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ABSTRACT
Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics,
from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree
Survey (KiDS), i.e. the European Southern Observatory (ESO) public survey on the VLT
Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy
data set with an exceptional image quality and depth in the optical wavebands. Using a
KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived
photo-z using (i) three different empirical methods based on supervised machine learning;
(ii) the Bayesian photometric redshift model (or BPZ); and (iii) a classical spectral energy
distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of
the photometric parameter space properly sampled by the spectroscopic templates, machine
learning methods provide better redshift estimates, with a lower scatter and a smaller fraction
of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral
type, which can be effectively used to constrain systematic errors and to better characterize
potential catastrophic outliers. Such classification is then used to specialize the training of
regression machine learning models, by demonstrating that a hybrid approach, involving SED
fitting and machine learning in a single collaborative framework, can be effectively used to
improve the accuracy of photo-z estimates.
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1 IN T RO D U C T I O N

With the advent of modern multiband digital sky surveys, photo-
metric redshifts (photo-z) have become crucial to provide redshift
estimates for the large samples of galaxies, which are required to
tackle a variety of problems: weak gravitational lensing to con-
strain dark matter and dark energy (Kuijken et al. 2015), the iden-
tification of galaxy clusters and groups (e.g. Capozzi et al. 2009;
Biviano et al. 2013; Radovich et al. 2016), the search of strong-
lensing (Napolitano et al. 2016) and ultracompact galaxies (Tor-
tora et al. 2016), as well as the study of the mass function of
galaxy clusters (Albrecht et al. 2006; Peacock et al. 2006; Umetsu
et al. 2012; Annunziatella et al. 2016), to quote just a few. Today,
despite the initial skepticism (Baum 1962; Puschell, Owen &
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Laing 1982; Koo 1985; Loh & Spillar 1986), two decades of contin-
uous improvements of photo-z techniques have led to such increase
in accuracy that many ongoing and planned surveys base their core
science on photo-z measurements to fulfill their key scientific goals
(e.g. de Jong et al. 2015; Masters et al. 2015).

The evaluation of photo-z is made possible by the existence of a
complex correlation among the fluxes, as measured by broad-band
photometry, the spectral types of the galaxies and their distance.
However, the search for the highly non-linear function that maps the
photometric parameter space into the redshift one is far from trivial
and can be performed in many different ways. All existing methods
can be divided into two main classes: theoretical and empirical.

Theoretical methods use spectral energy distribution (SED) tem-
plates derived either from observed galaxy spectra or from synthetic
ones. Template-based techniques are, on average, less accurate than
empirical methods, but they are also free from the limitations im-
posed by the need of a training set. Moreover, SED fitting methods
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can be applied over a wide range of redshifts and intrinsic colours.
They rely, however, on using a set of galaxy templates that accu-
rately map the true distribution of galaxy SEDs (and their evolution
with redshift), as well as on the assumption that the photometric
calibration of the data is free from systematics. Finally, they also
require a detailed understanding of how external factors, such as
intergalactic and galactic extinctions, affect the final result. The
templates are then shifted to any redshift in a given range and con-
volved with the transmission curves of the filters to create a tem-
plate set for the redshift estimators (Koo 1999; Massarotti, Iovino
& Buzzoni 2001a; Massarotti et al. 2001b; Csabai et al. 2003; Ilbert
et al. 2006). Photometric redshifts can then be obtained by com-
paring observed galaxy fluxes in the ith photometric band with the
library of reference fluxes, depending on (bounded by) redshift z
and on a set of parameters T, that account for galaxy spectral type.
For each galaxy, a χ2 confidence test provides the values of z and
T that minimize the flux residuals between observations and refer-
ence templates. A further improvement over the standard template
methods was the introduction of magnitude priors defined within
a Bayesian framework (BPZ; Benitez 2000), which contributes to
address important information on the galaxy types and expected
shape of redshift distribution.

Empirical methods use a Knowledge Base (hereafter KB) of ob-
jects with spectroscopically measured redshifts as a training set to
obtain an empirical correlation (i.e. the mapping function) between
the photometric quantities and the redshift. Empirical methods have
the advantage that they do not need accurate templates, because the
training set is composed of real objects, which intrinsically include
effects such as the filter bandpass and flux calibration, as well as red-
dening. However, these methods require that the KB must provide
a good coverage of the photometric space, since unreliable redshift
estimates are likely to be obtained outside the colour–redshift ranges
covered by the KB (Biviano et al. 2013; Brescia et al. 2013, 2015;
Sanches et al 2014; Masters et al. 2015).

