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Abstract—Large Language Models (LLM) empower many
modern software systems, and are required to be highly accurate
and reliable. Evaluating LLM poses challenges due to the high
costs of manual labeling and of validation of labeled data.

This study investigates the suitability of probabilistic oper-
ational testing for effective and efficient evaluation of LLM,
focusing on a case study with DistilBERT. To this aim, we adopt
an existing framework (DeepSample) for Deep Neural Network
(DNN) testing and adapt it to the LLM domain by introducing
auxiliary variables tailored to LLM and classification tasks.

Through a comprehensive evaluation, we demonstrate how
sampling-based operational testing can yield reliable LLM ac-
curacy estimates and effectively expose failures, or, under testing
budget constraints, it can find a trade off between accuracy
estimation and failure exposure. The experimental results, using
DistilBERT on three sentiment analysis datasets, show that
sampling-based methods can provide cost effective and reliable
operational accuracy assessment for LLM. These findings offer
practical insights for testers and help address critical gaps in
current LLM evaluation practices.

Index Terms—Software testing, Large Language Models, Sam-
pling, LLM evaluation

I. INTRODUCTION

Large Language Models (LLM) – an integral part of many
modern software systems - necessitate thorough evaluation
methods to ensure their accuracy and reliability [2]. LLM
evaluation serves for performance tuning, for assessment, and
for iterative improvements, yet it presents distinct challenges,
particularly due to the high cost of labeling data and the need
to validate labeled data for quality assurance.

Various techniques are available for LLM evaluation [2,
8], including use of benchmarks, automatic generation of
test inputs, human evaluation through manual prompting or
crowdsourcing, random testing, and methods specialized for
application fields such as biology, law and finance. We ad-
vocate the use of probabilistic sampling for effective and
efficient evaluation of LLM, claiming its ability to provide
high-confidence LLM accuracy estimates while minimizing
the number of labeled samples required. Building on past
work on operational testing (a pillar in software reliability
engineering [15]) for Deep Neural Networks (DNN) [6, 7, 12],
we propose to adapt and assess it for LLM. In this study we
focus on its application to DistilBERT [19], a lighter and more
task-specific version of BERT [4].

DNN accuracy estimation through operational testing, by
means of small representative subsets of operational datasets,
was proposed by Li et al. [12]. Guerriero et al. [6] leveraged
adaptive sampling [9] for joint estimation of DNN accuracy
and exposure to mispredictions. Subsequently, they introduced
DeepSample [7], a more general framework for evaluating
deep Machine Learning models. DeepSample uses sampling
theory to build small yet representative test sets, reducing
labeling costs while providing unbiased accuracy estimates.

This experimental study investigates the suitability of prob-
abilistic operational testing for LLM evaluation. To this aim,
we tailor the DeepSample framework to the scale and charac-
teristics of LLM. We experiment several advanced statistical
sampling techniques, which can leverage auxiliary variables
to enhance LLM evaluation. We embed new LLM-specific
variables into the framework, this way evaluating many al-
ternative strategies (i.e., combinations sampling technique-
auxiliary variable) in their ability to: 1) minimize labeling
costs by proper sampling; 2) validate labeled data with high
confidence to ensure quality; 3) expose errors, for LLM fine
tuning and retraining. Through the comprehensive analysis of
a case study, we compare the strategies, and we discuss crucial
choices in LLM probabilistic operational testing.

The experiments use DistilBERT on a sentiment analysis
task on three datasets. The results show that the choice of
sampling method and auxiliary variable plays a crucial role in
achieving three key objectives: (1) high-confidence, unbiased
accuracy estimates with significantly reduced labeling and
validation efforts; (2) effective identification of model mispre-
dictions, which are critical for debugging and re-training, and
(3) sensitivity to increasing sampling budgets, with positive
trends in error minimization and failure exposure as budgets
grow. The findings highlight the suitability of sampling-based
methods for LLM evaluation in sentiment analysis tasks.

II. RELATED WORK

The scientific literature on LLM evaluation is rather large,
with a variety of methods and benchmarks proposed to assess
the accuracy and other performance metrics of LLM [2, 8].
Within this literature, statistical testing is a very little inves-
tigated research topic. For reasons of space, we focus here
solely on statistical testing techniques, which have been shown



to perform well on DNN models, but whose application in
typical tasks of LLM, like Natural Language Processing and
sentiment analysis, has not been much studied yet [11].

