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Abstract. We consider transport of a solute obeying linear kinetic sorption under unsteady
flow conditions. The study relies on the vertical unsaturated flow model developed by
Indelman et al. [J. Contam. Hydrol. 32 (1998), 77–97] to account for a cycle of infil-
tration and redistribution. One of the main features of this type of transport, as com-
pared with the case of a continuous water infiltration, is the finite depth of solute pene-
tration. In the infiltration stage an analytical solution that generalizes the previous results
of Lassey [Water Resour. Res. 24 (1988), 343–350] and Severino and Indelman [J. Contam.
Hydrol. 70 (2004), 89–115] is derived. This solution accounts for quite general initial sol-
ute distributions in both the mobile and immobile concentration. When the redistribution
is also considered, two timescales become relevant, namely: (i) the desorption rate k−1,
and (ii) the water application time tap. In particular, we have assumed that the quantity
ε= (

k tap
)−1

can be regarded as a small parameter so that a perturbation analytical solu-
tion is obtained. At field-scale the concentration is calculated by means of the column
model of Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979), 461–467], i.e. as ensemble
average over an infinite series of randomly distributed and uncorrelated soil columns. It
is shown that the heterogeneity of hydraulic properties produces an additional spreading
of the plume. An unusual phenomenon of plume contraction is observed at long times of
solute propagation during the drying period. The mean solute penetration depth is stud-
ied with special emphasis on the impact of the variability of the saturated conductivity
upon attaining the maximum solute penetration depth.

Key words: linear kinetic sorption, unsaturated porous media, infiltration and redistribu-
tion, heterogeneity, stochastic modelling.

1. Introduction

Reliable and simple models for solute transport in unsaturated porous
media (soils) are required for many application purposes such as the opti-
mal management of agricultural practices, designing proper strategies to
preserve soils or assessing groundwater pollution risks. Several models have
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been proposed to account for the complicated physical/chemical processes
occurring in soils (e.g. Brusseau et al., 1989). Although the wide vari-
ety of mathematical models available in the literature (for a comprehen-
sive review, see Sardin et al., 1991), finding analytical solutions is not
an easy task. Even if numerical solutions can be achieved (e.g. Russo et
al., 1998), we believe that analytical solutions gain a better understanding
of the importance of the different transport parameters and mathematical
conditions, as well as study transport for conditions where numerical meth-
ods may not yield acceptably accurate or reliable results. Furthermore, ana-
lytical solutions will also serve as a benchmark for validating numerical
codes.

Recently, Indelman et al. (1998) have addressed a typical problem of
transport under unsteady flow conditions: solute transport during a cycle
of infiltration and redistribution. Subsequently, Lessoff et al. (2002) have
extended the results of Indelman et al. (1998) to the case of multiple infil-
tration-redistribution cycles. These solutions were applied at field scale by
considering the soil as a collection of isolated columns whose parameters
are modelled as random space functions with given probability distribu-
tions. In both studies the Authors have considered linear equilibrium sorp-
tion and decay.

The assumption of equilibrium conditions implies instantaneous solute
partition between the dissolved (mobile) and sorbed (immobile) concentra-
tions. Such conditions are applicable to those situations where the mass
transfer rate from/toward each concentration is relatively high. However,
there are many experimental evidences (e.g. Comegna et al., 2001) showing
that the time needed for solutes to sorb/desorb is relatively long, so that
the transport is “kinetically controlled”. Even if an analytical solution for
kinetically controlled transport valid for the infiltration has been recently
derived by Severino and Indelman (2004), it is not possible to obtain a
closed solution even for the redistribution.

The present paper aims to study solute transport with linear kinetic
sorption during infiltration and redistribution, and is organized as fol-
lows. We make a preliminary review of the main results (Section 2.1)
concerning water flow and linear equilibrium transport. In Section 2.2
we present an analytical solution valid for the infiltration which gen-
eralizes previous results of Lassey (1988 ) and Severino and Indelman
(2004). Then, we solve transport in the redistribution by assuming that
the desorption mass transfer is fast enough in order to seek a small
perturbations analytical solution (Section 2.3). These solutions are sub-
sequently averaged (Section 3) according to the methodology of the
Dagan and Bresler (1979) column model to derive the mean concentra-
tion and solute advancement. The concluding remarks are reported in
Section 4.
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2. The Transport Model

We model transport during a cycle of infiltration and redistribution. One
of the peculiarities of such a problem is that water flow (and therefore
transport) is different whether considering infiltration or redistribution.
In particular, water content and concentration at the end of the infiltra-
tion will constitute the initial condition for solving the redistribution. We
introduce some assumptions which permit us to reduce the computational
effort. One of these assumptions requires that gravity dominates the flow,
i.e. the flow is essentially vertical. Assuming vertical flow greatly simpli-
fies the computational aspect, and it was adopted in previous works (e.g.
Dagan and Bresler, 1983; Indelman et al., 1998; Lessoff et al., 2002; Lessoff
and Indelman, 2002; Severino and Indelman, 2004; Lessoff and Indelman,
2004). Although assuming vertical flow may lead to significant differences
in terms of water content, it does not have a big impact upon solute trans-
port as it has been recently shown by Lessoff and Indelman (2004). We
also assume that the water table is deep enough so that it does not influ-
ence transport. To facilitate the discussion, we preliminarily review in the
next subsection the main results of Indelman et al. (1998) concerning to
water flow and linear equilibrium transport.

2.1. background material

2.1.1. Water Flow

The infiltration stage originates from the application of a specific amount
of water W (volume per area) at the soil surface during the time interval tap

with constant rate r =W/tap. The redistribution stage starts after the infil-
tration of all the applied water W . In the gravitational regime the water
content θ (L3/L3) and specific discharge q (L/T) satisfy

∂θ

∂t
+ ∂q

∂z
=0, q =K(θ), K =Ks

(
θ − θr

θs − θr

)1/β

, (1)

where z (L) is the vertical coordinate pointing downwards from the soil
surface z = 0, q the specific discharge, and K (L/T) is the hydraulic con-
ductivity. The third of (1) is the Brooks and Corey (1964) model for the
hydraulic conductivity, being Ks (L/T) the conductivity at saturation, θs

(L3/L3) and θr (L3/L3) the saturated and residual water contents, respec-
tively, and β a constant power. Defining the parameter γ equal to 1 for
Ks < r and to r/Ks otherwise, the infiltration time ti and the water influx
q0 (applied volume of water per area and time) are given by ti = (W/(γKs))

and q0 =q|z=0 =γKs. The redistribution stage corresponds to q|z=0 =0.
The downward advancement of the wetting and drying front (and the

corresponding water contents) is schematically represented in Figures 1a
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(a) (b)

Figure 1. Definition sketch of the approximate local water content in the infiltration
(a), and redistribution (b) stage.

and 1b, respectively. During the infiltration stage the flux q and the water
content θ (see Figure 1a) are given by (Indelman et al., 1998)

q (z, t)=γKsH [zf (t)− z] , θ (z, t)= θr + (θ∗ − θr)H [zf (t)− z] (2)

