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We investigate rare semileptonic B → K ∗�+�− by looking at a specific long distance contribution. Our 
analysis is limited to the very small values of physical accessible range of invariant mass of the leptonic 
couple q2. We show that the light quarks loop has to be accounted for, along with the charming penguin 
contribution, in order to accurately compute the q2-spectrum in the Standard Model. Such a long distance 
contribution may also play a role in the analysis of the lepton flavor universality violation in this process.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

In the Standard Model the Flavor-Changing Neutral Current (FCNC) processes are sensitive probes of New Physics (NP) because they 
arise at loop level and are further suppressed by GIM mechanism. A reliable calculation of the process in the framework of the Standard 
Model is the first step to highlight effects of NP. The next one consists in comparing the hopefully precise measurements with the theo-
retical calculations. For a thorough review on the subject we address the reader to the recent paper [1] and the exhaustive bibliography 
therein. Hereinafter we will discuss one possible Long Distance (LD) contribution to the exclusive process B → K ∗�+�− which in principle 
is Cabibbo–Kobayashi–Maskawa (CKM) suppressed. We start discussing the e2 corrections to the effective Hamiltonian responsible, in the 
Standard Model, of the B → K ∗�+�− decay, then we evaluate them.

The effective Hamiltonian for �B = −�S = 1 in the Standard Model responsible of the rare transition b → s�+�− can be written in 
terms of a set of local operators [2]:

HW = 4G F√
2

Vtb V ∗
ts

10∑
i=1

Ci(μ)O i(μ) = Hhad +Hsl +Hγ , (1)

where G F is the Fermi constant and V ij are elements of the CKM mixing matrix. The operators O i , written in terms of quark, photon and 
gluon fields, and can be found for example in Ref. [3] and the Hhad contains the operators O i with i = 1, . . . , 6, Hsl contains the operators 
O 9 and O 10 whereas Hγ contains O 7.1 In our calculation the main role is played by the operators O i with i ∈ {1, 2, 7, 9, 10} which we 
report here for convenience

O 1 = (s̄Lαγ μbLα)(c̄LβγμcLβ) ,

O 2 = (s̄Lαγ μbLβ)(c̄LβγμcLα) ,

O 7 = e

16π2
mb(s̄LασμνbRα)Fμν ,
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O 9 = e2

16π2
(s̄Lαγ μbLα) �̄γμ� ,

O 10 = e2

16π2
(s̄Lαγ μbLα) �̄γμγ5� . (2)

The Greek letters are color indices and, as usual, bR/L =
(

1±γ5
2

)
b, and σμν = i

2 [γ μ, γ ν ]. Fμν denotes the electromagnetic field strength 
tensor and e is the electromagnetic charge.

From here on we shall focus on the B → K ∗ �+�− process. In Ref. [4] we will systematically analyze the processes containing the K
and the K ∗ .

There are two classes of contributions to the B → K ∗ �+ �− , the first one comes from the semileptonic part of the effective Hamiltonian, 
i.e. the operators O 9 and O 10. In this case the amplitude factors out

ASD(B → K ∗ �+�−) = 〈
K ∗ �+�−∣∣Hsl |B〉 =

4G F√
2

Vtb V ∗
ts

e2

16π2

∑
i=9,10

Ci
〈
�+�−∣∣ �̄
i

μ� |0〉
〈
K (∗)

∣∣∣ (s̄Lαγ μbLα) |B〉 , (3)

and it can be written in terms of form factors (e.g. those in Ref. [5], our choice hereafter). This is called the short distance (SD) part of 
the total amplitude of the process: the hadronic contribution is incorporated in the form factors while the perturbative corrections in the 
Wilson coefficients (for them we use the same values in [5]).

Moreover, at the same order in e, i.e. e2, the amplitude contains the contribution of the hadronic effective Hamiltonian multiplied by 
the QED interaction twice. An amplitude different from zero is obtained when the former interaction produces the leptonic pair in the 
final state and the latter one factors an hadronic current out:

ALD(B → K ∗ �+�−) =
e2 〈

K ∗ �+�−∣∣ T

∫
Aμ(x)�̄(x)γμ�(x)dx

∫
dy

[
Aν(y) je.m.