Probabilistic sampling has long been employed in opera-
tional testing (OT) to estimate software reliability by select-
ing test cases according to an expected operational profile,
reflecting real-world usage [3, 20]. OT – a fundamental
Software Reliability Engineering approach - enables efficient
post-deployment reliability assessment [15]. Building on its
principles, Cai et al. [1] introduced Adaptive Testing, which
adaptively selects test cases from different partitions to min-
imize variance in reliability estimates, later enhanced by a
gradient-based variant for more precise variance reduction
[14]. Stratified sampling, another technique in reliability as-
sessment, further improves accuracy by dividing the opera-
tional profile into strata and sampling proportionally, ensuring
comprehensive coverage of diverse usage patterns [17].

More recent approaches have refined these sampling meth-
ods. Pietrantuono et al. [16] formalized unequal probability
sampling schemes, achieving greater efficiency in reliability
estimation. Li et al. [12] focused on DNN operational accuracy
using Cross-Entropy Sampling (CES) to select samples that
reflect the distribution of failing examples, enhancing accuracy
without full dataset evaluation.

Guerriero et al. [6] identified inefficiencies in uniformly
sampling operational inputs for DNN, particularly in high-
accuracy models where most inputs are correctly classified.
Their DeepEST method, based on adaptive sampling for rare
populations [9], emphasizes sampling challenging cases likely
to reveal model weaknesses, thus concentrating labeling on
the most informative inputs. This targeted approach maintains
unbiased results while improving testing efficiency.

By extending these sampling principles, this study applies
adaptive and probabilistic sampling to LLM testing, offering
a scalable solution for accurate and cost-effective evaluation
in increasingly complex model architectures.

III. LLM PROBABILISTIC TESTING

A. Formulation

Let M denote the model (LLM) under evaluation, and:
• D be the operational dataset - a large set of examples

with unknown labels, built from inputs to the model M
in the operational phase. Its size is N = |D|.

• T ⊆ D = {t1, . . . , tn} be the subset of examples
sampled from D to estimate the LLM accuracy. T can
also serve to enhance the training set for improving
the LLM performance in subsequent releases. Its size
n = |T| ≪ N is the testing budget. When a sample ti
is fed to the LLM, a human oracle provides the expected
output, which is then compared to the actual output. The
comparison yields the binary result zi indicating whether
the actual and expected labels match (zi=1) or not (zi=0).

• θ = Pr(zi = 0), i = 1, . . . , |D|, be the true failure
probability for an example sampled from the operational
dataset in classification tasks. This corresponds to the

true (but unknown) dataset-level failure probability, θ =
1
N

∑N
i=1(1 − zi). The accuracy of the model is defined

as ξ = 1− θ, with its estimate denoted by ξ̂.
The goal of LLM probabilistic testing is to sample ti ∈ T,

under the constraint of the test budget n, so that ξ̂ provides
an unbiased, low-variance estimate of ξ. Achieving low vari-
ance while exposing as many failures as possible enhances
confidence in the estimate of the LLM’s accuracy.

We adapt to the LLM domain the DeepSample frame-
work [7], that can encompass a variety of sampling techniques
leveraging knowledge about inputs to sample from the dataset.
This knowledge is conveyed by some auxiliary variable χ,
such as classifier confidence scores [13]. Such auxiliary vari-
ables are correlated with the failure probability θ and can
improve estimation accuracy by guiding the sampling process.

B. Sampling techniques

We study seven sampling techniques for LLM evaluation:
• Simple Random Sampling (SRS): A baseline method

where all examples have equal selection probability,
providing a straightforward and unbiased estimate [12].

• Simple Unequal Probability Sampling (SUPS): It uses
auxiliary variables to assign selection probabilities, pri-
oritizing examples with higher failure likelihood [7, 13].

• RHC-Sampling (RHC-S): It samples with unequal prob-
ability and without replacement, grouping and weighting
examples for accurate estimations [7, 18].

• Stratified Simple Random Sampling (SSRS): It divides
the dataset into partitions based on the variance of an
auxiliary variable, then samples from partitions, aiming
to reduce the estimation error [7, 13].

• Gradient-Based Sampling (GBS): It selects samples
adaptively, based on variance reduction through gradient-
based adjustments [7, 14].

• Two-stage Unequal Probability Sampling (2-UPS):
It uses an auxiliary variable to define partitions, then
samples from partitions with unequal probability for
representative selection [7].

