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Abstract. In human-robot interaction, addressing disparities in action
perception is vital for fostering effective collaboration. Our study delves
into the integration of explanatory mechanisms during robotic actions,
focusing on aligning robot perspectives with the human’s knowledge and
beliefs. A comprehensive study involving 143 participants showed that
providing explanations significantly enhances transparency compared to
scenarios where no explanations are offered. However, intriguingly, lower
transparency ratings were observed when these explanations considered
participants’ existing knowledge. This observation underscores the nu-
anced interplay between explanation mechanisms and human perception
of transparency in the context of human-robot interaction. These prelim-
inary findings contribute to emphasize the crucial role of explanations in
enhancing transparency and highlight the need for further investigation
to understand the multifaceted dynamics at play.
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1 Introduction

Robots are engineered with specific tasks and objectives in mind; however, their
actions may not always be readily understandable to humans. This lack of under-
standing can cause users to overestimate a robot’s capabilities, a phenomenon
known as overtrust [11]. Furthermore, the physical design elements of robots,
encompassing their appearance and vocal attributes, significantly mould users’
perceptions and expectations, highlighting the importance of considering Theory
of Mind principles in designing robots that can better adapt to users’ mental
states.
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To tackle these challenges, researchers have turned their attention to the use
of verbal explanations to elucidate the decision-making processes of black-box
algorithms. These techniques can be adapted to expound upon robotic actions,
rendering them more comprehensible to human users [3]. The explanations prof-
fered by robots hold substantial influence over how users perceive and engage
with them since they can augment the anthropomorphic qualities of robots,
thereby endowing robots with a more dynamic and human-like demeanour [12].

In this context, we believe that it is essential to consider the concept of the
Theory of Mind with a robot providing explanations. Theory of Mind refers to
the ability to attribute mental states, such as beliefs, intentions, and desires, to
oneself and others. It has been shown that users might attribute mental states to
a robot during the interaction [5]. On the contrary, the capability of reasoning
on the user’s possible mental states increases adaptability and efficiency [13].
Indeed, robots that can adapt their explanations based on the user’s beliefs
and knowledge levels can create a more intuitive and human-like interaction
experience [8]. This adaptability enhances the robot’s ability to communicate
effectively and fosters a sense of understanding between the user and the robot.
This understanding can lead to more contextually relevant explanations, which,
in turn, could contribute to increased transparency.

This paper provides a contribution to exploring strategies to enhance Human-
Robot Interaction (HRI) transparency and efficacy. We delve into the complex
decision-making process that underpins selecting aspects of a robot’s behaviour
to be elucidated to users. Furthermore, we comprehensively examine the corre-
lation between explanations that consider the human beliefs and the resultant
perception of transparency. These preliminary findings provide insights into the
ever-evolving landscape of HRI and towards advancing collaboration and trans-
parency in robot behaviour.

2 Related Work

The importance of providing clear explanations for robot actions is widely ac-
knowledged in HRI, yet a comprehensive understanding of how these explana-
tions affect user perception remains a topic of ongoing investigation.

Ambsdorf et al. [1] conducted an online study to explore the impact of ex-
plainable robots on human perception. They designed a scenario where two sim-
ulated robots engaged in a competitive board game. One of the robots explained
its moves, while the other simply announced them. The results revealed that the
robot providing explanations was perceived as more dynamic and human-like.
However, it also raised an important point that humans might still have reser-
vations about trusting a robot’s ability to perform tasks, even when it offers
explanations.

Stange et al. [16] proposed an architecture for the social robot Pepper that
allows it to interact autonomously with users and explain its behaviour based
on the user’s verbal requests during the interaction. Although their architecture
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showed promise for creating robots with explainable autonomous behaviour, they
did not investigate how these explanations influenced user perception.

Nikolaidis et al. [10] introduced a formalism that enables a robot to make
decisions about whether to take action or provide explanations to a human
teammate optimally. They employed verbal commands to guide humans and
used state-explaining actions, where the robot explained its internal state while
performing the task. Their study found that issuing verbal commands was the
most effective way to communicate objectives while maintaining user trust in
the robot.