ν (y)
]
Hhad(0) |B〉 =

− ie2

q2

∫
d4xe−iqx 〈

�+�−∣∣ �̄(x)γμ�(x) |0〉
∫

d4 yeiqy 〈
K ∗(p′)

∣∣ T jνe.m.(y)Hhad(0)} |B(p)〉
≡ LμHμ(p, p′) . (4)

Hμ(p, p′) is essentially a non-local term and we call it LD contribution to the decay process although, as discussed recently for example 
in [6], the hadronic matrix element H(p, p′) contains a factorizable part. We shall clarify this point. In (4) q2 = (p − p′)2 and je.m.

μ =∑
q Q q q̄γμq. By considering the CKM matrix elements and the strength of the Wilson coefficients we can conclude that the leading 

contribution to H will come from the operators O 1 and O 2 in the effective Hamiltonian proportional to V cb V ∗
cs ≈ Vtb V ∗

ts and so the 
T-product is different from zero if and only if je.m.

μ = Q c c̄γμc: the contribution of these terms is commonly called the charm-loop effect. 
In other words:

Hμ = Q c

∫
d4 yeiqy 〈

K ∗(p′)
∣∣ T c̄(y)γ μc(y) (C1 O 1(0) + C2 O 2(0)) |B(p)〉 . (5)

The analysis, in QCD -factorization, of the non-local term in the previous equation was done in [7] where the LD contribution results to 
be essentially proportional to the factorizable part, i.e. our A S D . A systematic study of Hμ can be read in [8] where the authors show 
how to generalize the approach in [7] to the low-q2 region. The state-of-the-art of these calculations can be found in Ref. [9]. Due to 
the difficulties to reliably estimate the LD contribution, a different approach relies on the use of data-driven methods to account for the 
theoretical uncertainties and to quantify possible deviations from the Standard Model [10]. All these papers are devoted to the charm 
loop contribution. Hereinafter we shall study a contribution which is CKM suppressed although it gives, at very small q2, a contribution 
comparable to the short distance one. To this aim, the four quarks operators are

O (u)
1 = (s̄Lαγ μbLα)(ūLβγμuLβ) ,

O (u)
2 = (s̄Lαγ μbLβ)(ūLβγμuLα) , (6)

and Hμ is different from zero for the je.m.
μ = Q u ūγμu:

H(u)μ = Q u

∫
d4 yeiqy 〈

K ∗(p′)
∣∣ T ū(y)γ μu(y)

(
C1 O (u)

1 (0) + C2 O (u)
2 (0)

)
|B(p)〉 ; (7)

in Fig. 1 one can find the Feynman graph of the T-product in Eq. (7) while in Fig. 2 a possible mesonic graph, the one we shall consider 
hereafter.2 It should be observed that the T-product in Eq. (7) give rise to more Feynman graphs than the one in Fig. 1. There are three 
topologies. Nevertheless, the graph in Fig. 1 is the only one that has a meaningful hadronic counterpart. Indeed hadronic counterparts of 
other quark topologies are ruled out either by the off-shellness of the intermediate particles (e.g. in B → B∗π ) or by the strong coupling 
suppression (e.g. ρ → πγ ∗ is smaller than ω → πγ ∗ [11]) or by the experimental unavailability of some couplings (e.g. ω → η(′)�+�−
as explained in Ref. [12]). A numerical comparison with the results of the QCD factorization and Light-Cone Sum Rules [7,13], where 

2 The graph obtained by interchanging ω and π mesons is suppressed by the off-shellness of both the ω meson in the t channel and the K -K ∗-ω coupling.
2
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Fig. 1. The Feynman graph obtained by doing the T -product in Eq. (7)
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Fig. 2. Hadronic representation of one of the contributions coming from the graph in Fig. 1.

all topologies give contributions, is difficult. Our calculation of the hadronic counterpart of the quark loop scattering topology cannot be 
considered as an estimation of it, but just an estimation of the hadronic part of it. The same is true for the other topologies where we 
found a negligible long-distance hadronic contribution. We stress that this is just one of the possible hadronic terms representing H(u)μ

and so our calculation is just an estimation of one non-factorizable, LD contribution to the one in Eq. (3). Moreover, adding other hadronic 
contributions of H(u)μ in the narrow range of q2 we have studied is unlikely to result in a complete cancellation. This means that our 
calculation can be considered as an order of magnitude estimation of such a long distance contribution. On the other hand we cannot use 
arguments based on the quark hadron duality to give an upper bound to these long-distance effects because of the limited q2 range, as 
discussed in the pioneering paper of Poggio et al. [14]. In fact, many examples of violation of the local quark-hadron duality can be found 
in literature (e.g. in Refs. [15,16]).