Several estimators have been tested to determine the shape of
the empirical mapping function, from linear or non-linear fitting
(see e.g. Connolly et al. 1995) to the use of machine learning algo-
rithms such as support vector machines (Chang & Lin 2011), artifi-
cial neural networks (McCulloch & Pitts 1943) and instance-based
learning (Russell & Norvig 2003). In recent times, several attempts
to combine empirical and theoretical methods as well as other ap-
proaches, based on the combination or stacking of machine learning
methods, have been discussed in literature (Wolpert 1992; Carrasco
Kind & Brunner 2014; Kim, Brunner & Carrasco Kind 2015; Beck
et al. 2016; Fotopoulou et al. 2016; Speagle & Eisenstein 2015; Zit-
lau et al. 2016). Blind tests of different methods to evaluate photo-z
have been performed in Hogg et al. (1998) on spectroscopic data
from the Keck telescope on the Hubble Deep Field (HDF), in Hilde-
brandt, Wolf & Benitez (2008) on spectroscopic data from the VI-
MOS VLT Deep Survey (VVDS) and the FORS Deep Field (FDF,
Noll et al. 2004) on the sample of luminous red galaxies (LRGs)
from the SDSS-DR6. A significant advance in comparing different
methods was proposed in Hildebrandt et al. (2010), through the so-
called PHAT (PHoto-z Accuracy Testing) contest, which adopted
the black-box approach, which is typical of proper benchmarking.
They performed a homogeneous comparison of the performances,
focusing the analysis on the photo-z methods themselves, and set-
ting an effective standard for the assessment of photo-z accuracy.

In Cavuoti et al. (2015a), we applied an empirical method
based on machine learning, i.e. the Multi Layer Perceptron with
Quasi Newton Algorithm (MLPQNA, Cavuoti et al. 2012; Brescia
et al. 2013, 2014, 2015), to a data set of galaxies extracted from

the Kilo Degree Survey (KiDS). The KiDS survey, thanks to the
large area covered (1500 deg2 at the end of the survey), the good
seeing [∼0.7 arcmin median full width at half-maximum (FWHM)
in the r band] and pixel scale (∼0.2 arcmin pixel−1), together with
its depth [r-band limiting magnitude of ∼25; 5σ at signal-to-noise
ratio (SNR) = 5], provides large data sets of galaxies with high
photometric quality in the four optical bands u, g, r and i, very
important for accurate galaxy morphology up to z = 0.5–0.6.

In this work, we apply five different photo-z techniques to the
same KiDS data set: (i) three empirical methods, namely: the above-
mentioned MLPQNA, the Random Forest (RF; Breiman 2001) and
an optimization network based on the Levenberg–Marquardt learn-
ing rule (LEMON; Nocedal & Wright 2006); (ii) the LE PHARE SED
template fitting (Arnouts et al. 1999; Ilbert et al. 2006); and (iii) the
Bayesian photometric redshift model (Benitez 2000). The final goal
being to analyse the possibility to use these models in a cooperative
way, in order to optimize the accuracy of photo-z estimation.

The matching with overlapping spectroscopic surveys such as the
Sloan Digital Sky Survey (SDSS; Ahn et al. 2012) and Galaxy And
Mass Assembly (GAMA; Driver et al. 2011) provide a uniform and
well-controlled data set to investigate (i) which method provides the
most accurate photo-z estimates, and (ii) whether the combination
of different methods might provide useful insights into the accuracy
of the final estimates.

This paper is structured as follows. In Section 2, we present the
data set. The methods used to evaluate photo-z are summarized in
Section 3. In Section 4, we describe the experiments, and, finally,
we discuss the results in Section 5. Final remarks are outlined in
Section 6.

2 TH E DATA

KiDS is an optical survey (de Jong et al. 2015), carried out with
the VST-OmegaCAM camera (Kuijken 2011), dedicated mainly to
studies for gravitational lensing, galaxy evolution, and searches for
high-z quasars and galaxy clusters. The KiDS data releases consist
of tiles that are observed in the u, g, r and i bands. Data are pro-
cessed using a distributed Oracle-based environment through the
Astro-WISE (AW) optical pipeline (McFarland et al. 2013). Source
extraction is performed using the algorithm KIDSCAT within the AW

environment, where tile stacking, photometric calibration and as-
trometry are performed (see de Jong et al. 2015).

The sample of galaxies on which we performed our analysis is
mostly extracted from the second data release of KiDS (KiDS-DR2;
de Jong et al. 2015), which contains 148 tiles observed in all filters
during the first two years of survey regular operations. We added
29 extra tiles, not included in the DR2 at the time this was re-
leased, which will be part of the forthcoming analysis. We used
the multiband source catalogues, based on source detection in the
r-band images. While magnitudes are measured in all filters, the
star–galaxy separation as well as the positional and shape parame-
ters is derived from the r-band data only, which typically offer the
best image quality and r-band seeing ∼ 0.65 arcsec, thus providing
the most reliable source positions and shapes. Critical areas such
as saturated pixels, spikes, reflection haloes and satellite tracks are
masked out, and galaxies are suitably flagged. Star–galaxy separa-
tion is based on the CLASS_STAR (star classification) and SNR
parameters provided by SEXTRACTOR (Bertin & Arnouts 1996); see
also La Barbera et al. (2008) for further details about this procedure.
We have retained sources with r-band SEXTRACTOR FLAGS r < 4,
thus including objects that are very close together, very bright, with
bad pixels, or blended. Further details about data reduction steps
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and catalogue extraction are provided in de Jong et al. (2015) and
Tortora et al. (2016).