(H represents the Heaviside function). The wetting front zf = zf (t) (L)
advances at constant velocity dzf/dt into the profile reaching the depth
zf (ti) at the end of infiltration. Starting from this time, a drying front
develops (see Figure 1b), and it moves at a reduced velocity (deceleration
is discussed in detail by Lessoff et al., 2002). The flux and water content
behind the drying front are obtained as (Indelman et al., 1998)

q (z, t)= zKs

W
(θs − θr)

[
γ

�(t)

]1+β

,

θ (z, t)= θr + (
θ∗ − θr

)
�−β (t)H [zf (t)− z] . (3)

The equation of the wetting/drying front as well as the expression of �(t)

are given by

zf (t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ Ks t

θ∗ − θr
, t � ti

W �β(t)

θ∗ − θr
, t > ti

�(t)=1+ 1
β

(
t

ti
−1

)
. (4)
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2.1.2. Linear Equilibrium Transport

We define C∗ (M/L3) and C (M/L3) as solute mass in the immobile and
mobile phase per volume of solid, respectively. Assuming linear equilibrium
sorption and neglecting pore-scale dispersion, transport equations are

∂ (R C)

∂t
+ ∂ (uC)

∂z
=0, C∗ = Kd

θ
C, (5)

where R(θ)=1+ (Kd/θ) represents the water content dependent retardation
factor, and Kd is the dimensionless partitioning coefficient. The water pore
velocity u=q/θ in (5) is derived from (2) and (3) depending if infiltration
or redistribution is considered. The solution of (5) for any initial concen-
tration distribution C (z,0)=� (z) can be written as

C (z, t)= θ [zr (t)]

θ r
� [z− zr (t)] (6)

with the solute front zr (t) given as (Indelman et al., 1998)

zr (t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γKst

θ
∗ , t � ti,

W

θ
, t > ti

(7)

(we have set θ0 = θ0 + Kd). In particular, for Kd = 0 Equation (7) defines
the front zc (t) pertaining to a conservative solute. Since zf (t)>zc (t)>zr (t)

at any t , we recover that the solute trails always behind the water front.
Another interesting property of the solute propagation is the finite depth
at large time, i.e.

z∞
r = lim

t→∞ zr(t)= W

θr

<z∞
c = lim

t→∞ zc(t)= W

θr
. (8)

In fact, as the water content reduces because of the redistribution, the dis-
solved solute gets “confined” more and more in the irreducible water con-
tent θr (which is not moving). As a consequence, at large times the solute
will be entirely in θr without moving anymore (provided that θr �=0).

2.2. transport with linear kinetic sorption

A widely used model for linear kinetic sorption is

1
k

∂C∗

∂t
= Kd

θ
C −C∗ (9)
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(see e.g. Brusseau et al., 1989; Weber et al., 1991; Sardin et al., 1991).
Equation (9) states that the rate of change in time of the solute con-
centration stored in the immobile region is proportional to the difference
between the mobile and immobile concentrations. For high desorption rate,
i.e. for k→∞, the two concentrations mix instantaneously, and (9) “degen-
erates” into the linear equilibrium model (see the second of (5)). At the
other extreme of zero mixing (Kd =k =0) the immobile region is com-
pletely blocked off, and the solute behaves like a conservative one. In
the intermediate times, the solute diffuses between the mobile and immo-
bile regions until it reaches (asymptotically in time) equilibrium conditions
(Lassey, 1988). Thus, from a physical point of view k represents a “mea-
sure” of how the model (9) will result close to the equilibrium.

With the neglect of pore-scale dispersion, transport is governed by the
following system of equations

∂C

∂t
+ ∂ (uC)

∂z
=−∂C∗

∂t
, (10a)

1
k

∂C∗

∂t
= Kd

θ
C −C∗, (10b)

where the various variables have been already defined. Equations (10a) and
(10b) are solved for an initial solute pulse distributed from z=0 to a given
depth z0, i.e.

C (z,0)= M0

z0
H (z0 − z) , C∗ (z,0)= M∗

0

z0
H (z0 − z) (11)

(being M0 and M∗
0 the initial specific mobile and immobile applied sol-

ute mass, respectively), and for zero solute flux at z=0. In the infiltration
stage (t � ti) systems (10a) and (10b) is analytically solvable. In particular,
we need to distinguish whether the wetting front zf has already reached z0

(zf >z0), or not. In the latter case, at zf <z there is no advection, and there-
fore the solution is obtained by setting u=0 in (10a) and (10b) to have

C (z, t)=C (z,0)

{
b (t)+ Mr

M0
[1−b (t)]

}
H [z− zf (t)] , (12)

C∗ (z, t)=C∗ (z,0)

{
b (t)+ M∗

r

M∗
0

[1−b (t)]
}

H [z− zf (t)] (13)

with b (t) = exp [−k R (θr) t ] , whereas Mr = (
M0 +M∗

0

)
/R (θr) and M∗

r =
MrKd/θr. At z < zf the two concentrations are obtained by solving (10a)
and (10b) with u �=0. With the details reported in Appendix A , the mobile
and immobile concentrations read as
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C (z, t)= H [z− zc (t)]
z0

[
M0 exp

(
−kKdt

θ∗

)
+�(m) [zc (t) ;0]

]

+H [zc (t)− z]
z0

�(m) (z;0) , (14)

C∗ (z, t)= M∗
0

z0
exp (−kt)+ H [z− zc (t)]

z0
�(s) [zc (t) ;0]

+H [zc (t)− z]
z0

�(s) (z;0) (15)

with z0 >zf (t)>z. At zf (t)>z0 the two concentrations are:

C (z, t)=M0 exp
(

−k Kd t

θ∗

)
H [z0 − z+ zc (t)]

z0
H [z− zc (t)]+ϒ(m) (z, t) ,

(16)

C∗ (z, t)= exp (−kt) C∗ (z,0)+ϒ(s) (z, t) . (17)

In (14)–(17) we have set

ϒ(j) (z, t)=H [z− zc (t)]
{

H (z0 − z)

z0
�(j) [zc (t) ;0] +

+H [z0 − z+ zc (t)]
z0

�(j) [zc (t) ; z− z0]
}

+H [zc (t)− z]
[
H (z− z0)

z0
�(j) (z; z− z0) +

+H (z0 − z)

z0
�(j) (z;0)

]
, j =m, s, (18)

�(m) (a, b)= k

u

∫ a

b

dzχ (z, t)

{
M0

k Kd z

u θ∗ Ĩ
[
ζ 2 (z, t)

]+M∗
0 I0 [2 ζ (z, t)]

}
,(19)

�(s) (a, b)= kKd

uθ∗

∫ a

b

dzχ (z, t)

{
M0 I0 [2 ζ (z, t)]+ M∗

0 k

u
[zc (t)− z]

×Ĩ
[
ζ 2 (z, t)

]}
, (20)

χ (z, t)= exp
{
−k

u

[
zc (t)− z+ Kdz

θ∗

]}
,

ζ (z, t)= k

u

√
Kdz

θ∗ [zc (t)− z], Ĩ (x)= I1 (2x)

x
(21)

