mg/L in Danio rerio 
(Oliveira et al. 2013);  EC50 value for CBZ was higher than 
100 mg/L for the freshwater crustaceans Thamnocephalus 
platyurus and Daphnia magna at 24 h and 48 h, respectively 
(Kim et al. 2007; 2009). Conversely T. fulvus showed lower 
sensitivity than D. magna at 96 h  (EC50 = 76.3 mg/L) (Kim 
et al. 2007) and the marine crustacean Tisbe battagliai at 
48 h  (LC50 = 59 mg/L) (Trombini et al 2016).

Since organisms in the environment are exposed to 
contaminants throughout their life cycle, chronic toxicity 
tests can provide more realistic data highlighting long-term 
responses by measuring various endpoints, such as survival 
and development, growth, and reproductive capacity (Bian-
dolino et al. 2018; Prato et al. 2019).

Tigriopus fulvus presents a high environmental relevance 
playing a key role in the food chain. As a consequence, a 
delay in growth, development, and reproduction can produce 

changes in the population size affecting secondary produc-
tion of organisms belonging to higher trophic levels feeding 
on them. The life cycle traits of the genus Tigriopus are 
well documented, which makes this species very suitable for 
long-term ecotoxicological studies (Kwok et al. 2009; Bian-
dolino et al. 2018). Results from the present paper showed 
that chronic exposure of T. fulvus to both pharmaceuticals 
and their MIX did not affect survival, but they showed a 
negative impact to sub-lethal endpoints. The transition from 
the naupliar stage to the copepodite stage proved to be a sen-
sitive endpoint. In particular, the development of T. fulvus 
exposed to AMX and CBZ after 5 days at the highest tested 
concentrations was delayed compared to the control, with 44 
and 41% of nauplii having developed to the copepodite stage 
at 9.54 μg/L and 8.88 μg/L of AMX and CBZ, respectively 
(Fig. 1).

Chen et al. (2019a, b) showed in Daphnia similis and 
the crab Eriocheir sinensis the inhibition of the moulting 
process after exposure to CBZ by interfering with the activ-
ity of chitinolytic enzymes and moulting hormone signal-
ling, confirming that CBZ may have long-term effects on 
the development.

In contrast, the exposure to the lowest concentration of 
AMX, CBZ, and related MIX determined stimulatory effects 
on the development, showing a percentage of copepodites of 
82%, 73%, and 83% respectively (Fig. 1).

The moulting process is an important biological process 
for growth, development, and reproduction of crustaceans 
(Biandolino et al. 2018; Prato et al. 2019), suggesting that an 
alteration of the processes related to metamorphosis could 
be related to an impairment of the hormonal mechanisms 
necessary for growth (Dahl and Breitholz 2008; Subramo-
niam 2000). The chronic exposure to AMX and CBZ moult-
ing and their binary combination did not affect either the 

Fig. 3  Effect of Carbamazepine 
(CBZ), amoxicillin (AMX), 
and their mixture 1:1 (MIX) 
on some reproductive traits: A 
number of broods per female; B 
number of nauplii per brood and 
C per female; and D aborted 
sacs. Effect data was reported 
as mean ± SD (n = 9), Tukey’s 
test (*p < 0.05) compared to the 
negative control
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first mating or the appearance of the first ovigerous female. 
However, a shorter time of ovigerous female appearance 
was observed only at the lowest concentrations in all treat-
ments (Table 2). Similarly, Lamichhane et al. (2013) did not 
observe any effect of CBZ on the time of first hatch of the 
cladoceran crustacean Ceriodaphia dubia (17.5–280 μg/L; 
2 weeks of exposure). Lürling et al. (2006) found that Daph-
nia pulex matured earlier when exposed to 1 µg/L of CBZ, 
compared to the control.

The duration of hatching time was significantly longer 
than the control: (i) at 0.8 μg/L for treatments with AMX and 
MIX at 0.94 + 1.03; (ii) only at 8.88 μg/L for CBZ.

