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Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin 
B-dependent kinase 1 (cdk1), the m-phase-promoting factor (mPF). once activated, mPF is 
sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that 
prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. 
Whether subsequent mPF inactivation and anaphase onset require a specific phosphatase(s) 
to reverse these feedback loops is not known. Here we show through biochemical and genetic 
evidence that timely mPF inactivation requires activity of the essential RnA polymerase  
II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We 
identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome 
(APC/C) required for cyclin degradation and anaphase onset, usP44, a deubiquitinating 
peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 
targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and 
ubiquitination that drives mitosis exit. 
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The establishment of mitosis requires phosphorylation of sev-
eral substrates operated by several kinases1. Until mitotic 
spindle assembly, M-phase-promoting factor (MPF) activ-

ity itself is sustained through phosphorylation-dependent feedback 
loops2,3. Mitotic phosphorylations inhibit Wee1 and Myt1, cyclin 
B-dependent kinase 1 (cdk1) inhibitory kinases, activate Cdc25C, 
cdk1-activating phosphatase and implement the spindle assembly 
checkpoint (SAC), a safeguard mechanism that prevents premature 
cdk1 inactivation and anaphase onset by delaying degradation of 
cyclin B and of the anaphase inhibitor securin2–9. Although the 
precise mechanism(s) by which SAC requires phosphorylation is 
still unclear, it has been suggested that phosphorylation of Cdc20 
and USP44 promotes SAC action4,10–12. To return to the interphase 
state, mitotic phosphorylations must be reversed by the end of mito-
sis. Indeed, it has been shown that, downstream of MPF inactiva-
tion, mitosis completion in vertebrate cells requires the action of 
phosphatases like PP1 and PP2A (refs 13,14). However, whether 
reversal of mitotic phosphorylations is required for MPF inactivation  
in vertebrates is unclear.

In this study, by biochemical and genetic experiments in human 
cells, we show that at the end of mitosis timely MPF inactivation 
requires activity of the Fcp1 phosphatase. We identified Cdc20, 
Usp44 and Wee1 as crucial Fcp1 targets. We conclude that Fcp1 is 
required for mitosis exit by reversing phosphorylation of controllers 
of both proteolysis- and phosphorylation-dependent means of MPF 
inactivation.

Results
Fcp1 is required for M-phase exit in HeLa cell extracts. To 
determine whether cdk1 inactivation and anaphase onset required 
reversal of MPF-sustaining phosphorylations, we first analysed the 
effect of the potent PP1 and PP2A phosphatases inhibitor okadaic 
acid (o.a.) on cyclin B degradation in HeLa cells. The cells were 
exiting mitosis on release from SAC-dependent arrest induced 
by the reversible microtubule inhibitor nocodazole. O.a. did not 
prevent cyclin B degradation and anaphase onset nor dissociation 
of the inhibitory SAC protein Mad2 from anaphase-promoting 
complex/cyclosome (APC/C). However, it substantially delayed 
dephosphorylation of several mitotic phosphoepitopes, recognized 
by the MPM-2 monoclonal antibody, and mitosis exit downstream 
cdk1 inactivation (Supplementary Fig. S1), in agreement with 
previously described results13. Under our conditions, o.a. may 
robustly inhibit PP2A but only partly PP1, nevertheless, it has been 
shown that specific PP1 inhibition in checkpoint HeLa cell extracts 
did not prevent cdk1 inactivation14. Thus, if dephosphorylations 
were needed for cdk1 inactivation at mitosis exit they likely involved 
phosphatase(s) other than PP1 and PP2A. In the search for a relevant 
phosphatase(s), we considered recent genetic data from Aspergillus 
nidulans (AN) showing an antagonism between the essential, o.a. 
resistant, RNA polymerase II-carboxy-terminal domain phosphatase 
Fcp1 and cdk1 (ref. 15). In AN, a defective Fcp1 allele genetically 
interacted with an inhibitory phosphorylation-resistant cdk1 allele 
and forced expression of both alleles deranged mitosis and impaired 
nuclear separation15. However, as Fcp1 is a crucial transcription 
regulator, the genetic approach could not discern whether mitotic 
defects were due to lack of Fcp1-dependent dephosphorylation of 
mitotic regulators or rather to changes in gene expression15–17. 
To unveil a direct link between Fcp1 phosphatase activity and 
cdk1 inactivation, extracts from mitotic, SAC-arrested, HeLa cells 
were used that, devoid of nuclei, inactivate SAC, degrade cyclin 
B and progress out of M-phase in vitro (checkpoint extracts18). 
Checkpoint extracts were either mock- or Fcp1-depleted, and  
Fcp1-depleted extracts were also reconstituted with recombinant, 
active, 3XFlag-tagged Fcp1 (3F-Fcp1; Supplementary Fig. S2)17. 
Whereas in control extracts, cyclin degradation was initiated after 
a 120-min lag and extracts exited the mitotic state thereafter, as 