(Ii represents the modified Bessel function of the first kind of i-order).
Transport beneath the front zf (t) (see Equations (12) and (13)) is

regulated by the rate transfer k. At large kt , we have b (t)→0 and transport
results “equilibrium dominated”. More complex is the pattern of concentra-
tions behind the wetting front. The mobile concentration Cf for a solute
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pulse initially distributed up to z0 = 0.05W/θr, for few values of the dimen-
sionless time (t ′ = t/tap = 0.25;0.65;1), and two reaction rates (k′ = kti = 0.1
and k′ = kti = 5) is shown in Figure 2. Overall, the concentration is rep-
resented by: (i) a continuous distribution within 0 < z < zc (t) (say tailing
zone) which is addressed to kinematical effects, and (ii) a moving term
zc (t) < z < zc (t) + z0 (say advection zone) where the pulse is exponentially
reduced with the growth of k and Kd, and it is further dispersed due to the
kinetics (see Figure 2a). At increasing k′ the solute is mainly located in the
tailing zone (see Figure 2b) with a distribution approaching to a bell like
shape as the time increases. In the limit case kt →∞, the mass is completely
distributed within zr (t)<z<zr (t)+ z0 in the form of a new finite pulse.

The immobile concentration C∗ contains the additional contribution (first
term of (15) and (17)) showing how the initial immobile concentration
is reduced because of the progressive release of material from the sorbed
toward the moving concentration. Thus, for given time t , the quantity
exp (−k t)C∗ (z,0) represents the concentration which is still left in the immo-
bile phase, and it exponentially decreases with the growth of kt . It is worth
to observe that a similar solution was previously obtained by Lassey (1988).
However, he considered only the case where the initial solute is all applied
in the mobile phase in the form of a Dirac pulse, whereas in our case we
account for both general mixed initial solute masses and vertical distribu-
tion. Of course, when M∗

0 = 0 and z0 → 0 we recover the solution provided
by Lassey (1988). It is interesting to observe that during the infiltration stage
the solute front is given by zc =zc (t), suggesting that the solute advances like
a conservative one. Thus, when linear kinetic sorption is accounted for the
solute reaches higher depths as compared with those pertaining to the equi-
librium transport (unless k is exceedingly high).

Turning to the general case of transport under infiltration and redistri-
bution, we observe that two time scales, namely the inverse desorption rate
k−1 and the application time tap, are relevant for our problem. Therefore,
their ratio ε= (

k tap
)−1

is expected to play an important role. In particular,
for rain/irrigation very prolonged as compared with k (or for sufficiently
fast desorption rate as compared with the duration of water application) ε

can be regarded as small parameter (i.e. ε�1), and a perturbation solution
is possible. This procedure will be applied in the next section. Before going
on, we wish to emphasize that, although a numerical solution (free of the
assumption of ε�1) for such a problem may be achieved (see Severino and
Indelman, 2004), the procedure becomes computationally heavy. Instead,
we prefer to focus our attention on a particular case which still enables us
to deal with solute transport with linear kinetics but in a simpler manner.
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Figure 2. Concentration distribution along the depth for a finite pulse located at
z0 = 0.05W/θr, for (a) kti = 1.0, and (b) kti = 5.0. The remaining parameters are
M0 =M∗

0 =Mt/2, β−1 =4, θs =5 θr , Kd/θr =10, Ks = r.
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2.3. the small perturbations solution

In this section we solve systems (10a) and (10b) by means of a perturba-
tion approach. This is accomplished by adopting the procedure developed
by Wallach (1998). However, unlike Wallach (1998) who considered steady
state flow conditions, we apply the small perturbation approach to a cycle
of infiltration and redistribution. In order to do this, we first rewrite (10a)
and (10b) according to the dimensionless variables t = t/tap, C = C/C(0),
C

∗ = C∗/C(0) and z = z/L where C(0) is a suitable reference concentra-
tion (e.g. the initial concentration), whereas L is a length scale relevant
for the specific problem. In doing this there is certain arbitrariness espe-
cially in selecting the reference length L. Such a choice strictly depends on
the observation scale that one is dealing with. For example, at laboratory
scale L usually represents the soil column height, while at larger (typi-
cally field or regional) scales L may represent a characteristic heterogene-
ity length (see Dagan, 1989). With such new variables equations (10a) and
(10b) become

∂C

∂t
+ ∂ (us C)

∂z
=−∂C∗

∂t
, (22a)

(
k tap

)−1 ∂C∗

∂t
= Kd

θ
C −C∗ (22b)

(for simplicity, we have retained the over bar notation, and set us =u tap/L).
Two main rate limited processes are clearly involved in the transport model
(22a) and (22b): (i) the convection process characterized by tap, and (ii) the
sorption kinetics determined by the rate k−1. Of course, tap and k−1 may
be close or greatly differ one from the other. In particular, if the rate of
desorption is fast enough as compared with the rate of advection, we can
drop down the term on the left-hand side of (22b). This is equivalent to
assume that the transport is essentially at the equilibrium. In the remain-
ing part of the present paper we shall adopt this assumption.

Assuming ε= (
k tap

)−1 �1 (but different from zero) makes systems (22a)
and (22b) singular in the sense that the corresponding asymptotic expan-
sion is not uniformly valid in the time domain. More precisely, a zone
(hereafter termed as “boundary-layer”) is formed where the concentrations
change very rapidly after being started at the initial conditions (11) to
reach a completely different (and quite smooth) character. A uniformly
valid (composite) solution is derived by the method of matched asymptot-
ics (e.g. Cole, 1968), according to which the time domain is decomposed
into two subregions: (i) the outer region (far from the boundary layer), and
(ii) the inner region (inside the boundary layer). The composite solution is
obtained by requiring that both the inner and the outer solution overlap in
a common zone of existence. This represents a typical singular perturbation
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problem encountered in various processes, like enzyme kinetics or the stor-
ing of energy in a plant through photosynthesis, and therefore we believe
that our solution may also serve in other fields.

Inside the boundary layer the sorbed concentration C∗ undergoes very
rapid variations in time (i.e. ∂C∗/∂t � 1), and because ε � 1 the left-hand
side of (22b) can not be neglected. Therefore, inside the boundary layer
the terms appearing on the right-hand side of (22b) balance with the left-
hand side. Indeed, we introduce the new variable τ = t/ε in order to bal-
ance (22b), and expand the two concentrations as follows:

C̃ (z, τ )=
∑

n

εn C̃n (z, τ ) , C̃n (z, τ )=O
(
εn

)
, (23)

C̃∗ (z, τ )=
∑

n

εn C̃∗
n (z, τ ) , C̃∗

n (z, τ )=O
(
εn

)
. (24)

Substitution in (22a) and (22b) yields at the leading order

d
dτ

(
C̃0 + C̃∗

0

)=0, (25a)

dC̃∗
0

dτ
= Kd

θ∗ C̃0 − C̃∗
0 . (25b)

The higher-order terms can be obtained in a similar manner. At any rate,
accounting for higher-order terms would represent only a technical compli-
cation with no further insights on the main features of the problem. For
this reason, we shall limit our study to the leading order term, solely. Solv-
ing the above system leads to