• Deep neural networks Enhanced Sampler for opera-
tional Testing (DeepEST): It maximizes failure detection
by adaptive sampling, balancing accuracy estimation with
a high capture rate of failing examples [6].

Apart from the baseline SRS, the techniques can be cate-
gorized in three groups (listed in Table I):

• SSRS, GBS and 2-UPS are partitioning techniques,
namely they use the auxiliary variable to divide the input
space into partitions, to then sample from partitions;

TABLE I: Categories of sampling techniques

Category SRS SUPS RHC-S SSRS GBS 2-UPS DeepEST

Partitioning ✓ ✓ ✓

Unequal
✓ ✓ ✓ ✓selection

Without
✓ ✓ ✓ ✓replacement



• SUPS, RHC-S, 2-UPS and DeepEST use unequal se-
lection: they need a proper statistical estimator of LLM
accuracy to correct bias due to unequal probabilities;

• RHC-S, SSRS, 2-UPS and DeepEST sample without
replacement, that is, inputs cannot be sampled twice.

C. Auxiliary variables for LLM classification tasks

We investigate two auxiliary variables for LLM classifica-
tion tasks: Confidence and Prediction Entropy. Their choice
is borrowed from own previous work and from literature on
DNN probabilistic testing [6, 7, 12], and validated through
preliminary experiments on the subject here considered.

Confidence: It is defined as the highest probability in
the output vector of an LLM. For binary classification, let
o represent the predicted probability for the positive class.
Confidence is computed as o if o ≥ 0.5, or 1 − o otherwise,
reflecting the model’s certainty about its prediction.

Prediction Entropy (PE): Defined as: PE = −
∑

i pi ·
log(pi), where pi is the predicted probability for the i-th class,
PE quantifies the uncertainty in the model’s predictions.

Both Confidence and Prediction Entropy do not rely on true
labels. These variables guide labeling efforts by prioritizing
instances with low confidence or high uncertainty, thereby en-
hancing cost effectiveness. This approach ensures that testing
efforts focus on informative cases, reducing redundant labeling
while maximizing the impact of low testing budgets.

The following experimentation investigates which strategies
(sampling technique / auxiliary variable) are best suited for
LLM evaluation.

IV. SUBJECT, DATASETS AND METRICS

The LLM subject for a sentiment analysis task is Distil-
BERT [19], a lightweight and efficient variant of the well
known BERT pre-trained open-source machine learning model
for natural language processing [4], fine-tuned for rapid and
accurate sentiment classification tasks on the SST-2 dataset. 1

Although this version is task-specific, the architecture remains
consistent with the original DistilBERT model.

The experiments use the three datasets listed in Table II.
SST-2 is a benchmark dataset for binary sentiment classifi-
cation.2 IMDb is a large dataset of 50,000 movie reviews
commonly used for sentiment classification tasks.3 To broaden
experiments, we included IMDb_3000, a curated subset of
3,000 items selected from IMDb for binary sentiment classifi-
cation.4 All experimental artifacts, including code and results,
are available in the replication package for reproducibility.

TABLE II: Datasets for experiments

Dataset Size N Task Accuracy
SST-2 1,821 Sentiment Analysis 0.9225
IMDb (full dataset) 50,000 Sentiment Analysis 0.8896
IMDb_3000 3,000 Sentiment Analysis 0.8990

1www.huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
2www.github.com/YJiangcm/SST-2-sentiment-analysis/tree/master/data
3www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
4www.huggingface.co/datasets/enoreyes/imdb_3000_sphere

The experiments are designed to evaluate three aspects of
sampling-based techniques applied to LLM evaluation:

• Evaluation effectiveness. The effectiveness of techniques
in estimating the operational accuracy of LLM.

• Failure detection ability. The ability of techniques to
identify instances where the LLM fails.

• Sensitivity to testing budget. The influence of the
sample size n = |T| on the performance of techniques.

To quantify the effectiveness of the accuracy evaluation, we
compute the Root Mean Square Error (RMSE):

RMSE =

√√√√∑R
r=1

(
ξ − ξ̂

)2

R
(1)

where ξ̂ is the accuracy estimate, ξ is the true accuracy, and R
represents the number of experimental rounds. In this study,
experiments are conducted for 30 rounds.

The failure detection ability is assessed by analyzing the
mean and standard deviation of the identified failing exam-
ples. This evaluation highlights the robustness of our testing
approach in pinpointing problematic instances.