indicated by decline in MPM-2 signal in Fcp1-depleted extracts cyclin 
B and MPM-2 signals remained stable for up to 6 h of incubation  
(Fig. 1a). Importantly, cyclin degradation and M-phase exit were 
restored in 3F-Fcp1-reconstituted extracts (Fig. 1a). Moreover, in 
undepleted extracts, a threefold excess of 3F-Fcp1 accelerated cyclin 
degradation and M-phase exit relatively to a control extract (Fig. 1b). 
The same excess of a mutant, catalytic inactive, Fcp1 version (3F-
Fcp1-CD) on the contrary delayed both events (Fig. 1b). 3F-Fcp1-
CD acted in a dominant negative manner perhaps by interacting with 
endogenous Fcp1 (see Supplementary Fig. S3). Thus, Fcp1 appears to 
be required for M-phase exit independently of its transcriptional role, 
perhaps by directly dephosphorylating crucial mitotic substrates.

Fcp1-dependent dephosphorylations at M-phase exit. To identify 
potential Fcp1 targets for MPF inactivation, we first analysed the 
dephosphorylation kinetics of proteins whose mitotic phosphoryla-
tion has been involved in the control of MPF activity during early 
stages of mitosis exit in cells. We analysed Wee1, Myt1 and Cdc25C, 
controllers of inhibitory cdk1 phosphorylation, and Cdc20, Cdc27, 
an APC/C member, and USP44, controllers of cyclin degradation, 
from HeLa cells sampled at short intervals during release from  
SAC-dependent arrest. Dephosphorylation was monitored by 
detecting increased protein mobility on SDS–polyacrylamide gel 
electrophoresis (PAGE) for all proteins and for Wee1, Myt1, Cdc25C 
and Cdc27 also by loss of site-specific mitotic phosphorylation. We 
developed an antibody recognizing phosphothreonine 239 of Wee1 
(p-T239-Wee1), a crucial phosphorylation for cdk1-dependent 
inhibition of Wee15,8, whereas p-S83-Myt1, p-T48-Cdc25C and 
p-T244-Cdc27 were detected by commercially available antibodies 
(Fig. 2a). USP44 dephosphorylation was followed in cells transiently 
transfected with a V5-tagged USP44 expression vector (Supplemen-
tary Fig. S4). Increased migration of Wee1, USP44, Cdc20 and loss 
of p-T239-Wee1 signal ensued rapidly after release from nocoda-
zole, when cyclin B1 was still stable (by 10–20 min; Fig. 2a,b). This 
was ahead of dephosphorylation of Myt1, Cdc25C and Cdc27, that 
begun at later time points, along with, or slightly after, initiation 
of cyclin B1 degradation (by 30–40 min; Fig. 2a,c). Rapid p-T239-
Wee1 dephosphorylation was also detected during SAC resolution 
in non-transformed human hTERT-RPE1 cells (Supplementary  
Fig. S5). Thus, dephosphorylation of Wee1, Cdc20 and USP44 began 
concomitantly during spindle assembly and apparently before sig-
nificant degradation of cyclin. Like the major biochemical reac-
tions of mitosis exit in living cells, checkpoint extracts reproduced 
the changes in the phosphorylation status of these proteins during 
M-phase exit (see below), thus, we asked whether these changes 
depended on the presence of Fcp1. Indeed, depletion/reconstitution 
experiments showed that dephosphorylation of Wee1, particu-
larly T239-Wee1, Cdc20 and USP44 depended on Fcp1 (Fig. 3a). 
Moreover, activities of Wee1 and USP44 were also dependent on the  
presence of Fcp1 (Fig. 3b,c). Wee1 kinase activity remained low 
in Fcp1-depleted extracts while it increased in control extracts 
and in Fcp1-reconstituted extract that exited M-phase (Fig. 3b). 
Ubiquitin peptidase activity of USP44, measured by an in vitro 
deubiquitination assay10, decreased during incubation in control 
and Fcp1-reconstituted extracts, which cycled from M-phase into 
interphase, whereas it remained high in Fcp1-depleted extract for 
the duration of the experiment (Fig. 3c). USP44 activity has been 
shown to help to maintain the binding of the SAC inhibitory Mad2 
to Cdc20 and to regulate Cdc20 ubiquitination10,19. Indeed, we 
found that more than 90% of Mad2 had dissociated from Cdc20 
after a 4-h incubation in control and Fcp1-reconstituted extracts, 
whereas dissociation was prevented in the Fcp1-depleted extract 
(Fig. 3d). In addition, while in control and Fcp1-reconstituted 
extracts about 60–70% of Cdc20 was degraded during incubation, 
Cdc20 remained stable in the Fcp1-depleted extract (Fig. 3d), fur-
ther suggesting a functional relationship between Fcp1 and USP44 
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(refs 10,19). We also found that a short treatment with a cdk1  
inhibitor accelerated Wee1, Cdc20 and USP44 dephosphorylations 
in control extracts but it failed to do so in Fcp1-depleted extracts 
(Fig. 3e). Together, these data strongly suggest that Fcp1 is required 
for MPF inactivation by reversing crucial mitotic phosphorylations 
and indicate a direct antagonism between Fcp1 and cdk1.