C̃0 (z, τ )=b (τ) C (z,0)+ 1−b (τ)

R (θ∗)
Ct (z) , b (τ )= exp

[−R
(
θ∗) τ

]

(26)

being Ct (z)=C (z,0)+C∗ (z,0) the total initial concentration.
The outer solution is sought in the form of a perturbation expansion of

C and C∗ of the following type:

C (z, t)=
∑

n

εn Cn (z, t) , Cn (z, t)=O
(
εn

)
, (27)

C∗ (z, t)=
∑

n

εn C∗
n (z, t) , C∗

n (z, t)=O
(
εn

)
. (28)

Substitution of (27) and (28) into (22a) and (22b) yields

∂ (R C0)

∂t
+ ∂ (usC0)

∂z
=0. (29)
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It can be easily shown that the zero-order term C0 satisfies Equation (5).
In other words, the leading order term C0 is the solution of the first-order
equation (22a) which has been obtained by setting ε= (ktap)

−1 =0 in (22b).
In a general form the leading-order term writes as (see Equation (6))

C0 (z, t)= θ [zr (t)]

θ r
� [z− zr (t)] , (30)

where � remains at this stage unknown, and it will be determined later on
by the method of asymptotic-matching.

In its simple and most intuitive form matching is achieved by requiring
that (see, e.g., Cole, 1968) the outer limit of the inner solution be equal
to the inner limit of the outer solution (30). Toward this goal, we consider
an auxiliary region µ(ε) intermediate between the range of validity of the
inner and outer solution where both the expansions are valid. To do this,
we amplify the time t as follows

tµ = t

µ (ε)
with ε �µ(ε)�1, (31)

so that the above mentioned outer and inner limits (for fixed tµ) write as

t =µ(ε) tµ →0, τ = t

ε
= µ(ε)

ε
tµ →∞ for ε →0. (32)

With such variables, the matching requirements translate into

lim
t→0

C0 (z, t)= lim
τ→∞C̃0 (z, τ ) . (33)

By denoting as C(∞) (z)= lim
τ→∞C̃0 (z, τ ), the unknown function � is identi-

fied by virtue of (26), (30) and (33) as follows

C(∞) (z)= lim
t→0

C0 (z, t)=� (z)= Ct (z)

R (θ∗)
. (34)

The composite expansion is obtained by adding (26) and (30) and subtract-
ing the common limit C(∞), i.e.

C (z, t; ε)= θ [zr (t)]

θ r
C(∞) [z− zr (t)]+ C̃0 (z, τ )−C(∞) (z) . (35)

From (35) it follows that the advection coupled with pure retardation rep-
resents the dominant mechanism which influences solute transport, whereas
the kinematical effect is felt only at the beginning.

Summarizing, the small perturbation approach basically leads to an
equilibrium type solution. However, because of the presence of a bound-
ary layer (whose thickness is equal to ε), an inner expansion is introduced.
The boundary layer solution has the structure of a diffusive-type mecha-
nism which permits on one hand to satisfy the initial condition and on the
other hand to match the outer solution.
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3. Stochastic Applications

In the previous sections we have considered transport with linear kinetic
sorption under a cycle of infiltration and redistribution by regarding the
soil as an homogeneous medium. In this case, our results are applicable
at small (primarily laboratory) scales. At larger (typically field) scales one
has to account for the complicated structure of the flow paths which sig-
nificantly affects transport (e.g. Russo et al., 1998). In this section we con-
sider solute transport in large extent (and therefore heterogeneous) soils.
In many practical situations (like assessing the soil pollution risk) we are
interested into quantifying solute transport over depths much smaller than
the characteristic horizontal length scale. However, unlike the laboratory
scale, we have now to account for the horizontal variations of hydraulic
properties which are quite irregular (e.g. Russo and Bouton, 1992; Russo
et al., 1997) and influence solute transport to a tremendous extent (e.g.
Bresler and Dagan, 1979).

We have shown that the local concentration C (and similarly for C∗)
depends upon several parameters like: hydraulic properties (Ks, θs, θr, β),
reactive parameters (Kd, k), irrigation data (r, W ), and the initially applied
solute masses (M0, M∗

0 ), i.e.

C =C
(
z, t;Ks, θs, θr, β,Kd, k, r,W,M0,M

∗
0

)
. (36)

We can define the spatial mean concentration C as ensemble average of
(36) by regarding the various parameters as random variables and assum-
ing ergodic conditions (Dagan and Bresler, 1979), i.e.

C (z, t)≈〈C (z, t)〉=
∫

dα C (z, t;α) f (α) (37)

being 〈〉 the expectation operator and f the joint probability distribution
of the parameters

(
Ks, θs, θr, β,Kd, k, r,W,M0,M

∗
0

) ≡ α. Generally, these
parameters vary in the space and have a spatial correlation structure. Most
of them (such as θs, θr, β,Kd) exhibit a small variability as compared with
that of others, and therefore may be considered constant over the field (e.g.
Indelman et al., 1998; Lessoff and Indelman, 2002; Severino et al., 2003).
Toward simplifying the computations, we have focused on the effect of the
heterogeneity of only one parameter, namely the saturated hydraulic con-
ductivity Ks , since transport is highly sensitive to its variability (e.g. Dagan
and Bresler, 1979; Mallants et al., 1996; Lessoff and Indelman, 2002).
Consequently, the joint probability distribution function appearing in (37)
is replaced by the probability distribution function of Ks, i.e. f (α)≡f (Ks).
Thus, the field scale concentration is calculated from (37) as
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〈C(z,t)〉=
∫ W/t

0
dKsC

if (Ks)+
∫ r

W/t

dKsC
rf (Ks)

+
∫ ∞

r
dKsC

rf (Ks) t >tap (38)

being C i and Cr the column scale mobile concentrations in the infiltra-
tion and redistribution derived in the previous sections. The mean con-
centration 〈C (z, t)〉 is expressed by the aid of three contributions whose
physical meaning is straightforward. The first term accounts for transport
in those columns which being under ponding (r > Ks) are at the infiltra-
tion. The second term of (38) represents the contribution of those columns
that are still under ponding but at the redistribution, whereas the third
term accounts for the columns where redistribution is taking place with no
ponding (Ks >r). While at local scale the spreading of the pulse is due only
to nonequilibrium effects (see Figures 2a and 2b), in the heterogeneous col-
lection of columns there will also be a stochastic spreading of the plume
due to the average upon all the columns.

3.1. analysis of the mean concentration

We consider an initial solute pulse with a very thin layer which represents
a quite realistic approximation in horizontally large extents soils (e.g. Indel-
man et al., 1998; Lessoff et al., 2002; Severino and Indelman, 2004; Lessoff
and Indelman, 2004).