In these studies, while the positive impact of explanations on HRI is evident,
it is crucial to note that understanding human knowledge and beliefs and tailor-
ing explanations accordingly remains a challenge to be explored. This aspect of
considering the user’s existing knowledge during explanations can significantly
influence how humans perceive and trust robots in various tasks and scenarios.

3 Proposed Approach

To enhance transparency and mutual understanding within HRI, our proposed
approach draws inspiration from the recent work by Sreedharan et al. [15], and
centres on the concept of generating explanations as a process of reconciliation
between plans generated from different world models. This approach is partic-
ularly relevant in scenarios where the interaction involves dynamic elements. In
this dynamic scenario, we employ a framework rooted in knowledge representa-
tion and automated planning. Specifically, we leverage the ROSPlan framework,
a robust tool for knowledge-based planning [4] and utilize Planning Domain
Definition Language to model the knowledge states of both the robot and the
human within the interaction context.

In this context, we consider a dynamic scenario where a change occurs within
the environment during the task. Importantly, the robot’s knowledge is updated
to reflect this new information, whereas the human remains unaware of this
change. This shift creates a fundamental disparity in their knowledge states and
perspectives. In response to these dynamic changes, our approach employs the
Fast Forward algorithm to derive optimal sequences of actions for both entities.
The robot plans its actions while considering the updated information, whereas
the human operates with their previous knowledge. These differing knowledge
states become pivotal in shaping the explanations provided by the robot.

The robot’s explanations are adapted to accommodate the cognitive diver-
gence resulting from the changing environment. When the robot explains its
actions, it considers both its own and the human’s knowledge. For instance,
if the robot reaches the goal of a task, it offers an explanation that aligns with
the human’s perspective. Considering their differing knowledge states, this could
ensure that the robot’s actions are more transparent and comprehensible to hu-
mans. Our approach relies in comparing these computed action sequences and
recognizing instances where their knowledge diverges due to the changing of the
environment. These disparities serve as valuable cues for tailoring explanations
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that resonate with the human cognitive model, taking into account the evolving
perspective caused by this change. Consequently, our approach facilitates the
delivery of more constructive and contextually relevant explanations, consider-
ing the nuanced differences in knowledge and perception induced by dynamic
elements. The combination of knowledge representation, automated planning,
and a focus on cognitive divergence empowers the robot to elucidate its actions
that align with the human’s evolving perspective in these dynamic scenarios.

3.1 The Scenario

We employed a “fetch-and-carry” task [7], which is a simple interactive scenario
to assess the explanations and the transparency derived from them in an HRI
context. The robot navigated in the environment (see Figure 1), retrieved an item
with a dynamic position (i.e., a drink), and delivered it to the virtual human.

Fig. 1: The Employed Virtual Environment consists of five rooms.

To investigate the influence of considering human knowledge on the expla-
nations in Transparency, we implemented three conditions:

– Condition 1 (C1): This condition served as the baseline and involved the
robot not providing any explanations.

– Condition 2 (C2): In this condition, the robot offered an initial verbaliza-
tion of its actions (“I have to get the drink”) and a subsequent explanation
after completing the actions (“The drink was in the living room”).

– Condition 3 (C3): This condition integrated both the robot’s initial expla-
nation and the explanation after completing the action, along with knowledge
about the human’s preferences (“I have to take the drink, but it is not in
the kitchen” and “The drink was not in the kitchen but was in the living
room”).
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In light of the existing literature, we formulated the following hypotheses to
guide our investigation:

– Hypothesis 1 (H1): The condition where the robot provides explanations
(C2, C3) produces a more transparent mechanism than in the condition
where a robot does not provide explanations. This hypothesis aligns with
previous findings by Felzmann et al. [6], which demonstrated that providing
explanations could enhance the transparency of robotic systems.