Considering the mean number of broods per female and 
the total number of nauplii per female over 28 days, results 
showed that AMX and MIX treatments induced a similar 
decrease of the reproduction rate, while CBZ induced a 
biphasic concentration–response curve. Exposure to 0.08, 
0.79, and 9.54 μg/L of CBZ resulted in a slight decrease 
of reproduction rate, contrary to the highest concentration 
(93.4 μg/L), which showed an activity pattern comparable to 
the control. A similar pattern was observed in the crustacean 
Gammarus pulex. The concentration–response curve shows 
a reduced activity (e.g., locomotion and feed frequency) at 
lower CBZ concentrations (10–100 ng/L) and increased 
at higher concentrations (1 μg/L–1 mg/L). This behaviour 
could be an adaptive mechanism to a stress response (De 
Lange et al. 2006).

Chen et al. (2019b) stated that CBZ negatively affected 
reproductive parameters of Daphnia similis at a concentra-
tion of 0.03 μg/L. A reduction of offspring was also observed 
at higher concentrations between 100 and 200 μg/L in D. 
magna (Oropesa et al. 2016), D. pulex (Lürling et al. 2006), 
and Ceriodaphia dubia (Lamichhane et al. 2013). The expo-
sure of zebrafish between 0.5 and 10 μg/L of CBZ caused a 
decrease of egg production, because of a reduced stimulation 
of neurons resulting in a reduction of excitability in repro-
ductive organs and synthesis of gonadal steroids (Galus et al. 
2013). Carpa carpio showed a decreased motility and veloc-
ity of sperms after 2 h of exposure to 2000 and 20,000 μg/L 
of CBZ (Li et al. 2010).

Lürling et al. (2006) and Rivetti et al (2016) showed that, 
as a neuro-active pharmaceutical, CBZ was able to enhance 
reproduction at 1 μg/L on Daphnia pulex and D. magna, 
respectively.

With regard to AMX, there is a paucity of data on long-
term toxicity studies on aquatic organisms (Park and Choi 
2008). Our results agreed with González-Pérez et al. (2016) 
observing that AMX negatively affected the survival and 
reproduction of two rotifer species: Brachionus calyciflorus 
and B. havanaensis especially when exposed to or above 
100 μg/L.

In the present study, AMX and CBZ were evaluated 
in a 1:1 ratio at concentrations comparable to the single 

substance test. The hazard of pollutant mixtures can be 
particularly insidious because they may interact to cause 
adverse effects in marine environments. Results from MATC 
showed that, for most of the evaluated endpoints, mixture 
values were lower than the action of drugs considered singly. 
About the number of nauplii per female, the lowest value of 
MATC in the mixture could be due to the antibiotic effect 
that probably prevailed on that of the antiepiletiptic drug 
(Table 2).

Aborted eggs can be also considered an interesting and 
sensitive endpoint. All treatments at the highest concentra-
tions produced aborted eggs suggesting that the tested phar-
maceuticals can directly impair broods. In particular, the 
ratio of abortion from the mixture of 1.030 μg/L of AMX 
and 0.941 μg/L of CBZ was like that found in the single 
drug exposures suggesting that AMX and CBZ could act in 
mixture via an additive effect.

Conclusions

At present, there is an urgent need to prioritize pharmaceuti-
cal compounds for an appropriate environmental risk assess-
ment in aquatic environments, especially saltwater ones, 
mainly due to data heterogeneity and fragmentation and the 
need to establish threshold limit concentrations especially 
for sub-lethal endpoints.

Results from the present study suggested that amoxi-
cillin and carbamazepine did not exert acute effects even 
at concentrations many orders of magnitude higher than 
those detected in the environment, and thus, they cannot be 
considered dangerous to T. fulvus. Anyhow, reproduction-
related endpoints evidenced that AMX and CBZ can exert 
some sub-lethal effects on T. fulvus even at very low con-
centrations (approximately 1 μg/L), including not only pure 
substances but also their mixtures. Declining fertility is a 
key aspect that could have serious ecological consequences 
due to the long-term exposure of aquatic organisms to the 
tested drugs affecting population growth. These findings 
suggest that the individual life cycle traits of testing spe-
cies can significantly improve the ability to estimate the 
impact of pharmaceuticals at environmentally representa-
tive concentrations.
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