From the original catalogue of ∼22 million sources, the star–
galaxy separation leaves ∼12.2 million of galaxies. After removing
those galaxies, which happen to fall in the masked regions, the final
sample consisted of ∼7.6 million galaxies.

Aperture photometry in the four ugri bands, measured within
several radii, was derived using SEXTRACTOR. In this work, we use
magnitudes MAGAP 4 and MAGAP 6, measured within the apertures
of diameters 4 and 6arcsec, respectively. These apertures were se-
lected to reduce the effects of seeing and to minimize the contam-
ination from mismatched sources. To correct for residual offsets in
the photometric zero-points, we used the SDSS as reference: For
each KiDS tile and band, we matched bright stars with the SDSS
catalogue and computed the median difference between KiDS and
SDSS magnitudes (psfMag). For more details about data prepara-
tion and preprocessing, see de Jong et al. (2015) and Cavuoti et al.
(2015a).

2.1 Spectroscopic base

In order to build the spectroscopic KB, we cross-matched the KiDS
data with the spectroscopic samples available in the GAMA data
release 2 (Driver et al. 2011; Liske et al. 2015) and SDSS-III data
release 9 (Ahn et al. 2012; Bolton et al. 2012; Chen et al. 2012).

GAMA observes galaxies out to z = 0.5 and r < 19.8 (r-band
Petrosian magnitude), by reaching a spectroscopic completeness of
98 per cent for the main survey targets. It also provides information
about the quality of the redshift determination by using the proba-
bilistically defined normalized redshift quality scale nQ. Redshifts
with nQ > 2 were considered the most reliable (Driver et al. 2011).
For what concerns SDSS-III data, we used the low-z (LOWZ) and
constant-mass (CMASS) samples of the Baryon Oscillation Sky
Survey (BOSS). The BOSS project obtains spectra (redshifts) for
1.5 millions of luminous galaxies up to z ∼ 0.7. The LOWZ sam-
ple consists of galaxies with 0.15 < z < 0.4 with colours similar to
LRGs, selected by applying suitable cuts on magnitudes and colours
to extend the SDSS LRG sample towards fainter magnitudes/higher
redshifts (see e.g. Ahn et al. 2012; Bolton et al. 2012). The CMASS
sample contains three times more galaxies than the LOWZ sample,
and is designed to select galaxies with 0.4 < z < 0.8. The rest-frame
colour distribution of the CMASS sample is significantly broader
than that of the LRG one; thus, CMASS contains a nearly com-
plete sample of massive galaxies down to log M�/M� ∼ 11.2. The
faintest galaxies are at r = 19.5 for LOWZ and i = 19.9 for CMASS.
Our matched spectroscopic sample is dominated by galaxies from
GAMA (46598 versus 1 618 from SDSS) at low z (z � 0.4), while
SDSS galaxies dominate the higher redshift regime (out to z ∼ 0.7),
with r < 22.

2.2 KB definition

As a general rule, in order to avoid any possible misuse of the data,
in each experiment we identified sources in the KB by adding a
flag, specifying whether an object belongs to the training or test
sets, respectively.

The detailed procedure adopted to obtain the two data sets used
for the experiments is as follows:

(i) We excluded objects having low photometric quality (i.e. with
flux error higher than one magnitude).

(ii) We removed all objects having at least one missing band (or
labelled Not-a-Number or NaN), thus obtaining the clean catalogue
used to create the training and test sets, in which all required pho-
tometric and spectroscopic information is complete for all objects.

(iii) We performed a randomly shuffled splitting into a training
and a blind test set, by using the 60 per cent/40 per cent percentages,
respectively.

(iv) We applied the following cuts on limiting magnitudes (see
Cavuoti et al. 2015b for details):

(1) MAGAP_4_u ≤ 25.1
(2) MAGAP_6_u ≤ 24.7
(3) MAGAP_4_g ≤ 24.5
(4) MAGAP_6_g ≤ 24.0
(5) MAGAP_4_r ≤ 22.2
(6) MAGAP_6_r ≤ 22.0
(7) MAGAP_4_i ≤ 21.5
(8) MAGAP_6_i ≤ 21.0

(v) We selected objects with IMA_FLAGS equal to zero in the g,
r and i bands (i.e. sources that have been flagged because located
in the proximity of saturated pixels, star haloes, image border or
reflections or within noisy areas, see de Jong et al. 2015). The u
band is not considered in such selection since the masked regions
relative to this waveband are less extended than in the other three
KiDS bands.

By applying all the specified steps, the final KB consisted of
15180 training and 10067 test objects. The cuts, of course, reduce
the size of the final data set for which reliable redshift estimates can
be obtained; see Cavuoti et al. (2015a) for more details.

We note that, as it is well known, empirical methods can be suc-
cessfully applied only within the boundaries of the input parameter
space, which is properly sampled by the KB (cf. Masters et al. 2015).
In other words, any bias in the KB (e.g. photometric cuts, poorly
represented groups of rare and peculiar objects, etc.) is reflected
also in the results. This implies that the same prescriptions applied
to the KB need to be applied also to the catalogues of objects for
which we derive the photo-z.