Putative direct Fcp1 targets for M-phase exit. We asked whether 
Fcp1 could directly dephosphorylate the relevant substrates for exit 
from mitosis. In vitro, active 3F-Fcp1 dephosphorylated mitotic 
Wee1, Cdc20 and USP44 but not Cdc27 (Fig. 4a,b). When ana-
lysed by SDS–PAGE, 3F-Fcp1-dephosphorylated proteins had an 
intermediate migration between that from SAC-arrested and G1 
cells (Fig. 4a), indicating that Fcp1 dephosphorylated only a sub-
set of phosphosites in these proteins, perhaps favouring the action 
of other phosphatases1,14,15. Several reports have demonstrated 
the relevance for mitotic phosphoryation of Cdc20 and Wee1, 
particularly p-T239-Wee1, in the control of their activies towards 
MPF5,7,8,11,12. USP44 activity has also been hypothesized to be 
regulated by phosphorylation, in particular, mitotic phosphoryla-
tion is thought to stimulate its deubiquitinating activity required to 
sustain SAC10. We found that pretreatment of active USP44 in vitro, 
isolated from SAC-arrested cells, with active 3F-Fcp1 substantially 
reduced USP44 ubiquitin peptidase activity, whereas pretreatment 
with the catalytic dead 3F-Fcp1-CD mutant had little effect (Fig. 4c). 
In addition, we produced a mutant human USP44 (USP44-4A) pro-
tein that cannot be phosphorylated at four potential cdk1 or mitotic 
sites (ser-169, -239, -401 and threo-269). When expressed and ana-
lysed in SAC-arrested cells, USP44-4A showed a faster migration  

on SDS–PAGE than wild-type USP44, suggesting that these resi-
dues are phosphorylated under active SAC conditions in cells  
(Fig. 4d). In addition, when assayed in vitro, USP44-4A had signifi-
cantly reduced ubiquitin peptidase activity compared with wild-type 
USP44 (Fig. 4e). These findings provide a mechanistic explanation 
for how Fcp1 activity could promote exit from mitosis and suggest 
that Fcp1 may directly promote crucial dephosphorylations that are 
required for MPF inactivation.