For a continuous infiltration the mean concentration is calculated as
〈
C i (z, t)

〉
=

∫ +∞

0
dKs C

i (z, t;Ks) f (Ks) . (39)

Substituting (16) (calculated for � ≡ δ) into (39) leads to the following
expression of the mean concentration (see Appendix B for details)

〈
C i

〉
=H

(
r t

θs
−z

)
θs

t

[
M0 exp

(
−kKd

θs
t

)
f

(z

t
θs

)
+P

(
z; rt

θs

)]
+H

(
r t

θr
−z

)

×
{
H

(
z− r t

θs

)[
M0f [Kt (z)]

∂Kt (z)

∂z
S+Q

(
z; rt

θr

)]

+H

(
r t

θs
−z

)
Q

(
rt

θs
; rt

θr

)}
(40)

with

P (a;b)=
∫ b

a

dλf

(
λ
θs

t

)
C1

(
z, t;λ

θs

t

)
S = exp

(
−z k

r
Kd

)
, (41)
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Figure 3. Mean concentration distribution along the depth at t = tap, and for ε =
0.1; 2.0. The remaining parameter values are: M0 =Mt, β−1 =4, θs =5 θr, Kd/θr =10,
〈Ks〉= r, ξ =1. The vertical dashed line shows the location and the intensity of the
delta-distributed solute.

Q(a;b)=
∫ b

a

dλ
∂Kt (λ)

∂λ
f [Kt (λ)]C1 (z, t;Kt (λ)) ,

C1 (z, t;Ks)= k θ∗

γKs
exp

{
− k

γKs
[θ∗ (zc (t)− z)+Kdz]

}

×
{
M0

kKd

γKs
z Ĩ1 [ζ (z, t)]+M∗

0 I0 [2 ζ (z, t)]
}

, (42)

Kt (x)= r

[
(θs − θr) x

r t −x θr

]1/β

(43)

(see also (21)). We have depicted in Figure 3 the mean concentration〈
C i

〉
W/(θrMt) (continuous line) versus zθr/W at t = tap, and for two char-

acteristic values of ε (i.e. 0.1 and 2). Furthermore, throughout the paper
we shall assume β−1 = 4 and θs = 5θr. These values are typical of sandy
soils (see, e.g., Severino et al., 2003), and have been adopted in extensive
applications under various field conditions (e.g. Bresler and Dagan, 1981;
Destouni and Cvetkovic, 1991; Dagan, 1993; Severino and Indelman, 2004;
Lessoff and Indelman, 2004).
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At the highest ε, we can clearly see that the variability of Ks makes〈
C i

〉
bimodal. The first peak (close to the top) is due to those columns

with low saturated conductivities as compared with the mean value 〈Ks〉=r

(whereas the coefficient of variation ξ is equal to 1). Indeed, all these col-
umns result under ponding with very low water velocities, and therefore
the solute is mostly concentrated in the upper part of the soil surface. To
the contrary, the second peak (much more pronounced with a spike-like
shape) of Figure 3 represents the contribution of those columns whose sat-
urated conductivity Ks is close to the mean 〈Ks〉. Thus, for such columns
the local position of the solute pulse does not differ from the first of (7).
For this reason at z≈rtap/θs we observe a sudden raise representing the sin-
gularity term (see first term of (16)). Furthermore, since inside these col-
umns water moves very quickly the solute is distributed also downstream
the second peak. In order to appreciate how kinematical effects influence
the concentration distribution, in Figure 3 we have also depicted the con-
centration profile (dashed lines) for the same set of parameters by regard-
ing the soil as homogeneous, i.e. for ξ = 0. It is interesting to observe
that for relatively slow kinetics (ε = 2.0) the reaction is completely over-
taken by the medium heterogeneity. When kinetics is fast enough as com-
pared with the application time tap (this is the case of ε = 0.1) the solute
results at “quasi equilibrium” conditions in all the columns, and thus the
kinetics becomes practically negligible. In such a case, solute transport is
determined by: (i) the heterogeneity, and (ii) pure retardation. As a conse-
quence, the solute is more concentrated at lower depths as compared with
the previous case, since the solute distribution due to the linear equilibrium
model is always located behind that corresponding to the conservative one
(see (7)). The axymmetry shown by the continuous line is addressed exclu-
sively to the medium heterogeneity. Unlike the previous case, the singular-
ity term does not appear as its intensity is practically exhausted because of
the relatively large reverse rate k. Furthermore, the linear sorption is now
much more important as it can be easily seen by comparing the continuous
(heterogenous) with the dashed (homogeneous) line.

We consider now the mean concentration 〈C〉 as determined by a cycle
of infiltration and redistribution. This is obtained by inserting into (38) the
small perturbations expansion (35), i.e.

〈C (z, t)〉=
∫

dKs f (Ks)
θ [zr (t)]

θr

C(∞) [z− zr (t)]+

+
∫

dKs f (Ks)
[
C̃0 (z, τ )−C(∞) (z)

]
. (44)

Similarly to the column scale, the average concentration (44) is represented
as sum of a pure equilibrium type component (first term on the right-hand
side of (44)) and a kinetics-term which “adjusts” the first one in order to
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Figure 4. Deviation function �ε (t) /C (z,0) versus the dimensionless time t/tap, for
Kd/θr =1;5;20;50, and two mean saturated conductivities. The other parameter val-
ues are: ε =0.1, β−1 =4, θs =5 θr, ξ =1.

match the initial condition. However, in this case the second term will also
be affected by the stochastic spreading due to the heterogeneity of Ks. In
order to show the transition from nonequilibrium to equilibrium condi-
tions, we consider the second term on the right-hand side of (44), i.e.

�ε (z, t)=
∫

dKs f (Ks)
[
C̃0 (z, τ )−C(∞) (z)

]
(45)

(for simplicity, we assume that all the initially applied mass is distributed
in the mobile concentration, i.e. C (z,0)≡Ct (z,0)).

The function �ε (t) /C (z,0) has been represented in Figure 4 versus the
dimensionless time t/tap, and for several values of the rescaled linear par-
titioning equilibrium coefficient Kd/θr (the perturbation parameter is set
equal to 0.1). As expected, in all the cases �ε rapidly decreases with time
t , since the transition due to the boundary layer is exhausted relatively
quickly. In particular, given all the other parameters high values of Kd/θr

favour a faster getting of the equilibrium conditions. Unlike the reactive
parameters, the heterogeneity does not play an important role. In fact,
assuming two significantly different (and quite representative of field scale
applications) values of the mean conductivity (i.e. 〈Ks〉=0.1r, 2r) does not
imply relevant changes in the behavior of �ε. Furthermore, preliminary
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Figure 5. Mean concentration profile at the end of infiltration (t ′ = 1) and at two
times after the water application has been halted (t ′ = 5 and 50). The remaining
parameters are: M0 =Mt, ε =0.1, β−1 =4, θs =5 θr , Kd/θr =10, 〈Ks〉= r/2, ξ =1.

simulations have also shown that ξ does not impact (45). This suggests,
unlike the results of Severino and Indelman (2004), that the applicability
of the small perturbations solution can be assessed by measuring the reac-
tive parameters solely, which since are normally carried out at laboratory
scale (see, e.g., Comegna et al., 2001), are much more accurate.