The sensitivity to the sample size is studied to analyze
the trade-off between number of tests and accuracy of the
evaluation, by running experiments with the following values
for the testing budget: n = 50, 100, 200, 400, 800 samples.

V. RESULTS

A. Evaluation effectiveness

To determine if the techniques exhibit statistically signifi-
cant pairwise differences, we run the Friedman test [10] on
all auxiliary variables pairs on all datasets. The resulting p-
value is lower than α = 0.05 in all instances, rejecting the null
hypothesis, which posits no difference among techniques. In
cases where the Friedman test indicate significant differences,
a post hoc analysis with the non-parametric Dunn test [5] is
performed to identify specific pairs of methods that exhibited
statistically significant differences. To account for multiple
comparisons, the Holm-Bonferroni correction is applied to the
p-values obtained from Dunn test.

For each pair of strategies identified as significantly dif-
ferent, the RMSE values were aggregated across all relevant
records within the dataset. The method with the lower cu-
mulative RMSE is considered to perform better. This ensures
that the evaluation considers the overall performance across
all instances, providing robust techniques comparison.

The results are in Figure 1, which shows the pairwise
comparisons between techniques, with statistical significance
assessed using the Dunn/Holm-Bonferroni test. Black squares
represent cases where there is no statistically significant dif-
ference between the techniques. White squares indicate that
the technique on the row outperforms the one on the column.
Exact p-values are provided in the replication package.5

The results reveal consistent trends in the performance of
sampling techniques across datasets and auxiliary variables.

5https://github.com/leanerr/OperationalTesting4LLMs.

www.huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
www.github.com/YJiangcm/SST-2-sentiment-analysis/tree/master/data
www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
www.huggingface.co/datasets/enoreyes/imdb_3000_sphere
https://github.com/leanerr/OperationalTesting4LLMs


Fig. 1: Evaluation effectiveness: pairwise statistical comparison of sampling techniques

Methods 2-UPS, GBS, and SRS frequently outperform SSRS.
Notably, GBS and SRS excel in both Confidence and Pre-
diction Entropy by achieving lower values than SSRS, under-
scoring their ability to produce confident and less uncertain
predictions. RHC-S shows strong performance in Prediction
Entropy against SSRS, especially on the IMDb dataset. Over-
all, while 2-UPS, GBS, SRS, and RHC-S outperform SSRS,
the degree of their effectiveness varies with the auxiliary
variable used. RHC-S excels in scenarios relying solely on
Prediction Entropy, whereas GBS and SRS demonstrate strong
performance in contexts where either Prediction Entropy or
Confidence serve as critical metrics. Additionally, 2-UPS of-
ten outperforms SSRS, particularly in datasets IMDb_3000
and SST-2. These results highlight the adaptability of each
method to the specific demands of varying auxiliary variables.

Figure 2 shows the performance of sampling methods on
the three datasets under a constrained budget of 200 tests. By
focusing on the RMSE values for the auxiliary variables, this
plot provides insights into how well different methods main-
tain accuracy, reliability, and consistency during sampling.

There are some slight differences between the results with
the two auxiliary variables. 2-UPS on SST-2 with Confidence
exhibits the lowest RMSE; with Prediction Entropy it ranks
as the second largest. On IMDb, SRS and GBS perform better
than others with only slight differences, and this holds true for
both auxiliary variables. On IMDb_3000, the performance of
GBS, SRS, and 2-UPS with Confidence is quite similar and
better than other methods, whereas for Prediction Entropy,
GBS and RHC-S demonstrate excellent performance, with
SRS emerging as the best. Looking at the results on all
three datasets, it is evident that they are closely aligned,
underscoring the general reliability of DeepEST, GBS, RHC-
S, SUPS, SRS and 2-UPS against SSRS with Confidence
and Prediction Entropy. These strategies show lower RMSE
values, reinforcing their suitability for applications demanding

high confidence, accuracy, and dynamic adaptability. In gen-
eral, GBS and SRS offering strong error with both auxiliary
variables. RHC-S excels with Prediction Entropy, while 2-
UPS is better suited for Confidence.

B. Failure detection ability

Table III shows the failure rates of the sampling methods
per dataset and auxiliary variable. The results reflect the mean
and standard deviation of failure rates under a fixed budget
of 200, offering insights into the robustness, reliability, and
variability of each method.

The following techniques excel at detecting failures:
• SSRS: demonstrates exceptional performance in failure

detection. It identifies over 70 failures across all datasets,
including 79.4 on IMDb_3000 and 79.2 on IMDb with
Confidence, underscoring its reliability in high failure
identification.