Fcp1 affects mitotis exit in human cells. Having established that 
Fcp1 phosphatase activity is required for MPF inactivation inde-
pendently of its effects on transcription regulation in the in vitro 
checkpoint extract system, we asked whether Fcp1 affected SAC res-
olution and mitosis exit in living cells. Strong Fcp1 downregulation 
could be obtained in HeLa cells by treatment with a pool of small 
interfering RNA (siRNA) targeting the Fcp1-coding region (Fig. 5a)  
or with one siRNA targeting a segment of the Fcp1 3′ untrans-
lated region (UTR; Fig. 5b). Strong Fcp1 downregulation delayed 
cell cycle progression at different cell cycle stages, however, Fcp1-
siRNA-treated cells that could be SAC-arrested, following nocoda-
zole treatment, were substantially delayed in cyclin B1 degradation 
and mitosis exit upon release from SAC-arrest (Fig. 5a). Although 
we cannot exclude subtle alterations in spindle assembly, morpho-
logical analysis indicated that Fcp1-siRNA-treated cells progressed 
into metaphase with similar kinetics as control cells but were delayed 
thereafter. In Fcp1-siRNA-UTR-treated cells, the mitosis exit delay 
was reversed by re-expression of siRNA-resistant 3F-Fcp1 (Fig. 5b,c).  
We asked whether overexpression of 3F-Fcp1 or the catalytically 
dead 3F-Fcp1-CD mutant would affect mitosis exit in HeLa cells 
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similar to what was observed in checkpoint extracts. Indeed, HeLa 
cells overexpressing 3F-Fcp1, about threefold over endogenous 
Fcp1 levels, showed an acceleration in exiting mitosis upon SAC 
resolution while expression of the same level of 3F-Fcp1-CD signifi-
cantly delayed mitosis exit kinetics upon SAC resolution (Fig. 5d,e).  
These data confirm the requirement for Fcp1 in SAC-dependent  
arrest resolution in living cells. Although Fcp1 overexpressing 
cells tended to adapt and exit mitosis inspite of an impaired spin-
dle assembly, relatively faster than control cells upon prolonged 
incubation in nocodazole, they were efficiently SAC-arrested after 
a 14-h nocodazole treatment. In Fcp1 overexpressing cells, adapta-
tion was significantly accelerated when SAC was induced by taxol, 

a microtubule poison that affects spindle assembly by impairing 
microtubule depolymerization rather than polymerization like 
nocodazole (Fig. 5f). That Fcp1-overexpressing cells adapted more 
rapidly under taxol rather than nocodazole may reflect the fact that 
either the two poisons have different potency in stimulating SAC,  
for instance in activating SAC effector proteins, or that Fcp1 action 
may be favoured by structural requirements including kineto-
chore-spindle pole microtubule-mediated connection, that form in  
rudimental spindles under taxol rather than nocodazole regimen. 
That Fcp1 was required to reverse the inhibitory effects of an acti-
vated SAC on MPF inactivation was also indicated by the finding 
that Fcp1-siRNA-treated cells were resistant to the SAC override 
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induced by reversine, an inhibitor of the SAC kinase Mps1 (ref. 20; 
Fig. 5g).

Requirements for Fcp1 action at mitosis exit. Recent evidence 
has shown that SAC silencing requires APC/C-dependent ubiqui-
tination and proteolysis, in a mutual antagonism between APC/C 
and SAC10,21,22. As previously described for Cdc20 dephosphory-
lation and Mad2 dissociation from the APC/C–Cdc20 complex21, 
we found that Wee1 and USP44 dephosphorylation was prevented 

when cells were released from nocodazole arrest into a proteasome 
inhibitor-containing medium (Supplementary Fig. S6). In addition, 
by coimmunoprecipitation experiments Fcp1 was shown to tran-
siently interacted with Cdc27 shortly after release from nocodazole 
arrest (Fig. 6a), and that p-T239-Wee1 dephosphorylation was pre-
vented in cells depleted of Cdc27 by siRNAs, even after prolonged 
incubation following nocodazole release (Fig. 6b). Although lack of 
APC/C-dependent proteolysis may be rather indirectly required for 
Fcp1 action, our data suggest that the two functions are linked in a 
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feedforward loop for exit from mitosis. Assays of total Fcp1 activity 
from cells before and after SAC resolution did not reveal significant 
changes (Supplementary Fig. S7). Thus, either Fcp1 activity is con-
stant and its substrate accessibility is regulated or activity of a small 
fraction of total Fcp1, localized at particular subcellular compart-
ments, is regulated perhaps through an ubiquitination-proteolysis 
sensitive mechanism. Further work will be required to establish  
how Fcp1 action is precisely regulated. Nevertheless, in agreement 
with the idea that localized Fcp1 may be relevant for SAC inactiva-
tion and mitosis exit, recent observations indicated that Fcp1 local-
izes at centromeres in chromosomes isolated from mitotic cells23. 