The calculation of the triangle graph in Fig. 2 is straightforward. We consider the weak transition B− → K −ω followed by the electro-
magnetic one ω → π0γ . The meson-loop is closed by the K ∗-K -π0 strong vertex, gK K �π , computed by the K ∗ → Kπ0 decay. The analysis 
of the B− → K −ω transition was done, for example, in Ref. [17] where the contribution of the charming penguins was accounted for to 
improve the factorization approximation prediction. In particular, the branching ratio of B− → K −ω is enhanced by the charming penguin 
contribution of about one order of magnitude; our prediction [17], Br(B− → K −ω) = 6.19 × 10−6, is in excellent agreement with the 
PDG average Br(B− → K −ω) = (6.5 ± 0.4) × 10−6 [18]. In Ref. [17] the so called charming penguins, discussed for the first time in [19], 
are evaluated by considering the charm rescattering into the charmless two body final state, i.e., for example, B → D Ds → K ω (cf. also 
[20–23]).
The last ingredient of the calculation is the ω → πγ transition. The radiative decays of the light vector and axial-vector mesons have 
been systematically studied in Ref. [24] in the framework of chiral Lagrangian written in terms of the Goldstone boson octet and the 
nonet of light vector mesons. The electromagnetic form factor relevant to the ω → π�+�− has been obtained in Ref. [12], where the case 
with � ≡ e, μ has been considered. It is worth noting that the corresponding widths differ by about one order of magnitude due to the 
deep decreasing form factor at small dilepton invariant mass. In fact, experimentally, we have Br(ω → π0e+e−) = (7.7 ± 0.6) × 10−4 and 
Br(ω → π0μ+μ−) = (1.34 ± 0.18) × 10−4 [18].
Schematically, the LD amplitude can be written as

ALD(λK ∗ ,σ�+ ,σ�−) = 1

q2

∑
λω,λγ

A(B → Kω(λω))×

A(Kω(λω) → K ∗(λK ∗)γ ∗(λγ )) A(γ ∗(λγ ) → �+(σ�+)�−(σ�−)), (8)

where λ’s and σ ’s are the vector particle and fermion polarizations, respectively. Whereas, the weak decay of B into Kω and the rescat-
tering amplitude can be recast as follows:

A(B → Kω(λω)) = gB Kω (pK + pω) · ε∗(λω), (9)

A(Kω(λω) → K ∗(λK ∗)γ ∗(λγ )) = 1

4π

2π∫
dφ

tmax∫
dt

2|
pω||
q|×

0 tmin

3
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Fig. 3. B → K ∗�+�− long distance differential branching ratios as a function of the dilepton invariant mass squared. Units are GeV−2, while colors refer to m� = 0 case in 
orange (dashed), m� = me in green (dotted) and m� = mμ in blue (solid).

Fig. 4. B → K ∗�+�− short distance differential branching ratios as a function of the dilepton invariant mass squared. Units are GeV−2, while colors refer to m� = 0 case in 
orange (dashed), m� = me in green (dotted) and m� = mμ in blue (solid). Plots are computed by employing different sets of hadronic form factors (i.e., from left to right, QCD 
Sum Rules [5], Ligth-Cone SR [25] and Lattice [26]).

{
i e gK K ∗π fωπ0

t − m2
π

pK · ε∗(λK )εμναβ pωμqνεα(λω)ε∗
β(λγ )

}
, (10)

A(γ ∗(λγ ) → �+(σ�+)�−(σ�−)) = e u�−(σ�−)
(
γ · εγ (λγ )

)
v�+(σ�+), (11)

being φ the euclidean 
pω azimuth (z-axis) and t = (pK ∗ − pK )2 = (pω − q)2.3 Here fωπ0 is the electromagnetic form factor computed 
in [12] in the large Nc approximation (where loops are automatically suppressed at leading order), gB Kω contains the weak coupling 
and the CKM matrix elements, u and v are Dirac spinors. Our knowledge of the fωπ0 electromagnetic form factor is dictated by the 
physical range of the ω → π0γ ∗ transition, [4m2