TABLE III: Failure detection ability: Failure Mean and Stan-
dard Deviation per auxiliary variable, technique and dataset

Aux_Var Technique SST-2 IMDb_3000 IMDb

Confidence 2-UPS 16.6 / 3.3 20.4 / 3.9 23.5 / 5.7
Confidence DeepEST 35.9 / 2.9 72.2 / 3.0 76.4 / 6.3
Confidence GBS 18.2 / 3.6 20.9 / 3.6 22.9 / 3.3
Confidence RHC-S 13.3 / 2.9 16.5 / 4.5 18.7 / 4.1
Confidence SRS 16.7 / 3.9 20.2 / 4.2 21.9 / 3.5
Confidence SSRS 70.0 / 0.8 79.4 / 4.5 79.2 / 6.8
Confidence SUPS 85.3 / 8.4 74.5 / 6.6 78.8 / 7.1

Entropy 2-UPS 3.5 / 1.9 9.9 / 3.3 9.2 / 3.4
Entropy DeepEST 37.9 / 2.6 73.3 / 3.6 75.8 / 5.9
Entropy GBS 15.4 / 3.3 21.2 / 4.7 22.0 / 4.0
Entropy RHC-S 49.8 / 4.8 62.4 / 4.6 70.1 / 6.3
Entropy SRS 16.1 / 3.3 20.5 / 3.8 23.0 / 5.1
Entropy SSRS 70.7 / 2.4 70.6 / 4.7 70.1 / 5.7
Entropy SUPS 70.2 / 7.4 67.9 / 6.0 71.5 / 6.6



Fig. 2: Evaluation effectiveness: RMSE of sampling techniques per dataset and auxiliary variable

• SUPS: achieves the highest failure detection rates, partic-
ularly under the Confidence variable, with 85.3 failures on
SST-2. It also excels with Prediction Entropy, detecting
71.5 failures on IMDb and 70.2 on SST-2, highlighting
its robustness in exposing model weaknesses.

• DeepEST: maintains strong failure detection ability, with
high rates under Confidence and Prediction Entropy. It
identifies 76.4 failures on IMDb and 73.3 on IMDb_-
3000 with Prediction Entropy, demonstrating its effec-
tiveness in addressing challenging cases.

Conversely, the following methods detect significantly fewer
failures, indicating weaker performance in identifying complex
issues within the datasets:

• 2-UPS: while it performs moderately well under the Con-
fidence variable, detecting 23.5 failures on IMDb and 20.4
on IMDb_3000, its performance is less competitive with
Prediction Entropy, making it less suitable for rigorous
failure detection.

• SRS: provides balanced but relatively lower failure de-
tection rates compared to stronger methods. For instance,
it identifies 21.9 failures on IMDb with Confidence and
20.5 on IMDb_3000 with Prediction Entropy.

• GBS: maintains consistent yet lower detection rates
across datasets. While it performs reasonably well with
Prediction Entropy, detecting 22.0 failures on IMDb, it
is outperformed by other methods in most scenarios.

• RHC-S: although it shows good performance under Pre-
diction Entropy, detecting 70.1 failures on IMDb, its
detection rates on other datasets and auxiliary variable
remain limited.

In general, SUPS, DeepEST, and SSRS are highly effective
at exposing failures paired with Confidence or Prediction
Entropy. When combined with Prediction Entropy, RHC-S
too proves to be a reliable choice for failure detection.

C. Sensitivity to sample size

Error sensitivity

Figure 3 presents the sensitivity of techniques to increas-
ing sample size, as measured by the RMSE metric. Lower
RMSE values indicate higher predictive accuracy. Across all
techniques, RMSE values at the maximum budget of 800
samples are consistently lower than those at the budget of
50, highlighting the importance of increasing sample size in
improving error minimization. For 2-UPS, Confidence outper-
forms Prediction Entropy for all three datasets, demonstrating
its reliability with this auxiliary variable. For SRS, GBS, and
DeepEST, both auxiliary variables (Confidence and Prediction
Entropy) performed very well, showcasing their versatility and
robustness. SUPS exhibits strong early-stage performance but
stabilizes at higher budgets and exhibited better performance
with Prediction Entropy, particularly at larger budgets. On the
other hand, while SSRS has the highest RMSE values, it still
benefits from increasing sample size, showing reductions in
error over larger budgets, particularly when paired with Pre-
diction Entropy. Also RHC-S shows steady improvement with
increasing sample size, particularly with Prediction Entropy.