3 TH E M E T H O D S

In this section, we shortly outline the empirical (MLPQNA, RF and
LEMON) and the theoretical (LE PHARE, BPZ) methods that have
been used for the comparison, which is discussed in the rest of the
work.

3.1 The machine learning models

Among the methods that are made publicly available through the
DAta Mining & Exploration Web Application REsource (DAMEWARE;
Brescia et al. 2014) web-based infrastructure, we picked three ma-
chine learning models: the RF (Breiman 2001), and two versions
of the Multi Layer Perceptron (MLP; Rosenblatt 1961), varying in
terms of backward learning methods, i.e. the Quasi Newton Algo-
rithm (QNA; Byrd, Nocedal & Schnabel 1994) and the Levenberg–
Marquardt rule (Nocedal & Wright 2006), respectively.

RF (Breiman 2001) is an ensemble learning method for classifi-
cation and regression. It is a collection of simple predictors, called
decision trees, where each tree is capable of producing a response
to a given pattern, by subdividing the data into smaller and smaller
sets based on simple decisions. The main principle behind ensemble
methods is that a collection of weak learners can be joined to form
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a strong learner. An RF can then be considered as a meta estimator
that fits a large number of decision trees on several sub-samples
of the original training set and produces an average output. Such
mechanism improves the predictive accuracy, with respect to the
single decision tree, and keeps overfitting under control.

LEMON (LEvenberg–Marquardt Optimization Network) is
based on the modified Levenberg–Marquardt method, which makes
use of the exact Hessian of the error function (and not of its lin-
earized approximation). For networks with up to several hundreds
of internal weights, this algorithm is comparable with the QNA
(often faster). But its main advantage is that it does not require any
stopping criterion. This method almost always converges exactly to
one of the minima of a function.

The MLPQNA model, i.e. an MLP implementation with a learn-
ing rule based on the QNA, belongs to Newton’s methods special-
ized to find the stationary point of a function through a statistical
approximation of the Hessian of the training error, obtained by
a cyclic gradient calculation. MLPQNA makes use of the known
L-BFGS algorithm (Limited memory – Broyden Fletcher Goldfarb
Shanno; Byrd et al. 1994), originally designed for problems with
a wide parameter space. The analytical details of the MLPQNA
method, as well as its performances, have been extensively dis-
cussed elsewhere (Cavuoti et al. 2012; Brescia et al. 2013; Cavuoti,
Brescia & Longo 2014; Cavuoti et al. 2015b).

Traditional supervised learning requires the KB to be split into
training and test sets. The former is used to train the method, i.e. to
infer the hidden relationship between the photometric information
and the redshifts. The latter, instead, is used to evaluate – using
a set of statistical estimators (see Section 3.4) – the goodness of
the inferred law. To avoid biases, test and training sets are always
required to have a null intersection.

3.2 LE PHARE SED fitting

We use the standard SED fitting method, adopting the software
LE PHARE (Arnouts et al. 1999; Ilbert et al. 2006). KiDS observed
magnitudes are matched with those predicted from a set of SEDs.
Each SED template is redshifted in steps of δz = 0.01 and con-
volved with the four filter transmission curves. The following merit
function (equation 1) is then minimized:

χ2(z, T , A) =
Nf∑
i=1

(
F

f
obs − A × F

f
pred(z, T )

σ
f
obs

)2

, (1)

where F
f
pred(z, T ) is the flux predicted for a template T at redshift

z. F
f
obs is the observed flux and σ

f
obs is the associated error derived

from the observed magnitudes and errors. The index f refers to the
considered filter and Nf = 4 is the number of filters. The photometric
redshift is determined from the minimization of χ2(z, T, A) varying
the three free parameters z, T and the normalization factor A. As
final products of the fitting procedure, the LE PHARE code provides
two main results: (i) the photometric redshift (z = zphot), and (ii) a
galaxy spectral-type classification, based on the best-fitted template
model T.

For the SED fitting experiments, we used the MAGAP_6 magni-
tudes in the u, g, r and i bands (and related 1 σ uncertainties), cor-
rected for galactic extinction using the map in Schlafly & Finkbeiner
(2011). As a reference template set, we adopted the 31 SED models
used for COSMOS photo-z (Ilbert et al. 2009) (see Fig. 1). The basic
COSMOS library is composed of nine galaxy templates from Pol-
letta et al. (2007), which includes three SEDs of elliptical galaxies
(E) and five templates of spiral galaxies (S0, Sa, Sb, Sc, Sd). These

Figure 1. SED templates. Flux normalized to the flux at 5000 Å versus
wavelength. Templates are taken from Ilbert et al. (2006); see text for details.
Redder colours are for ellipticals, blue and green for spirals and irregulars,
and finally the darker green is for starburst (SB) templates. In the bottom
panel, the KiDS filters are shown.