– Hypothesis 2 (H2): The condition in which the robot considers human
knowledge into the explanations (C3) results in behaviour that is more trans-
parent than the other mechanisms that do not consider human knowledge
(C1, C2). This hypothesis builds on the findings of Milliez et al. [9], which
suggested that adapting the explanations to the human’s knowledge can lead
to the robot being perceived as smarter.

4 User Study

An online between-subject study was conducted to assess the designed exper-
imental mechanisms. We advertised the study via relevant email lists and on
several social media platforms. We also used snowball sampling by asking par-
ticipants to share the study information with interested friends and colleagues.

4.1 Procedure and Measurements

Initially, participants were required to complete a series of questions concerning
their demographic information and prior experience with robots. Upon complet-
ing these questions, participants proceed to watch a video. The video displayed
a static map labelled with room locations, the user’s position, and the drink’s
location (see Figure 1).

Following this static map presentation, a second video segment commenced,
wherein participants were presented with a first-person perspective from the
human’s point of view. This perspective allowed participants to have a partial
observation of both the robotic entity and the surrounding kitchen environment
(see Figure 2). During this video segment, the robot initiated the “fetch-and-
carry” task. In the context of our experimental procedure, a deliberate inter-
ruption of the video was introduced as an essential component to gauge the
transparency of the robot’s actions during the task execution. This interruption
was incorporated to solicit participants’ evaluations of the robot’s behaviour and
happened when the robot exited their field of view of the human (in conditions
C2 and C3, the robot had provided an explanation before the action).

To expound further on this approach, participants were prompted to provide
assessments regarding the robot’s Legibility, Predictability and Expectability, as
these factors collectively contribute to the construct of Transparency [2]. More
specifically, participants were asked to answer the following:
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Fig. 2: The perspective of the virtual human.

– To what extent do you know why the robot moves the way it does? (Legibil-
ity).

– How well do you know what the robot will do next? (Predictability).

– To what extent does the robot behave as expected? (Expectability).

After responding, participants continued watching the remaining video. Upon
completion, they were asked to fill out the Human-Robot Interaction Evaluation
Scale (HRIES) Questionnaire assessing their perception of the robot [14]. But
also 5-Likert scale questions regarding the overall Transparency of the robot:

– To what extent do you know why the robot moved the way it did? (Legibil-
ity).

– To what extent did you know what the robot would do next? (Predictability).

– To what extent did the robot behave as you expected? (Expectability).

It is important to notice that the video’s content remained consistent across
all conditions, with only the verbal explanations differing.

5 Results

In the conducted online study, we initially recruited a total of 178 participants.
After careful screening, one participant was excluded due to being below the
age of 18, while an additional seven participants were removed. These seven
participants were disqualified based on the following criteria: duplicate survey
submissions and the presence of extreme outlier scores across multiple measured
variables. Consequently, the final set for analysis comprised 143 participants,
consisting of 86 males and 57 females, with no non-binary or other genders.
This resulted in an effect size of d = 0.25 with a power of 0.90 at an alpha
level of 0.05. The participants exhibited a diverse age range spanning from 18
to 60 years (Mean=39.16, Std. Deviation=15.84). The majority of respondents
(61.5%) reported no prior experience with robots. Furthermore, we observed that
they had no negative bias towards robots (Mean=2.44, Std. Deviation=1.05).



Using Theory of Mind in Explanations for Fostering Transparency in HRI. 7

5.1 System’s Transparency

A series of t-tests were conducted to examine the differences in the charac-
teristics of Transparency between the different conditions. Within the context
of C1 and C2, statistically significant variations were observed in the Legi-
bility of the robot’s actions before pausing (t(76.074) = −4.979, p < .001),
as well as in the Predictability (t(94) = −7.143, p < 0.001) and Expectabil-
ity (t(94) = −3.662, p < .001) of its behaviour prior to a pause. Similarly,
post-pausing, significant differences were detected in Legibility (t(80.731) =
−4.252, p < .001) and Predictability (t(94) = −4.212, p < .001), as well as
Expectability (t(94) = −3.455, p < .001).