Failure sensitivity

Figure 4 and Table IV show the performance of techniques
in detecting failures as the sampling budget increases, with
the two auxiliary variables on the three datasets. These results
highlight the sensitivity of techniques to detect failures to
changes in the sampling budget, with F800/50 values providing
a quantifiable metric for sensitivity. The general of techniques
is that increasing the sampling budget leads to a significant
improvement in failure detection, as reflected by consistently
rising failure means. This behavior is particularly evident in
methods like SUPS, where F800/50 values demonstrate strong
proportional growth.



Fig. 3: Error sensitivity: Sensitivity of RMSE to the testing budget



1) Sensitivity of Each Method in failure detection: SUPS
exhibits exceptional performance across all datasets and auxil-
iary variables. For Confidence, the failure detection mean rises
sharply from 21.87 at 50 samples to 350.50 at 800 samples
for SST-2, with a high F800/50 value of 16.03. Similarly,
for Prediction Entropy, it demonstrates a robust increase from
17.27 to 285.53 for the same dataset (F800/50 = 16.54).

Comparable trends are observed for IMDb and IMDb_-
3000, cementing SUPS as one of the top-performing methods
due to its dynamic adaptability and superior sensitivity.

DeepEST achieves high failure detection on all datasets. For
Confidence, it scales from 22.50 to 74.67 (SST-2, F800/50 =
3.32), and from 17.17 to 123.27 (IMDb_3000, F800/50 =
7.18). Similarly, for Prediction Entropy, it maintains consistent
performance on datasets, e.g., on IMDb the failure detection
mean increases from 17.80 to 305.20 (F800/50 = 17.15).

RHC-S demonstrates a mixed performance. For Predic-
tion Entropy, it performs exceptionally well, particularly for
IMDb_3000, where the failure detection mean increases from
15.57 to 166.60 (F800/50 = 10.70). However, its performance
for Confidence is less competitive, with values such as 2.63
to 54.87 for SST-2 (F800/50 = 20.84). This indicates that
RHC-S is more sensitive to Prediction Entropy.

SSRS achieves competitive performance, particularly on
IMDb and IMDb_3000. With Confidence, it exhibits a signif-
icant increase from 19.63 to 139.20 (IMDb_3000, F800/50 =
7.09) and from 20.83 to 311.77 (IMDb, F800/50 = 14.96).
However, its performance is slightly worse Prediction Entropy,
where it still shows increases but with higher sensitivity values
on IMDb_3000 (F800/50 = 9.48).

2-UPS demonstrates moderate performance. For Confi-
dence, its failure detection mean rises from 3.90 to 68.33
for SST-2 (F800/50 = 17.52). However, it underperforms for
Prediction Entropy, such as on SST-2, where it scales only
from 0.93 to 16.37 (F800/50 = 17.54).

GBS and SRS exhibit moderate growth in failure detection
but remain less competitive compared to SUPS or DeepEST.
For example, GBS achieves F800/50 values of 14.16 and
17.55 for Confidence and Prediction Entropy, respectively
(SST-2). Similarly, SRS demonstrates modest sensitivity, with
F800/50 = 15.41 and 14.50 for the same variables.

2) Top-performing techniques (failure detection) and sen-
sitivity: From the analysis, SUPS and DeepEST emerge as
the most effective methods due to their high failure detection
means and sensitivity to budget increases. SUPS, in particular,
achieves the highest F800/50 values across most datasets and
auxiliary variables, reflecting its adaptability and robustness.
DeepEST also demonstrates strong performance and its sen-
sitivity ensures a consistent increase in failures detected.

RHC-S, performing exceptionally for Prediction Entropy,
shows variable results for Confidence. While competitive,
SSRS shows slightly less adaptability with Prediction Entropy.
Simpler methods like SRS, while more predictable, fail to
capitalize on larger budgets. Advanced sampling algorithms
achieve superior failure detection performance.

For failure detection, auxiliary variables exhibit different
sensitivity to budget increases:
- Confidence improves steadily across all methods and
datasets, showing reliable growth as the budget increases;
- Prediction Entropy is also effective but reacts more sharply
to budget changes, variations in F800/50 values, especially for
methods like SUPS and RHC-S.