models are generated using the code GRASIL (Silva et al. 1998), pro-
viding a better joining of ultraviolet and mid-infrared than those
by Coleman, Wu & Weedman (1980) used in Ilbert et al. (2006).
Moreover, to reproduce very blue colours not accounted by the Pol-
letta et al. (2007) models, 12 additional templates using Bruzual
& Charlot (2003) models with starburst (SB) ages ranging from
3 to 0.03 Gyr are added. In order to improve the sampling of the
redshift–colour space and therefore the accuracy of the redshift
measurements, the final set of 31 spectra is obtained by linearly
interpolating the original templates. We refer to it as the COSMOS

library. Internal galactic extinction can be also included as a free
parameter in the fitting procedure, using two different galactic ex-
tinction laws (Prevot et al. 1984; Calzetti et al. 2000), with EBV

≤ 0.5.
However, we followed the setup discussed in Ilbert et al. (2009),

i.e. we did not apply any galactic extinction correction for models
redder than the Sc templates; the galactic extinction curve provided
by Prevot et al. (1984) is used for templates redder than the SB3
model, while Calzetti et al. (2000) is adopted for those bluer (in-
cluding the SB3 template). Emission lines added to the templates
were also implemented as discussed in Ilbert et al. (2009). Finally,
LE PHARE also provides an adaptive procedure, which calculates the
shifts in the photometric zero-points. The fit is first performed on
the training set: The redshift is fixed to its spectroscopic value and
for each waveband the code calculates average shifts that minimize
the differences between observed and predicted magnitudes. This
procedure is applied iteratively until convergence is reached. The
offsets are then applied to the observed magnitudes of galaxies in the
test sample, and the minimization of the χ2 is performed. We tried
some preliminary experiments without imposing any constraint on
the fitted models, finding that about 12 per cent of the test sample
would have estimated photometric redshifts larger than 1, with most
of them being catastrophic outliers. For this reason, by looking at
the results for the test sample, we imposed the flat prior, derived
from the training data only, on absolute magnitudes. In particular,
we have forced the galaxies to have absolute i-band magnitudes in
the range ( − 10, −26).
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We also tested three different configurations: (i) the fit of SED
templates with no internal galactic extinction and no emission lines;
(ii) the fit of SED templates with no internal galactic extinction
and no emission lines, but allowing the photometry zero-points to
vary using the adaptive procedure in LE PHARE; (iii) the fit of SED
templates, using internal galactic extinction as a free parameter,
adding emission lines, and using the adaptive procedure. The best
results in terms of photo-z statistical performance (see Section 3.4)
were obtained with the second configuration, which is referred to
hereafter as the SED fitting photo-z estimation result. The use of
the spectral templates is an important part of this paper, and will be
used in subsequent sections.

3.3 Bayesian photometric redshifts

BPZ (Benitez 2000) is a Bayesian photo-z estimation based on a
template fitting method. The BPZ library is composed (Benitez
et al. 2004) of four modified Coleman, Wu and Weedman types
(Coleman et al. 1980), plus two Kinney, Calzetti & Bohlin (1996)
SB templates. The templates include emission lines but no internal
dust extinction. As recommended in the BPZ documentation, we
allowed BPZ to interpolate adjacent template pairs in the colour
space. If spectroscopic redshifts are available, BPZ computes the
ratio of observed to model best-fitting fluxes, thus allowing us to
derive a correction to the initial zero-points.

The Bayesian approach adopted in BPZ combines the likelihood
that a template fits the SED of a galaxy at a given redshift with a prior
defining the probability to find a galaxy of that type, as a function
of magnitude and redshift. This allows us to remove those solutions
that would be selected if based only on the maximum likelihood,
but are in disagreement with the observed distributions. In addition
to the redshift and template, BPZ also provides for each galaxy the
full redshift probability distribution, and a parameter (ODDS) that
provides the reliability of the solution.

3.4 Statistical estimators

The results were evaluated using the following set of statistical
estimators for the quantity �z = (zspec − zphot)/(1 + zspec) on the
objects in the blind test set:

(i) bias: defined as the mean value of the residuals �z;
(ii) σ : the standard deviation of the residuals;
(iii) σ 68: the radius of the region that includes 68 per cent of the

residuals close to 0;
(iv) NMAD: normalized median absolute deviation of the resid-

uals, defined as NMAD(�z) = 1.48 × Median(|�z|);
(v) fraction of outliers with |�z| > 0.15.

4 C O M B I NAT I O N O F M E T H O D S

The most relevant part of our work consisted of checking whether
a combination of methods could be used to improve the overall
results. In order to investigate such possibility, we designed a hy-
brid approach, which makes use of both SED fitting and Machine
Learning (ML) models, organized in a workflow structured in three
main stages (Fig. 2).

4.1 Preliminary experiments

First of all, we tested the capability of each method to deal with data
affected by different systematics, e.g. photometry not corrected for

Figure 2. Workflow of the method implemented to combine SED fitting
and ML models to improve the overall photo-z estimation quality. See text
for details.

(i) galactic extinction correction; and/or (ii) the photometric zero-
point offsets, as discussed in Section 2. Four experiments were
performed with each model:

(i) EXclean : full KB using the clean photometry corrected by
galactic extinction and offset;

(ii) EXext : full KB using the photometry corrected by galactic
extinction only (i.e. affected by an offset);

(iii) EXoff : full KB using the photometry corrected by offset only
(i.e. affected by galactic extinction);

(iv) EXno : full KB using the photometry not corrected by offset
and galactic extinction.