In Figure 5 we have depicted the mean concentration profile for differ-
ent times t ′ = t/tap = 1,5,50 (the remaining parameter values are reported
in the caption). At the end of infiltration (t ′ =1) the bimodality of the dis-
tribution reflects the contribution of those columns with very-low conduc-
tivities (first peak), whereas the second peak is attributed to those columns
whose conductivity is close to the mean value 〈Ks〉. During the redistribu-
tion (t ′ >1) the solute in the low conductivity columns is strongly detained
generating a pronounced spreading of the plume at t ′ = 5. At larger times
(t ′ =50) the plume compresses because in almost all the columns the solute
approaches the maximum penetration depth z∞

r = W/θr . Thus, unlike the
case of continuous water application, the finite depth of solute penetration
implies the unusual phenomenon of “plume compression” after a prelimi-
nary expansion period.

To illustrate the transition due to the heterogeneity, we have shown in
Figure 6 the mean concentration at the end of infiltration for increas-
ing values of the coefficient of variation (i.e. ξ = 0.2,0.7,4), whereas the
remaining parameters are the same as the previous case. At low ξ the
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Figure 6. Mean concentration at the end of the water application (t = tap) for ξ =
0.2;0.7;4.0. The other parameters are: M0 =Mt, ε=0.1, β−1 =4, θs =5 θr, Kd/θr =10,
〈Ks〉= r/2.

profile is practically symmetrical with a small skewness due to the aver-
age over the columns where water moves faster. As ξ increases the pro-
file clearly becomes bimodal because of the effects of the columns with low
conductivities (which strongly detain the solute at the top) and the contri-
bution of the columns whose conductivities are closer to the mean value
〈Ks〉.

3.2. analysis of the mean solute penetration

In order to assess the potential hazard of soil contamination, we have com-
puted from (7) the mean value of the solute penetration depth, i.e.

〈zr (t)〉
z∞

r
= t W−1

1+ θd

∫ W/t

0
dKs f (Ks)Ks +

∫ r

W/t

dKs
f (Ks)�

β

w (Ks)

θd +�
β

w (Ks)
+

+
∫ ∞

r

dKs
f (Ks) (Ks/r)β

θd/�
β
w + (Ks/r)β

, (46)

where

θd = θs − θr

θr +Kd
, �w (Ks)=1+ 1

β

(
Ks

W
t −1

)
, �w =1+ 1

β

(
t

tap
−1

)
. (47)
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The knowledge of solute penetration may provide useful information for
instance on the accumulation of pesticides that very often causes the reduc-
tion of the soil fertility (for a wide exposition, see Page et al., 1981). To
obtain a simple expression for 〈zr (t)〉 we have adopted the rectangular dis-
tribution of given mean 〈Ks〉 and coefficient of variation ξ (see Appendix
C for the details). The mean penetration depth pertaining to a conservative
solute is obtained from (46) after setting Kd =0.

In Figures 7a and 7b we have represented 〈zr (t)〉 /z∞
r versus the dimen-

sionless time t/tap for ξ =0.5,1,2,5 and 〈Ks〉=0.1r,2r (with θd =0.3). It is
seen that despite the asymptotic value does not depend upon the heteroge-
neity (see (8)), this latter greatly influences attaining it. At small degree of
heterogeneity (low ξ ) the asymptotic limit is reached relatively soon since
the medium practically behaves as an homogenous one, and therefore in
almost every column the solute front zr (t) has reached the same depth. At
higher ξ , z∞

r is attained quite slowly owing to the large variations from
column to column of the local penetration depth. For relatively low con-
ducting soils (Figure 7a) the solute travels small distances at the end of
infiltration (i.e. at t/tap =1). Although this is not completely surprising, it is
important to note that the mean percolation depth at the end of the water
application is not significantly sensitive to ξ , while unlike the previous case,
for highly conducting soils (Figure 7b) the solute has covered significant
depths. Furthermore, a simple comparison between case (a) and (b) shows
that after a certain time (say t >1000 tap) the mean conductivity 〈Ks〉 does
not play a significant role as 〈zr〉 is essentially determined by ξ .

4. Conclusions

In the present paper we have studied solute transport with linear kinetic
sorption during infiltration and redistribution. In the infiltration stage, and
under quite general initial conditions, we have derived a closed form solu-
tion which generalizes the previous results of Lassey (1988) and Severino
and Indelman (2004). Owing to the complexity of the problem, an exact
analytical solution valid for the redistribution is not achievable. In order to
obtain a simple solution, we have assumed that the rate transfer (k−1) is
large compared with the application time (tap), i.e. ε = (k tap)

−1 �1. Under
such an assumption, we have derived a perturbation analytical solution.
At column scale the solute concentration (unlike the equilibrium transport
when the solute is distributed at the front) is gradually distributed along
the depth. Such a distribution becomes steeper and steeper as the reaction
rate k increases. In the limit case of k →∞, the profile approaches a new
distribution located at a smaller depth in accordance with the linear equi-
librium model.



UNSATURATED TRANSPORT 167

0.0

0.2

0.4

0.6

0.8

1.0

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

t/tap

z r
(t

)
/z ξ=5.0

2.0

1.0

0.5

Κs =2r

0.0

0.2

0.4

0.6

0.8

1.0

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

t/tap

z r
(t

)
/z ξ=5.0

2.0

1.0

0.5

(a)

(b)

Κs =0.1r

∞
∞
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These solutions are further applied to derive the mean concentration by
means of the column model of Dagan and Bresler (1979). It is shown that
the accuracy of our perturbation approach is not affected by the stochas-
tic spreading due to the averaging procedure. Another remarkable feature
of transport during the infiltration-redistribution cycle is the finite depth of
solute penetration. This property was first found for equilibrium transport,
and is shown to be also valid for linear kinetic sorption when ε � 1. The
rate of approaching to the asymptotic value z∞

r of the solute penetration
depth greatly depends upon the hydraulic/chemical parameters.

Due to their simplicity, our analytical results may be used to quantify the
impact of transient flow coupled with the heterogeneity of hydraulic/chemical
parameters upon the prediction of soil and groundwater pollution.

Appendix A. Derivation of the Analytical Solution for the Infiltration Stage

The system of Equation (10a) and (10b) for the infiltration is given by

∂C

∂t
+u

∂C

∂z
=−∂C∗

∂t
,

∂C∗

∂t
=k

(
Kd

θ∗ C −C∗
)

, (A1)

where u=W/(θ∗ti). We solve (A1) for zero solute flux at the soil surface,
i.e. C (0, t)=0, and given initial concentrations

C (z,0)=M0 �(z) , C∗ (z,0)=M∗
0 �(z)

being �(z) (L−1) a known function with given support [0, z0] and account-
ing for the mass distribution along the depth.

We first apply p-Laplace transform to (A1) over the time t to yield the
following initial value problem

p C −M0 �(z)+u
dC

dz
=−p C

∗ +M∗
0 �(z)

p C
∗ −M∗

0 �(z)=k

(
Kd

θ∗ C −C
∗
) C (0, p)=0 (A2)

and further application of q-Laplace transform to (A2) over z provides the
expressions of the double Laplace transforms of concentrations:

Ĉ (q,p)= 1
u

(
M0 + M∗

0 k

k +p

){
q + p

u

[
1+ kKd

θ∗ (k +p)

]}−1

�̂ (q) ,

Ĉ
∗
(q,p)= kKd

θ∗
Ĉ (q,p)

k +p
+M∗

0
�̂ (q)

k +p
.