VI. DISCUSSION

A. Trade off between error minimization and failure detection

Figure 5 shows that with Prediction Entropy the techniques
DeepEST, SUPS, and RHC-S stand out as the most effective
in achieving a trade-off between these two objectives. These
methods exhibit both low RMSE and high failure detection
performance, making them the most favourable choices in this
context. With Confidence, DeepEST and SUPS excel in the
trade-off, showcasing consistent performance. However, RHC-
S, while performing comparably in some instances, does not
show a significant advantage over other methods.

The remaining methods demonstrate minimal performance
differences under Confidence. SSRS, despite being one of the
top-performing methods in failure detection, is notably very
bad in error minimization, with significantly higher RMSE
values compared to all other methods. This highlights a limit
in its applicability in scenarios requiring balanced performance
across both dimensions.

B. Comparison of auxiliary variables

The experiments demonstrate that both auxiliary variables,
Confidence and Entropy, perform well across different datasets
and metrics. These label-free auxiliaries, which do not rely on
ground-truth labels, offer versatility across various sampling
methods. While both auxiliary variables show strong perfor-
mance, Prediction Entropy stands out for achieving better
trade-offs between error minimization and failure detection,
making it particularly effective in balancing these objectives.

C. Performance of techniques categories

Findings at a higher abstraction level can be drawn about
the performance of techniques, considering the categorization
introduced in Section III and Table I: partitioning, unequal
selection, and without replacement methods. Indeed, each cat-
egory demonstrates distinct strengths depending on the evalu-
ation objective (minimizing error, exposing failures, trade-off).

- Partitioning (SSRS, GBS, 2-UPS)
Partitioning methods ensure well-distributed sampling by di-

viding the dataset into partitions. This reduces overall variance
and makes them particularly effective for error minimization.

For example, GBS achieves reliable performance for high-
confidence evaluations. 2-UPS also demonstrates strong capa-
bilities for minimizing errors, particularly when paired with
Confidence. However, these methods are less effective for
failure detection compared to other categories.

- Unequal selection (SUPS, RHC-S, 2-UPS, DeepEST)
Unequal selection methods focus sampling efforts on

failure-prone areas, making them highly effective for exposing



Fig. 4: Failure sensitivity: Failure detection ability per testing budget



TABLE IV: Failure sensitivity: Sensitivity of techniques failure detection ability per auxiliary variable and dataset

Mean(min) F800/50 Mean(max)
Dataset Technique Confidence / Pred. Entropy Confidence / Pred. Entropy Confidence / Pred. Entropy

SST-2 2-UPS 3.90 / 0.93 17.52 / 17.54 68.33 / 16.37
SST-2 DeepEST 22.50 / 20.93 3.32 / 3.67 74.67 / 76.83
SST-2 GBS 4.63 / 3.50 14.16 / 17.55 65.60 / 61.43
SST-2 RHC-S 2.63 / 16.47 20.84 / 6.39 54.87 / 105.30
SST-2 SRS 3.87 / 4.40 15.41 / 14.50 59.60 / 63.80
SST-2 SSRS 17.37 / 18.10 4.29 / 4.66 74.57 / 84.43
SST-2 SUPS 21.87 / 17.27 16.03 / 16.54 350.50 / 285.53
IMDb_3000 2-UPS 4.57 / 1.93 18.52 / 18.97 84.57 / 36.67
IMDb_3000 DeepEST 17.17 / 18.43 7.18 / 7.32 123.27 / 135.00
IMDb_3000 GBS 5.00 / 5.30 16.73 / 14.82 83.63 / 78.53
IMDb_3000 RHC-S 4.33 / 15.57 16.56 / 10.70 71.77 / 166.60
IMDb_3000 SRS 4.93 / 5.10 16.58 / 15.88 81.80 / 80.97
IMDb_3000 SSRS 19.63 / 17.27 7.09 / 9.48 139.20 / 163.73
IMDb_3000 SUPS 18.70 / 16.00 15.89 / 16.49 297.10 / 263.83
IMDb 2-UPS 5.60 / 2.57 16.25 / 15.31 91.00 / 39.30
IMDb DeepEST 17.80 / 17.80 17.15 / 17.02 305.20 / 302.97
IMDb GBS 5.47 / 5.93 15.84 / 14.84 86.60 / 88.07
IMDb RHC-S 4.43 / 17.70 16.67 / 15.79 73.90 / 279.57
IMDb SRS 5.60 / 5.43 15.29 / 15.82 85.63 / 85.97
IMDb SSRS 20.83 / 18.23 14.96 / 15.88 311.77 / 289.63
IMDb SUPS 20.50 / 17.60 15.60 / 16.13 319.80 / 283.83

In bold: top 3 techniques for failure detection ability per dataset.

failures. For instance, SUPS and DeepEST excel in failure
detection while maintaining a good balance with error min-
imization. RHC-S, when paired with Entropy, also achieves
competitive trade-offs, demonstrating both strong failure de-
tection and reliable error minimization.