SED template fitting and empirical methods are differently af-
fected by the dereddening (i.e. the correction for galactic extinc-
tion). In the first case, in fact, reddening introduces an artificial
slope in the true SED; therefore, not taking it into account would
affect photometric redshift estimates. In empirical methods, instead,
since it affects in the same way also the objects in the training set,
it should not affect the final outcome, at least if the parameter space
is properly sampled.

We need to stress that even though fitting SED templates to
magnitudes not corrected for the galactic extinction is not appropri-
ate, the inclusion/exclusion of photometric offsets and dereddening
helps to quantify how the redshifts derived with different methods
are affected by the presence of systematics in the photometry.

Results are summarized in Table 1 for all the experiments. In
Fig. 3, we show the trends of the zphot versus zspec for the test
objects of the EXclean experiment using the five considered models,
where the MLPQNA model turned out to reach the best performance
among all the explored methods. Fig. 4 displays the trends of �z
versus zspec for the same experiment and models.

4.2 Classification based on template fitting

The basic idea arose by analysing the photo-z estimation results
on the basis of the spectral-type classification, performed by LE

PHARE without bounding the template fitting to any redshift esti-
mate. The statistical results summarized in Table 2 show that the
machine learning models provide a better performance for all spec-
tral types. However, ML methods perform quite differently for the
different spectral types individuated by LE PHARE. This induced us to
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2044 S. Cavuotiet al.

Table 1. Blind test set statistical results for the four experiment types with
the five selected methods. The outlier percentage is reported according to
the rule |�z/(z + 1)| > 0.15.

EXP MLPQNA LEMON RF LE PHARE BPZ
bias

EXclean 0.0007 0.0006 0.0010 0.0121 0.0289
EXext 0.0009 0.0009 0.0012 0.0183 0.0393
EXoff 0.0006 0.0007 0.0010 0.0158 0.0405
EXno 0.0009 0.0010 0.0012 0.0225 0.0496

σ

EXclean 0.026 0.026 0.029 0.065 0.127
EXext 0.028 0.028 0.030 0.079 0.218
EXoff 0.026 0.026 0.029 0.066 0.142
EXno 0.028 0.028 0.030 0.079 0.222

σ 68

EXclean 0.018 0.018 0.021 0.041 0.039
EXext 0.021 0.020 0.023 0.048 0.039
EXoff 0.018 0.019 0.021 0.041 0.045
EXno 0.021 0.020 0.023 0.049 0.043

NMAD
EXclean 0.018 0.018 0.021 0.038 0.031
EXext 0.020 0.020 0.022 0.044 0.034
EXoff 0.018 0.018 0.021 0.037 0.033
EXno 0.020 0.020 0.022 0.044 0.034

per cent outliers
EXclean 0.31 0.30 0.40 0.89 2.18
EXext 0.34 0.35 0.42 2.51 3.83
EXoff 0.31 0.29 0.39 1.12 3.21
EXno 0.33 0.36 0.36 2.63 4.37

explore the possibility to combine the methods: Namely, the LE

PHARE spectral-type classification is used to specialize ML methods
and compute photo-z for objects belonging to each spectral class.

Of course, the training of a specific regression model for each
class can be effective only if the subdivision itself is as accurate as
possible. A simple random subdivision could not enhance results.
In fact, in the case of a random extraction of five subsets, the infor-
mation contained in each single subset would be degraded, i.e. we
would not gain any specialization but rather a reduction of patterns
for each single regression network. Therefore, in this case, the best
overall results would correspond to the precision achieved on the
whole data set. Of course, it could happen that some subsets could
improve the performance, but the overall results would be expected
to remain either unchanged or get worse (Bishop 1995). Hence,
we needed the best subdivision, i.e. spectral-type classification, to
proceed further.

After having obtained the EXclean results, we first defined the
true spectral type of each training galaxy as the best-fitting spectral
type obtained with LE PHARE, constraining the redshift to its spectro-
scopic value. We then used LE PHARE with the five different photo-
metric redshift estimates, thus obtaining five different spectral-type
predictions for each training galaxy. The comparison of the true
spectral types with the five different predictions shows that, in the
absence of spectroscopic information, RF provides the most accu-
rate spectral-type prediction.

The comparison among the different predictions is visual-
ized (Fig. 5) by the normalized confusion matrix (Provost &
Fawcett 2001). The confusion matrix is widely used to evaluate the
performance of a classification: Columns represent the instances
in the predicted classes (the classifier output) and rows give the
expected (True) instances in the known classes. In a confusion ma-
trix representing a two-class problem, displayed as an example in

Table 3, the quantities are TP (true positive), TN (true negative),
FP (false positive) and FN (false negative). The example of a con-
fusion matrix in Table 3 can be easily extended to the case with
more than two classes: Fig. 5 shows the case of five spectral-type
classes. Looking at the colour bar close to each confusion matrix
panel, reddish blocks contain higher percentages of objects, while
the opposite occurs for bluish blocks. The ideal condition (i.e. the
perfect classification for all classes) would correspond to have red
all blocks on the main diagonal of the matrix and consequently in
blue the rest of the blocks. By comparing the five matrices, the RF
model (panel c in Fig. 5) presents the best behaviour for all classes.