(A3)
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To facilitate successive derivations, it is convenient to rewrite the first of
(A3) as follows:

Ĉ (q,p)= f̂ 1 (q,p)

u

(
M0 + k M∗

0

k +p

)
�̂ (q) , (A4)

where

f̂ 1 (q,p)=
{
q + p

u

[
1+ kKd

θ∗ (k +p)

]}−1

.

A.1. mobile concentration

The inverse q-Laplace transform of f̂ 1 (q,p) is obtained as follows

f 1 (z,p)= exp
[
− z

u

(
p + k Kd

θ∗

)]
exp

(
k2Kd z

u θ∗
1

p +k

)
,

so that application of convolution yields

C (z,p)=M0

u

∫ z

0
dz′ f 1

(
z′, p

)
�

(
z− z′)+k M∗

0

u

∫ z

0
dz′ f 1

(
z′, p

)

k +p
�

(
z− z′) .

(A5)

Inversion of f 1 (z,p) and f 1 (z,p)/(k +p) is obtained by means of stan-
dard techniques and is reported below

L−1 [
f 1 (z,p)

]=u exp
(

−k Kd

θ∗ t

)
δ [z− zc (t)]

+k2Kd z

u θ∗ χ (z, t) Ĩ
[
ζ 2 (z, t)

]
H [zc (t)− z] ,

L−1

[
f 1 (z,p)

k +p

]

=χ (z, t) I0 [2 ζ (z, t)] H [zc (t)− z] ,

where χ (z, t), ζ (z, t), Ĩ , and I0 have been defined in (21). Thus, the mobile
concentration reads as

C (z, t)=H [zc (t)− z]
∫ z

0
dz′ �

(
z− z′)η

(
z′, t

)

+H [z− zc (t)]
∫ zc(t)

0
dz′ �

(
z− z′)η

(
z′, t

)

+M0 exp
(

−kKd t

θ∗

)
� [z− zc (t)] H [z− zc (t)] , (A6)
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in which η (z, t) is the integrand appearing in (19 ), i.e.

η (z, t)= k

u
χ (z, t)

{
M0

k Kd z

u θ∗ Ĩ
[
ζ 2 (z, t)

]+M∗
0 I0 [2 ζ (z, t)]

}
.

In particular, when zf <z0 we have �(z)= z−1
0 and Equation (A6) leads to

(14), whereas for zf > z0 the initial condition results �(z) = H (z0 − z) /z0

and (A6) yields (16).

A.2. immobile concentration

Using the function f̂ 1 (q,p), the double Laplace transform of the immobile
concentration results from (A3) as follows:

Ĉ
∗
(q,p)= M∗

0 �̂ (q)

p +k
+ kKd

uθ∗

[

M0
f̂ 1 (q,p)

p +k
+M∗

0 k
f̂ 1 (q,p)

(p +k)2

]

�̂ (q) .

By applying the inverse q-Laplace transform yields:

C
∗
(z,p)= M∗

0 �(z)

p +k
+ kKd

uθ∗

∫ z

0
dz′

[

M0
f 1

(
z′, p

)

p +k
+M∗

0 k
f 1

(
z′, p

)

(p +k)2

]

×�
(
z− z′) , (A7)

where the inverse of Laplace transform of the second term between brack-
ets appearing on the right-hand side of (A7) is

L−1

[
f 1 (z,p)

(p +k)2

]

= zc (t)− z

u
χ (z, t) Ĩ

[
ζ 2 (z, t)

]
H [zc (t)− z] .

Summarizing, the immobile concentration writes as

C∗ (z, t)= exp (−kt)C∗ (z,0)+H [zc (t)− z]
∫ z

0
dz′ �

(
z− z′) η∗ (

z′, t
)+

+H [z− zc (t)]
∫ zc(t)

0
dz′ �

(
z− z′) η∗ (

z′, t
)

, (A8)

where η∗ is given by

η∗ (z, t)= kKd

uθ∗ χ (z, t)

{
M0 I0 [2 ζ (z, t)]+ M∗

0 k

u
[zc (t)− z] Ĩ

[
ζ 2 (z, t)

]
}

.

Similarly to the mobile concentration, for zf < z0 we recover from (A8)
Equation (15), whereas for zf >z0 yields Equation (17).
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Appendix B. Derivation of the Mean Concentration (40)

In order to calculate the mean concentration (39) for an initially applied
Dirac pulse, we first recall that the local concentration C i is derived from
(16) after letting z0 →0, i.e.

C i (z, t;Ks)=M0 exp
(

−k Kd t

θ∗

)
δ [z− zc (t)]+C1 (z, t;Ks)H [zc (t)− z]

(B1)

with C1 given by (43). It is convenient to split
〈
C i

〉
as

〈
C i (z, t)

〉
= 〈

C(1)
〉+ 〈

C(2)
〉
,

where we have set
〈
C(1)

〉=
∫ r

0
dKs f (Ks)C i (z, t;Ks) ,

〈
C(2)

〉=
∫ +∞

r

dKs f (Ks)C i (z, t;Ks) . (B2)

We proceed to calculate the two contributions separately. For the first of
(B2) γ = 1 (see Section 2.1), and therefore zc (t)=Kst/θs (from the first of
(7) with Kd =0). By introducing the new variable λ=Kst/θs yields

〈
C(1)

〉= θs

t

∫ rt/θs

0
dλf

(
λ
θs

t

)

×
[
M0 exp

(
−kKd

θs
t

)
δ (z−λ)+H (λ− z)C1

(
z, t;λ

θs

t

)]
. (B3)

We apply the same procedure to the second term of (B2) with zc (t) =
rt/

(
θr +�γ β

)
, and γ = r/Ks. Indeed, we introduce the new variable λ

= rt/
(
θr +�γ β

)
and substitute in

〈
C(2)

〉
to have

〈
C(2)

〉=
∫ rt/θr

rt/θs

dλf [Kt (λ)]
∂Kt (λ)

∂λ

×
[

exp
(

−λk

r
Kd

)
δ (z−λ)+H (λ− z)C1 (z, t;Kt (λ))

]
, (B4)

where Kt (x) has been defined in (43). By carrying out the integrations and
summing (B3) and (B4) leads to (40).