�, (mω − mπ )2], and, accordingly, our results are valid in the same range of the dilepton 
invariant mass. The raising behavior of the branching ratios is due to the ρ meson pole in the fωπ0 electromagnetic form factor. Due to 
the pseudoscalar nature of the B meson, only the longitudinal polarization of the ω meson contributes to the amplitude; furthermore, 
after integrating on the azimuth angle (φ), the positive (negative) K ∗ meson polarization selectively couples to the negative (positive) γ ∗
polarization (while the γ ∗ longitudinal polarization is ruled out by the ω-γ ∗-π Levi–Civita coupling). In Fig. 3 the differential branching 
ratio dBr(B → K ∗�+�−)LD/dq2 (in unit of 10−7) is plotted vs q2. The long distance part of the branching ratio is, in the three different 
cases m� = (0, me, mμ) (with colors orange, green and blue, respectively), of the same order of magnitude of the short distance part as we 
shall see later. In this range of q2 the difference between the electron and the muon case in the ω → π0�+�− leads to a small lepton flavor
violation. In fact, the branching ratios evaluated in this range of q2 give Br(B → K ∗e+e−)LD = 2.0 × 10−7 and Br(B → K ∗μ+μ−)LD =
1.9 × 10−7 this effect which is not related to any new interaction violating the lepton flavor universality could mimic the violation.

In order to understand to what extent the long distance contribution to B → K ∗�+�− can affect both the branching ratio and the 
lepton flavor universality violation, it is necessary to compute the short distance amplitude, i.e. the amplitude in Eq. (3). We employ three 
sets of form factors calculated in Ref. [5], in Ref. [25] and in Ref. [26] and evaluate the dBr(B → K ∗�+�−)/dq2 with lepton finite mass 
in the final state. In Fig. 4 we plot the short distance differential branching ratio alone for the case of m� = 0 in orange, m� = me in 
green and m� = mμ in blue, in the left panel we use the QCD sum rules results [5] for the form factors, in the central one and in the 
right ones LCSR [25] and Lattice [26] calculations are used, respectively. Figs. 4, 5, 6 and 7 have been modified too. As one can see by 
looking at the Fig. 4 the larger values of the form factors at q2 = 0 in [25,26] respect to the ones in [5] imply a factor of about two in the 
d
(B → K ∗�+�−)/dq2.

The Figs. 5, 6, 7 show that the long distance contribution (in orange) is of the same order of magnitude of the short distance one 
regardless of the lepton flavor. The long distance contribution in all cases increases approaching the (mω −mπ )2 upper limit for q2 because 
of the pole dominance of the form factor fωπ0 . The blue regions represent the band of values of the total differential branching ratios: the 
lower (upper) curves refer to the constructive (distructive) interference between the short and the long distance contributions. For each q2

3 tmin (tmax) corresponds to t when the euclidean 
pω colatitude θ equals 0 (π ).
4
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Fig. 5. B → K ∗�+�− total differential branching ratios as a function of the dilepton invariant mass squared when m� = 0 (units are GeV−2). Colors refer to the short distance 
contribution in green, the long distance contribution in orange, while the combination of both contributions spans an area in blue (upper thin bound corresponds to the 
difference, lower thick one to the sum). Plots are computed by employing different sets of hadronic form factors (i.e., from left to right, QCD Sum Rules [5], Ligth-Cone SR 
[25] and Lattice [26]).

Fig. 6. B → K ∗�+�− total differential branching ratios as a function of the dilepton invariant mass squared when m� = me (units are GeV−2). Colors refer to the short distance 
contribution in green, the long distance contribution in orange, while the combination of both contributions spans an area in blue (upper thin bound corresponds to the 
difference, lower thick one to the sum). Plots are computed by employing different sets of hadronic form factors (i.e., from left to right, QCD Sum Rules [5], Ligth-Cone SR 
[25] and Lattice [26]).