In the case of C1 and C3, noteworthy disparities were identified in the robot’s
Legibility before pausing (t(78.552) = −4.776, p < .001), Predictability before
pausing (t(97) = −5.173, p < .001), and Expectability before pausing (t(97) =
−4.466, p < .001). Post-pause, significant distinctions were also evident in Leg-
ibility (t(80.053) = −3.332, p < .001) and Expectability (t(97) = −3.880, p <
.001), whereas Predictability exhibited a significant difference (t(97) = −2.500, p =
.014).

Conversely, in the comparison of C2 and C3, no statistically significant differ-
ences were discerned in the Legibility before pausing (t(89) = 0.052, p = .479),
Predictability before pausing (t(89) = 1.589, p = .058), or Expectability before
pausing (t(89) = −0.832, p = .204). Nevertheless, post to a pause, no significant
differences were found in Legibility (t(89) = −0.557, p = .290) or Expectability
(t(89) = −0.366, p = .358). Post-pause Predictability exhibited a statistically
significant difference (t(89) = 1.786, p = .039), indicating distinguishable out-
comes between C2 and C3. For visual clarity, Figure 3 provides graphical rep-
resentations of the data, illustrating the variations in Legibility, Predictability,
and Expectability across the different experimental conditions.

In our analysis of Transparency, we sought to evaluate its degree both before
and after the pause. The results are depicted in Figure 4. To assess the de-
gree of Transparency before the pause, we employed a factor analysis approach
that integrates three key components: Legibility, Predictability, and Expectabil-
ity. We first evaluated the dataset’s suitability for factor analysis by examining
the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy, which yielded a
KMO value of 0.644, indicating its appropriateness for this analytical technique.
Subsequently, we examined the factor loadings derived from our comprehensive
analysis. Specifically, our data unveiled factor loadings of 0.858 for Legibility,
0.715 for Predictability, and 0.860 for Expectability. These loadings underscore
the significant contributions of all three constituent elements to the overarching
construct of Transparency, with Expectability emerging as the most influential
factor, closely followed by Legibility and Predictability.

To calculate the relative importance of each component, we normalize the
standardized factor loadings by dividing them by the sum of all three standard-
ized loadings. The resulting relative importance scores are as follows: R(L) :
0.352, R(P) : 0.294, and R(E) : 0.354. Utilizing these weights in a weighted sum
formula, we obtain the pre-transparency score:
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Fig. 3: Legibility, Predictability, and Expectability for each Condition (* for p <
0.05 and ** for p ≤ 0.001).

Tpre = 0.352× Legibpre + 0.294× Predictpre + 0.354× Expectpre (1)

We conducted a similar factor analysis on the Transparency assessment after
the pause. However, it is important to note that the KMO measure of sampling
adequacy in this analysis yielded a value of 0.5, which is slightly below the pre-
ferred threshold for robust factor analysis. Nevertheless, the chi-square statistic
of 29.670, coupled with a significance level less than 0.0001, indicated a statis-
tically significant relationship among the variables, justifying the continuation
of the factor analysis. From this, we obtained factor loadings that revealed the
relative contributions of each variable to Transparency after the pause. Legibility
had the most substantial influence with a factor loading of 0.901, followed by
Expectability (0.813) and Predictability (0.523).

To calculate the relative importance of these components, we again normal-
ized the standardized factor loadings and obtained the following relative im-
portance scores: R(L) : 0.402, R(P) : 0.234, and R(E) : 0.363. Utilizing these
weights in a weighted sum formula, we obtain the post-transparency score:

Tpost = 0.402× Legibpost + 0.234× Predictpost + 0.363× Expectpost (2)
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Pre-Paused Transparency Post-Paused Transparency
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C1: NO EXPL C2: INITIAL AND POST ACTION EXPL C3: INITIAL AND POST ACTION EXPL CONSIDERING HUMAN'S KNOWLEDGE

Fig. 4: Transparency for each Condition (* for p < 0.05 and ** for p ≤ 0.001).