Appendix C. Mean Solute Penetration Depth

The mean solute penetration depth (46) is derived by adopting a uniform
distribution fr of given mean 〈Ks〉 and coefficient of variation ξ . By skip-
ping the algebraic derivations, (46) writes as
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〈zr (t)〉
z∞

r
= t fr

2W (1+θd)
H

(
W

t
−Ka

){
H

(
W

t
−Kb

)
[
K2

b −H (Ka)K
2
a

]

+H

(
Kb−W

t

)[(
W

t

)2

−H (Ka)K
2
a

]}

+ W

t
frH

(
Kb − W

t

)

×H (r−Ka)

{
H (Kb −r)

[
H

(
Ka − W

t

)
�(1/β)(Ka,r)

+H

(
W

t
−Ka

)
�(1/β)

(
W

t
,r

)]
+H(r−Kb)

[
H

(
Ka−W

t

)

×�(1/β)(Ka,Kb)+H

(
W

t
−Ka

)
�(1/β)

(
W

t
,Kb

)]}

+rβ−1frH (Kb −r)
[
H (Ka −r)�(1/β)(Ka,Kb)

+H (r−Ka)�(1/β)(r,Kb)
]
. (C1)

In (C1) we have set

�(1/β) (x, y)=
∫ �(y)

�(x)

dλ
λ1/β

θd +λ
, �(κ)=�

β

w (κ) ,

Ka,b =
(

1∓
√

3 ξ
)

〈Ks〉 , (C2)

whereas �(1/β) (x, y) is obtained from the first of (C2) after replacing θd

with θd/�β
w and �(κ) with (κ/r)β (the remaining quantities were already

defined in (47)). Since β−1 =2÷4 (see, e.g., Indelman et al., 1998) the inte-
gral appearing in (C2) is easily evaluated for integer values of β−1, i.e. for
β−1 ≡n=2,3,4, yielding

�(n) (x, y)=
∫ y

x

dλ
λn

θd +λ
=

(
yn −xn

)

n
+ (−θd)

n ln
(

y + θd

x + θd

)

+
n−1∑

j=1

(−θd)
j

(
yn−j −xn−j

)

n− j
.

Acknowledgements

This study was supported by the grant COFIN : Modern Technologies for
Wastewater Management in Agriculture (# 2002074287), and by the grant
FIRB: Large Scale Nonlinear Optimization (# RBNE01WBBB). The first
author expresses his gratitude to Dr. Gerardina Di Biasi for improving
the early version of the manuscript. The constructive comments from three
anonymous reviewers are thankfully acknowledged.



UNSATURATED TRANSPORT 173

References

Bresler, E. and Dagan, G.: 1979, Solute dispersion in unsaturated heterogeneous soil at field
scale: applications, Soil Sci. Soc. Am. J. 43, 461–467.

Bresler, E. and Dagan, G.: 1981, Convective and pore scale dispersive solute transport in
unsaturated heterogeneous fields, Water Resour. Res. 17, 1683–1693.

Brooks, P. M. and Corey, A. T.: 1964, Hydraulic Properties in Porous Media, Hydrol. Paper
3, University of Colorado, Fort Collins.

Brusseau, M. L. R., Jessup, E. and Rao, P. S. C.: 1989, Modeling the transport of solutes
influenced by multiprocess nonequilibrium, Water Resources Res. 25, 1971–1988.

Cole, J. D.: 1968, Perturbation Methods in Applied Mathematics, Blaisdell, London.
Comegna, V., Coppola, A. and Sommella, A.: 2001, Effectiveness of equilibrium and physi-

cal non equilibrium approaches for interpreting solute transport through undisturbed soil
columns, J. Contam. Hydrol. 50, 121–138.

Dagan, G. and Bresler, E.: 1979, Solute dispersion in unsaturated heterogeneous soil at field
scale: theory, Soil Sci. Soc. Am. J. 43, 461–467.

Dagan, G. and Bresler, E.: 1983, Unsaturated flow in spatially variable fields: Derivation of
models of infiltration and redistribution, Water Resour. Res., 19, 413–420.

Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer, Berlin.
Dagan, G.: 1993, The Bresler–Dagan model of flow and transport: Recent theoretical devel-

opments, in: G. Dagan and D. Russo (eds), Water Flow and Solute Transport in Soils,
Springer-Verlag, Berlin, pp. 14–32.

Destouni, G. and Cvetkovic, V.: 1991, Field scale mass arrival of sorptive solute into the
groundwater, Water Resour. Res. 27, 1315–1325.

Indelman, P., Touber-Yasur, I., Yaron, B. and Dagan, G.: 1998, Stochastic analysis of water
flow and pesticides transport in a field experiment, J. Contam. Hydrol. 32, 77–97.

Lassey, K. R.: 1988, Unidimensional solute transport incorporating equilibrium and rate-
limited isotherms with first-order loss, 1, Model conceptualizations and analytic solutions,
Water Resour. Res. 24, 343–350.

Lessoff, S. C., Indelman, P. and Dagan, G.: 2002, Solute transport in infiltration-redistribu-
tion cycles in heterogeneous soils, in: P. A. C. Raats, D. Smiles, and A. W. Warrick (eds),
Environmental Mechanics: Water, Mass and Energy Transport in the Biosphere, American
Geophysical Union, pp. 133–144.

Lessoff, S. C. and Indelman, P.: 2002, Identifying soil and transport properties using a model
of infiltration-redistribution flow and transport in the unsaturated zone, in: Rubin et al.
(eds), Preserving the Quality of Our Water Resources, Springer Verlag, Berlin Heidelberg,
pp. 16–33.

Lessoff, S. C. and Indelman, P.: 2004, Analytical model of flow and solute transport by
unsteady unsaturated gravitational infiltration, J. Contam. Hydrol. in press.

Mallants, D., Mohanty, B. P., Jacques, D. and Feyen, J.: 1996, Spatial variability of hydraulic
properties in a multi-layered soil profile, Soil Sci., 161, 167–181.

Page, A. L., Chang, A. C., Sposito, G. and Mattigod, S.: 1981, Trace elements in wastewater:
Their effects on plant growth and composition and their behavior in soils, in: Iskandar
(ed.), Modeling Wastewater Renovation, Wiley, New York, pp. 182–222.

Russo, D. and Bouton, M.: 1992, Statistical analysis of spatial variability in unsaturated flow
parameters, Water Resour. Res. 28, 1911–1925.

Russo, D., Russo, I. and Laufer, A.: 1997, On the spatial variability of parameters of the
unsaturated hydraulic conductivity, Water Resour. Res., 33, 947–956.

Russo, D., Tauber-Yasur, I., Laufer, A. and Yaron, B.: 1998 , Numerical analysis of field-
scale transport of bromacil, Adv. Water Resour. 21, 637–647.



174 G. SEVERINO ET AL.

Sardin, M., Schweich, D., Leij, F. J. and van Genuchten, M. Th.: 1991, Modeling the non-
equilibrium transport of linearly interacting solutes in porous media: a review, Water Re-
sour. Res. 27, 2287–2307.

Severino, G., Santini, A. and Sommella, A.: 2003, Determining the soil hydraulic conduc-
tivity by means of a field scale internal drainage, J. Hydrol. 273, 234–248.

Severino, G. and Indelman, P.: 2004, Analytical solutions for reactive solute transport under
an infiltration–redistribution cycle, J. Contam. Hydrol. 70, 89–115.

Wallach, R.: 1998, A small perturbations solution for nonequilibrium chemical transport
through soils with relatively high desorption rate, Water Resour. Res. 34, 149–154.

Weber, W. J., Jr., McGinley, P. M. and Katz, L. E.: 1991, Sorption phenomena in subsurface
systems: concepts, models and effects on contaminant fate and transport, Water Resour.
Res. 25, 499–528.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