Moreover, analysing Fcp1 localization by indirect immunofluo-
rescence in fixed mitotic cells, we found that Fcp1 was detectable 
at centrosomes in prometaphase, at spindle and spindle poles in  
metaphase and at spindle midzone and midbody in anaphase and 
telophase-G1, respectively, thus, regulation of spindle localized 
Fcp1 activity might be crucial for mitosis exit (Fig. 6c). In addition, 
Fcp1 localization also suggests that the phosphatase might have fur-
ther roles in anaphase and cytokinesis. Some APC/C members have 
been shown to localize at spindle poles and at unattached kineto-
chores, where they could be bound to inhibitory SAC proteins24, 
whereas some SAC proteins have been show to relocalize from 
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kinetochores to spindle poles upon bi-orientation4,25. Fcp1 might 
be activated upon spindle assembly at spindle poles where, in turn, 
it may act to silence the SAC.

Discussion
Together our data demonstrate a crucial role for Fcp1 phosphatase in 
the exit from mitosis. By targeting Cdc20 and USP44, Fcp1 appears 
to be required to reverse SAC-sustaining phosphorylations. At the 
same time, by targeting the cdk1 inhibitory kinase Wee1, Fcp1 
reverses phosphorylation-dependent means of cdk1 inhibition,  

suggesting that, like in embryonic systems, this mechanism is an 
integral component of the somatic cell mitosis exit programme9. 
Indeed, our preliminary data indicate that inhibitory phosphoryla-
tion of cdk1 affects cyclin degradation and correct anaphase exe-
cution in somatic human cells as well (RDM, LP, AP, RV and DG, 
unpublished results). Downstream cdk1 inactivation, PP1 and PP2A 
appear to be required for mitosis completion in vertebrates13,14. 
Thus, these phosphatases are likely to take the upper hand and 
complete mitosis exit once cdk1 inactivation has begun in a Fcp1-
dependent manner. Nevertheless, it is possible that Fcp1 action  
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may begin cdk1 inactivation and, at the same time, promote the 
action of other phosphatase. In this regard, it will be interesting 
to investigate a possible relationship between Fcp1 and Greatwall 
kinase, a major kinase controlling PP2A activity in mitosis26,27. 
Although we do not know the precise mechanisms that regulate 
Fcp1 activity at M-phase exit, our data suggest that Fcp1 promotes 
SAC resolution by helping the SAC-silencing capacity of APC/C 
and reducing localized cdk1 activity4,9,11,23–25,28. During spin-
dle assembly, an activatory relationship between APC/C and Fcp1 
keeps resolving binding of activated SAC proteins to APC/CCdc20; 
however, SAC proteins are continuously activated and reloaded 
onto APC/CCdc20 at unattached kinetochores. As chromosome 

attachment and bi-orientation proceeds SAC robustness weakens. 
This way, cdk1 inactivation and anaphase onset ensues once SAC 
proteins activation has dropped to a minimum upon bi-orientation 
of the last replicated chromosome. As Fcp1 also resets RNAP II at 
the end of mitosis to allow transcription resumption in daughter 
cells16,29,30, our data suggest that the phosphatase has a crucial role 
in coordinating cell division with gene transcription.

Methods
Checkpoint extracts preparation. To prepare checkpoint extracts, HeLa cells 
arrested at the G1-S boundary by a double thymidine (2 mM) block were released 
into nocodazole (100 ng ml − 1) for 11 h. Detached cell were washed once with  
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ice-cold PBS and lysed in 75% pellet volume with extraction buffer (20 mM 
HEPES, pH 7.6, 5 mM KCl, 1 mM dithiothreitol) by three freeze–thaw cycles. 
Lysate was centrifuged at 16,000g for 1 h at 4 °C and supernatant stored in small 
aliquots at  − 80 °C after addition of 5 mM MgCl2 and 10% glycerol. On thawing, 
extracts were supplemented with a 20× energy regeneration mix (to give final 
concentration of 1 mM ATP, 10 mM phosphocreatine and 0.1 mg ml − 1 creatine 
phosphokinase) before incubation at 23 °C. For immunodepletion experiments, 
energy regeneration mix was added after the immunodepletion procedure, just 
before incubation. Where indicated, RO 3306 was added at 10 µM.