- Without replacement (RHC-S, SSRS, 2-UPS, DeepEST)
Without replacement methods ensure broader dataset cover-

age by avoiding duplicate samples, making them particularly
effective for failure detection and achieving balanced perfor-
mance.

SSRS demonstrates the highest effectiveness for failure
detection, outperforming other methods in this category. Mean-
while, DeepEST and 2-UPS achieve good trade-off, combining
strong failure exposure with reliable error minimization. In-
creasing the sampling budget further enhances the performance
of these methods.

D. Actionable hints for practitioners

In summary, the experimental study allows to draw the
following considerations (limited by the threats discussed in
next Section) as actionable hints for practitioners aiming to
use probabilistic testing for LLM evaluation, depending on
the evaluation goal:

1) Accuracy of the evaluation (error minimization):
Techniques GBS, SRS, and RHC-S are highly effective
with Prediction Entropy. With Confidence, GBS, SRS,
and 2-UPS perform best.

2) High failure exposure: SUPS, DeepEST, and SSRS
excel in exposing failures. When paired with Prediction
Entropy, RHC-S is a reliable option for failure exposure.

3) Error-failure exposure trade-off: DeepEST and SUPS
paired with either auxiliary variables, and RHC-S paired
with Prediction Entropy, offer the best trade-offs.

4) Sampling budget impact: Evaluation accuracy and
failure detection improve sensibly with the test budget.

VII. THREATS TO VALIDITY

This study evaluated the use of probabilistic sampling
techniques on a single LLM for a sentiment analysis task on
three datasets. While the chosen subject, datasets, and task
are widely known and commonly used in LLM evaluation,
the generalizability of results to other LLM models and tasks
remains limited.

The sampling budgets (ranging from 50 to 800) and selected
auxiliary variables, though carefully designed, might not fully
represent all possible configurations, and alternative setups
could lead to different outcomes.

VIII. CONCLUSIONS

We have presented an experimental evaluation of seven
probabilistic testing techniques to assess the operational ac-
curacy of LLM. The techniques analyzed, which belong to
three categories — partitioning, unequal selection, and without
replacement - allow for flexibility to the tester’s objectives and
the available auxiliary information.

To minimize the LLM accuracy estimation error, techniques
GBS, SRS, and 2-UPS, paired with Confidence auxiliary
information, perform exceptionally well in reducing RMSE,
making them highly suited when high-confidence estimates
are required. GBS, SRS, and RHC-S, paired with Prediction
Entropy, provide reliable and stable accuracy estimates.



Fig. 5: Trade off between error (RMSE) minimization and failure detection

For high failure detection in testing an LLM, Unequal
Selection and Without Replacement techniques SUPS, Deep-
EST, and RHC-S with Prediction Entropy demonstrate strong
performance. While SSRS achieves excellent results for failure
detection too, it suffers from significantly higher RMSE.

For best trade-off between error minimization and failure
detection, DeepEST and SUPS, paired with either experi-
mented auxiliary variables, and RHC-S, paired with Predic-
tion Entropy, offer the most balanced performance.

The sensitivity analysis confirms that the sampling strategies
can enhance significantly both error minimization and failure
detection when the sampling budget increases.

Techniques tailored for high-confidence estimates are par-
ticularly suited for evaluating LLM against release criteria, or
for selecting among competing models.

Methods with strong failure detection ability are ideal for
iterative life cycles and to identify vulnerabilities.

Finally, techniques offering balanced trade-offs are good
solutions for LLM evaluation in diverse operational contexts.

IX. FUTURE WORK

This study primarily focuses on testing DistilBERT within
the context of sentiment analysis tasks, there are several
avenues for future research to extend the applicability of the
proposed sampling based testing approach. The methodology
can be extended to assess other large scale language models,
such as GPT or LLaMA, and applied to diverse tasks including
question answering, text summarization, and generative tasks,
to validate its generalizability.

X. DATA AVAILABILITY

The results and artifacts for replicating the study are avail-
able at: https://github.com/leanerr/OperationalTesting4LLMs
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