4.3 Redshifts for spectral-type classes

We then subdivided the KB on the base of the five spectral-type
classes, thus obtaining five different subsets used to perform distinct
training and blind test experiments, one for each individual class.
The results for each class are depicted in Figs 6–10 and in Table 4.
The figures confirm the statistical results of Table 4, where there is a
clear improvement in the case of the combined approach for classes
E, E/S0 and Sab, and all statistical estimators show better results
than the standard case. A similar behaviour is visible for class
Scd with the only exception of bias, while in the case of SB, all
estimators are better in the combined approach, with the exception
of the σ that remains unchanged. The resulting amount of objects for
each class is obviously different from the one displayed in Table 2,
which was based on a free fitting, i.e. with the model template and
redshift left free to vary.

4.4 Recombination

The final stage of the workflow consisted of the recombination of
the five subsets to produce the overall photo-z estimation, which
was compared with the initial EXclean experiment in terms of the
usual statistical performance. By considering Table 4, the recombi-
nation statistics were calculated on the whole data sets, after having
gathered together all the objects of all classes. The recombined
results are reported in the last two rows of Table 4. As already
emphasized for single classes, all the statistical estimators show an
improvement in the combined approach case, with the exception of
a slightly worse bias. Therefore, the statistics shown in Fig. 11 and
in Table 4 make it apparent that the proposed combined approach
induces an estimation improvement for each class as well as for the
whole data set.

5 D I SCUSSI ON

As discussed in Cavuoti et al. (2015a) and confirmed in Table 1,
the MLPQNA outperforms SED fitting methods in all experiments.
Instead, the other two empirical methods obtain results comparable
with the MLPQNA. In particular, LEMON appears quite close to
the MLPQNA in terms of results, a fact that could be expected by
considering their similar learning laws (Shirangi & Emerick 2016).
We, however, preferred MLPQNA due to its better computational
efficiency.

For the EXclean experiment, we find a very small bias of ∼0.0007,
a standard deviation of ∼0.026, a σ 68 of ∼0.018, an NMAD
of ∼0.018 and a number of outliers with |�z| > 0.15 of only
0.31 per cent (see Table 1). In contrast, the results from SED fitting
methods are less accurate, with statistical estimators and outlier
fractions worse than those found using ML methods. The presence
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Cooperative photo-z estimation 2045

Figure 3. Diagrams of zspec versus zphot for the data in the full redshift range available. Panels show results obtained in the case of the EXclean experiment by
the various methods.

of some objects scattered around zspec ∼ 0 confirms that there is a
small residual contamination from stars misclassified as galaxies.

Furthermore, by analysing the statistics reported in Table 1, the
following is evident: (i) The presence of a photometric offset (ex-
periment EXext) has a negligible impact on the performance of ML
methods. In fact, almost all statistical estimators are the same as
in the experiment with no corrections (EXno). (ii) The results of
ML methods are not affected by whether the input data are dered-
dened or not (experiment EXoff). (iii) LE PHARE is less affected by
reddening than BPZ. Therefore, the main contribution to the worse
performance in the experiment EXno (without offset and reddening
corrections) is due to the photometric offset. In contrast, the effects

of a residual offset and reddening have a stronger impact on SED fit-
ting methods, especially in terms of standard deviation and outliers
fraction. The smaller impact on the σ 68 and NMAD estimators can
be justified by considering their lower dependence on the presence
of catastrophic outliers, which appears as the most relevant cause
of a lower performance.

The spectral-type classification provided by the SED fitting
method allows us to derive also for ML models the statistical er-
rors as a function of spectral type, thus leading to a more accurate
characterization of the errors. Therefore, it is possible to assign a
specific spectral-type attribute to each object and to evaluate single-
class statistics. This fact, by itself, can be used to derive a better
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2046 S. Cavuotiet al.

Figure 4. Diagrams of �z/(1 + z) versus zspec for the data in the full redshift range available. Panels show results obtained in the case of the EXclean experiment
by the various methods.

characterization of the errors. Furthermore, as it has been shown, the
combination of SED fitting and ML methods also allows to build
specialized (i.e. expert) regression models for each spectral-type
class, thus refining the process of redshift estimation.

During the test campaign, we also explored the possibility to
increase the estimation performance by injecting the photometric
redshifts calculated with LE PHARE within the parameter space used
for training. But the final statistical results were slightly worse by
∼1 per cent, revealing that at least in our case such parameter does
not bring enough information.

Although the spec-z are in principle the most accurate informa-
tion available to bound the SED fitting techniques, their use would

make impossible to produce a reliable catalogue of photometric
redshifts for objects not in the KB (i.e. for objects not observed
spectroscopically). Thus, it appears reasonable to identify the best
solution by making use of predicted photo-z to bound fitting, in or-
der to obtain a reliable spectral-type classification for the widest set
of objects. This approach, having also the capability to use arbitrary
ML and SED fitting methods, makes the proposed workflow widely
usable in any survey project.