Fig. 7. B → K ∗�+�− total differential branching ratios as a function of the dilepton invariant mass squared when m� = mμ (units are GeV−2). Colors refer to the short 
distance contribution in green, the long distance contribution in orange, while the combination of both contributions spans an area in blue (upper thin bound corresponds 
to the difference, lower thick one to the sum). Plots are computed by employing different sets of hadronic form factors (i.e., from left to right, QCD Sum Rules [5], Ligth-Cone 
SR [25] and Lattice [26]).

the width of the band can be considered as an estimation of the theoretical error on the differential branching ratio calculation. In Table 1
the partial branching ratios and R K ∗ , i.e. evaluated in the limited dilepton mass squared range [4m2

μ, (mω − mπ )2], are collected to point 
out the amount of the long distance contribution: it is clear that, in the region of q2 studied, the long distance contribution increases the
tension with the experimental data on R K ∗ . In fact, the measurement of R K ∗ in the smallest range was done by LHCb collaboration [27]

R K ∗ = 0.660+0.110
−0.070 ± 0.024 (2mμ)2 < q2 < 1.1 GeV2 . (12)

Moreover, the Belle collaboration presented the following preliminary result [28] obtained by averaging over B0 and B+:

R K ∗ [0.045,1.1] = 0.52+0.36
−0.26 ± 0.05. (13)

These values have to be compared to the SM predictions [29]4

R S M
K ∗ = 0.906 ± 0.028 (2mμ)2 < q2 < 1.1 GeV2 , (14)

4 The authors in Ref. [29] accounted for logm�-enhanced QED corrections for the estimation of R K ∗ beyond the short-distance contribution within the Standard Model. 
However, a complete and correct treatment of the QED long distance contribution is missing in the B → K ∗�+�− decay mode while can be found in [30] for the B → K�+�− .
5
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Table 1
Branching ratios and RK ∗ computed in the dilepton mass squared range 
[4m2

μ, (mω − mπ )2] as a function of lepton mass (m�) and along with 
selected amplitude contributions (SD,LD and combinations thereof). The 
results have been computed for three sets of hadronic form factors.

SD LD SD+LD SD-LD

m� = 0,me (×10−7) [5] 1.333 2.028 2.837 3.885
[25] 2.731 2.028 3.986 5.531
[26] 2.405 2.028 3.714 5.151

m� = mμ (×10−7) [5] 1.190 1.919 2.609 3.609
[25] 2.400 1.919 3.581 5.056
[26] 2.113 1.919 3.347 4.717

RK ∗ [5] 0.893 0.946 0.920 0.929
[25] 0.879 0.946 0.898 0.914
[26] 0.879 0.946 0.901 0.916

which is consistent with our value of R K ∗ by considering SD contribution alone. The inclusion of the LD term increases our prediction of 
R K ∗ .
Before concluding, it is essential to emphasize that the contribution we have calculated cannot be rewritten in terms of the SD amplitude 
because it is essentially a rescattering and so the Lorentz couplings are different from the ones in Eq. (3). This entails that it cannot be 
estimated by fitting data to the shifts of the Wilson coefficients C9 and C10 with respect to the Standard Model values.

In conclusion, in this letter we have estimated the LD contribution of the light quark loop to the B → K ∗�+�− with m� ∈ {me, mμ}. We 
have focused on a specific hadronic rescattering channel: B → Kω → K ∗�+�− . The calculations have been performed in the range of the 
dilepton mass squared 

[
4m2

μ, (mω − mπ )2
]

, where our hadronic representation of the quark loop is reliable. The LD contribution increases 
the branching ratios of about a factor 2.5 (1.8) with respect to the QCD sum rules (Ligth-cone and lattice) predictions for the SD results. 
Our findings also indicate a change in the ratio R K ∗ .

Added note

After this paper was submitted, the LHCb Collaboration has published a new analysis of the rare B decay discussed in our paper [31,32]. 
The analysis is based on a higher statistics data sample and, in spite of previous measurements of R K ∗ = 0.660 at low leptonic invariant 
mass (showing a discrepancy with respect to the Standard Model prediction R K ∗ = 0.906 with a significance of some three sigmas), the 
new R K ∗ measured value is set to R K ∗ = 0.927, to be compared to our estimation R K ∗ = 0.920-0.929 (see Table 1 in our manuscript with 
QCD SR form factors) combining Short-Distance (R K ∗ = 0.893 with QCD SR form factors) and Long-Distance (R K ∗ = 0.946) contributions. 
The results are in agreement with the SM.
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