Cell culture and recombinant protein production. HeLa and human embryonic 
kidney (HEK) 293 T cells were grown and treated as described21. HTERT-RPE1 
cells were grown in DMEM/F12 + 10% fetal bovine serum. Nocodazole was used  
at 100 nM, taxol at 1 µM, o.a. at 1 µM (Calbiochem). Expression vector transfec-
tions were performed with FuGENE 6 (Roche), according to the manufactur-
er’s specifications. V5-USP44 expression vector was obtained by transferring 
pENTR221-USP44 clone into V5-tagged pcDNA3.1 vector (Invitrogen). To  
generate the USP44-4A mutant, ser-169, -239, -401 and threo-269 of human 
USP44 were mutagenized into alanine (5′-GGTAAAATCTTTCGAACATGGT 
TTGAACAAGCACCCATTGGAAGAAA-3′; 5′-CAGCACAAACGCCAG 
CAGCACCAGCAAAAGATAAA-3′; 5′-GAAAGTGGGCGTTGGTCGCAC 
CATTTGCTATGCTA-3′; 5′-TCAGTTAAACGAAGGCCAATAGTAGCTC 
CTGGTGTAAC-3′) by QuikChange II XL-sitedirected mutagenesis kit (Agilent 
Technologies) using the V5-tagged pcDNA3.1 USP44 vector as template. For  
siRNAs experiments, HeLa cells were transfected with ON-TARGETplus SMART-
pool targeting Cdc27 and Fcp1 (coding region) and with ON-TARGETplus non-
targeting pool as a control (Thermo Scientific Dharmacon). The siRNA targeting 
the 3′UTR of human Fcp1 (5′-GUAAGUGACAGGUGUUAAA-3′) was purchased 
from Dharmacon. Downregulation by more than 90% of the proteins was obtained 
after a 48-h transfection for Cdc27, and after a 72-h transfection for Fcp1. To 
generate the Fcp1 catalytic inactive version, aspartic acid residue 188 of human 
Fcp1, the first aspartic acid in the DxDxT/V catalytic signature30, was mutagenized 
into asparagine (5′-CTGGTGCTCATGGTGAACTTGGACCAGACGT-3′) by 
QuikChange II XL-site-directed mutagenesis kit using the 3XFlag-Fcp1 expres-
sion construct17 as template. 3XFlag-tagged Fcp1 proteins were prepared from 
HEK-293 T 72-h post p3XFLAG-CMV-10-Fcp1 transfection17. Cell lysates were 
incubated with an anti-FLAG M2 affinity gel (Sigma) at 4 °C for 1 h. Beads were 
extensively washed with lysis buffer and extraction buffer (EXB; 20 mM HEPES, 
pH 7.6, 5 mM KCl, 1 mM dithiothreitol) and protein eluted in EXB + 100 µg ml − 1 
3XFLAG peptide (Sigma). Recombinant Xenopus cyclin B and catalytic dead cdk1 
(KR) mutant were a gift of Julian Gannon.