5.2 HRIES Ratings

In the initial phase of the investigation, an assessment of the internal reliability of
the HRIES questionnaire was conducted. The results revealed Cronbach’s alpha
coefficients for the Sociability, Animacy, Agency, and Disturbance factors as
follows: αSociability = 0.70, αAnimacy = 0.75, αAgency = 0.71, and αDisturbance =
0.66. However, it is noteworthy that the Cronbach’s alpha coefficient for the
Disturbance factor fell within an unacceptable range. In light of this finding, the
item “Uncanny” was eliminated from the Disturbance factor. Subsequent to this
adjustment, a revised Cronbach’s alpha coefficient for the Disturbance factor
yielded αDisturbance = 0.81.

To assess variations in HRIES factors across different conditions, a series of
t-tests were conducted. The results are depicted in Figure 5. Notably, in the con-
text of the Sociability dimension, a statistically significant difference emerged
between C1 and C2 (t(80.936) = −1.872, p = .032), indicating that partici-
pants assigned more positive evaluations to C2 in terms of sociability. Con-
versely, in the Animacy dimension, no statistically significant differences were
detected among the conditions, signifying consistent participant evaluations of
animacy across conditions. In contrast, for the Agency factor, a statistically sig-
nificant difference was noted between C1 and C2 (t(94) = −1.810, p = .037),
with C2 receiving higher ratings in terms of agency. Lastly, in the Disturbance
dimension, a statistically significant difference was observed between C1 and C2
(t(81.790) = −2.147, p = .017), indicating that C2 was associated with a higher
level of perceived disturbance compared to C1. Sociability, Agency, and Ani-
macy dimensions positively correlate with anthropomorphism [14]; the results
thus suggest an increase in the robot’s anthropomorphism in C2.

5.3 Evaluation of the Experimental Results

This study aimed to assess the mechanisms underlying explanations and their
effect on transparency. Our results have confirmed Hypothesis 1 by showing that
the provision of explanations by the robot (C2, C3) yields a more transparent
mechanism than a robot without any explanatory discourse. Of particular signif-
icance is the observation that C3, where explanations were provided while taking
into account participants’ knowledge, received lower transparency ratings com-
pared to C2, where explanations were given without considering participants’
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Sociability Animacy Agency Disturbance
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C1: NO EXPL C2: INITIAL AND POST ACTION EXPL C3: INITIAL AND POST ACTION EXPL CONSIDERING HUMAN'S KNOWLEDGE

Fig. 5: Results of the HRIES questionnaire for each Condition (* for p < 0.05
and ** for p ≤ 0.001).

knowledge. This outcome finds support in the higher rating received by C2 on
the HRIES questionnaire, which is consistent with previous research [17] that
emphasized the influence of transparency on anthropomorphism. Consequently,
our findings did not confirm Hypothesis 2.

This divergence in transparency ratings between C2 and C3 may be at-
tributed to several factors. Firstly, it is plausible that C3 introduced additional
information, potentially resulting in a heightened cognitive load for participants.
This increased cognitive burden could have rendered it more challenging for
participants to effectively process and integrate the supplementary information,
subsequently diminishing the perceived transparency of the explanations pro-
vided. Moreover, the combination of both the robot’s and human’s knowledge
in C3 might have been perceived as intricate or redundant, thereby diminishing
the clarity of the robot’s intentions. Further investigation is needed to gain a
more comprehensive understanding of these findings. These observations under-
score the intricate interplay of various factors that influence the provision of
explanations and the subsequent perception of transparency.

6 Conclusions

The work presented in this paper aimed at integrating explanatory mechanisms
into human-robot interactions to enhance transparency and mutual understand-
ing. Our study provided valuable insights into the complex dynamics at play
when robots offer explanations, particularly in dynamic scenarios where the
robot’s knowledge differs from that of the human. We found that providing
explanations significantly improves transparency compared to scenarios with no
explanations. However, it was intriguing to note that considering participants’
existing knowledge when crafting explanations did not necessarily lead to higher
transparency ratings. These findings emphasize the need for a nuanced approach
in designing explanations for robots and highlight the intricate balance between
providing information and cognitive load.
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