Immunological procedures. Anti-p-ser-83-Myt1, anti-Myt1, anti-p-thr-48-Cdc25C 
and anti-p-tyr-15-cdk1 antibodies were from Cell Signaling Technology. Anti- 
p-thr-244-Cdc27 antibody was from Novus Biologicals. Anti-MPM-2 antibody 
was from Millipore. Monoclonal anti-FLAG M2 and anti-V5 agarose-conjugate 
were from Sigma. Unconjugated anti-V5 antibody was from Invitrogen. Anti-Fcp1 
antibodies were from Bethyl laboratories and Santa Cruz Biotechnology. Rabbit 
polyclonal antibodies against phosphothreonine 239 of human Wee1 were raised 
using PQVNINPF(p)TPDSLL peptide as immunogen; peptide synthesis, rabbit  
inoculation, serum production and cross-affinity antibody purification were 
carried out by Polypeptide Group. Other antibodies were from Santa Cruz Bio-
technology. Immunofluorescence staining was performed as described21, using 
an anti-Fcp1 antibody from Santa Cruz Biotechnology. Immunoprecipitations 
and immunoblots were performed as described21. Densitometric quantifications 
of immunoblot signal intensity were performed by using the ImageJ software. 
For immunodepletion experiments, 20 µg of anti-Fcp1 Igs (10 µg, Santa Cruz 
Biotechnology + 10 µg Bethyl) or 20 µg of nonimmune Igs, as control, were pread-
sorbed to protein A + G-agarose beads (20 µl of a 50% EXB/protein A + G-agarose 
beads) by rotation overnight at 4 °C. Checkpoint extracts were incubated with 
1/10 volume packed pre-adsorbed beads on rotation for 90 min at 4 °C. Samples 
were spun at 16,000g for 5 min at 4 °C and supernatants isolated. In reconstitution 
experiments, 40 ng µl − 1 of recombinant 3F-Fcp1 was added back to Fcp1-depleted 
extracts (1/20 of extract volume); addition of same volume of elution buffer,  
without 3F-Fcp1, to Fcp1-depleted extracts had no effect.

In vitro treatments and deubiquitination assay. Substrates for in vitro dephos-
phorylation, immunoprecipitated from nocodazole-arrested HeLa cells, were 
washed in Fcp1 phosphatase assay buffer (FPAB; 20 mM HEPES, pH 7.6, 10 mM 
MgCl2, 1 mM dithiothreitol), mixed and incubated at 23 °C for 30 min in constant 
mixing with FPAB + 1/10 volume of EXB + 100 µg ml − 1 FLAG peptide, as control, 
and with FPAB + 1/10 volume of EXB + 100 µg ml − 1 3XFLAG peptide + eluted  
3F-Fcp1 protein, plus or minus 120 mM KCl. For USP44 deubiquitination assay,  
and USP44 pretreatment with Fcp1, V5-USP44 immunoprecipitated from 
V5-USP44-transfected or mock-transfected, nocodazole-arrested HeLa cells, 
were washed once in FPAB and mixed with FPAB containing 1/10 volume of 
EXB + 100 µg ml − 1 FLAG peptide, as control, or FPAB containing 1/10 volume  
of EXB + 100 µg ml − 1 FLAG peptide + eluted 3F-Fcp1 protein. Following  
incubation at 23 °C for 30 min in constant mixing, beads were washed with 

deubiquitination buffer (25 mM Tris–HCl pH 7.5, 50 mM NaCl, 10 mM MgCl2, 
2 mM dithiothreitol, 15 mM creatine phosphate, 2 mM ATP) and incubated again 
with polyubiquitin chains (Ub3-7, Boston Biochem) in deubiquitination buffer for 
60 min at 30 °C in constant mixing. Supernatants, separated on 16% acrylamide 
SDS–PAGE, were probed with an anti-ubiquitin antibody. To assay USP44 from 
mock-depleted, Fcp1-depleted and Fcp1-reconstituted extracts, beads containing 
V5-USP44 immunoprecipitates from V5-USP44-transfected, nocodazole- 
arrested, HeLa cells were mixed with extracts aliquots taken at time 0 or after 4 h 
from start of incubation at 23 °C. V5-USP44 beads were incubated with extracts 
aliquots for further 30 min at 23 °C in constant shaking. V5-USP44 beads were 
reisolated and, then, washed and assayed for deubiquitination activity as described 
above. Wee1 activity was assayed by mixing 3XFlag-tagged Wee1, isolated from 
3-F-Wee1 expression vector (a gift of Vincenzo D’Angiolella) -transfected and 
nocodazole-arrested HeLa cells, with extract aliquots taken either at time 0 or  
after a 4-h preincubation at 23 °C. After further 30 min incubation at 23 °C, Wee1 
was reisolated and its kinase activity was assayed using recombinant, catalytic  
dead, cyclin B–cdk1(KR) complex as substrate during 0, 5 and 10 min of kinase 
reaction time. Samples were SDS–PAGE separated, blotted and probed with an 
anti-p-Y15-cdk1 antibody. 
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