By looking at Table 4, our procedure shows clearly how the
MLPQNA regression method benefits from the knowledge contri-
bution provided by the combination of the SED fitting (LE PHARE in
this case) and machine learning (RF in the best case) classification
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Cooperative photo-z estimation 2047

Table 2. Statistical results taken by considering the experiment EXclean,
by distinguishing among five spectral classes of galaxies, according to the
original classification performed by LE PHARE (i.e. without bounding the
fitting to any kind of redshift).

MLPQNA LEMON RF LE PHARE BPZ

class E – 2169 objects
bias −0.0007 −0.0004 0.0019 −0.0641 −0.0297
σ 0.022 0.022 0.024 0.045 0.041
σ 68 0.016 0.016 0.017 0.086 0.042
NMAD 0.015 0.015 0.016 0.036 0.027
out. (per cent) 0.18 0.23 0.28 0.60 0.65

class E/S0 – 1542 objects
bias 0.0001 −0.0002 −0.0035 0.0124 −0.0381
σ 0.020 0.019 0.020 0.029 0.097
σ 68 0.014 0.014 0.016 0.0267 0.040
NMAD 0.014 0.014 0.015 0.020 0.024
out. (per cent) 0.26 0.19 0.2596 0.19 3.11

class Sab – 1339 objects
bias 0.0007 0.0005 −0.0030 0.0073 −0.0560
σ 0.024 0.023 0.026 0.036 0.186
σ 68 0.019 0.020 0.023 0.030 0.050
NMAD 0.019 0.020 0.022 0.029 0.034
out. (per cent) 0.07 0.08 0.15 0.60 5.23

class Scd – 3799 objects
bias −0.0013 −0.0011 −0.0013 0.0022 −0.0244
σ 0.026 0.026 0.031 0.051 0.112
σ 68 0.020 0.019 0.023 0.028 0.036
NMAD 0.019 0.019 0.023 0.027 0.031
out. (per cent) 0.32 0.34 0.47 0.92 1.61

class SB – 1218 objects
bias −0.0015 −0.0012 0.0003 −0.0163 0.0005
σ 0.038 0.036 0.040 0.121 0.196
σ 68 0.024 0.023 0.031 0.043 0.033
NMAD 0.023 0.023 0.031 0.041 0.030
out. (per cent) 0.82 0.66 0.82 2.55 2.13

stages. In fact, this allows us to use a set of regression experts based
on the MLPQNA model, specialized to predict redshifts for objects
belonging to specific spectral-type classes, thus gaining in terms of
a better photo-z estimation.

By analysing the results of Table 4 in more detail, the improve-
ment in photo-z quality is significant for all classes and for all
statistical estimators, as also confirmed by the comparisons in the
diagrams shown in Figs 6–10. In fact, the diagrams of the resid-
ual distribution for classes E and E/S0 show a better behaviour for
the combined approach in terms of distribution height and width.
In the case of class Sab, the residuals of the combined approach
have a more peaked distribution. Only the two classes Scd and SB
show a less evident improvement, since their residual distributions
appear almost comparable in both experiment types, as confirmed
by their very similar values of the statistical parameters σ and σ 68.
This leads to a more accurate photo-z prediction by considering the
whole test set.

The only apparent exception is the mean (column ‘bias’ of
Table 4), which suffers the effect of the alternation of positive and
negative values in the hybrid case, which causes the algebraic sum
to result slightly worse than the standard case (the effect occurs on
the fourth decimal digit, see column ‘bias’ of the last two rows of
Table 4). This is not statistically relevant because the bias is one
order of magnitude smaller than σ and σ 68 and therefore negligible.

Special attention deserves the fact that in some cases, the hybrid
approach leads to the almost complete disappearance of catastrophic
outliers. This is the case, for instance, of the E-type galaxies. The

reason is that for the elliptical galaxies the initial number of objects
is lower than for the other spectral types in the KB. In the stan-
dard case, i.e. the standard training/test of the whole data set, such
a small amount of E-type representatives are mixed together with
other more populated class objects, thus causing a lower capability
of the method to learn their photometric/spectroscopic correlations.
Instead, in the hybrid case, using the proposed workflow, the pos-
sibility to learn E-type correlations through a regression expert
increases the learning capabilities (see, for instance, Figs 5 and 6),
thus improving the training performance and the resulting photo-z
prediction accuracy.

In particular, the confusion matrices shown in Fig. 5 provide a
direct visual impact and a quick comparison on the classification
results. Each confusion matrix shown is referred to the results of
a different spectral-type classification performed by LE PHARE, by
varying the photo-z estimated through the five different regression
models and used to bound the SED fitting procedure. Moreover,
a confusion matrix also allows to compare classification statistics.
The most important statistical estimators are (i) the purity or preci-
sion, defined as the ratio between the number of correctly classified
objects of a class (the block on the main diagonal for that class) and
the number of objects predicted in that class (the sum of all blocks
of the column for that class); (ii) the completeness or recall, defined
as the ratio between the number of correctly classified objects in
that class (the block on the main diagonal for that class) and the
total number of (true) objects of that class originally present in the
data set (the sum of all blocks of the row for that class); and (iii) the
contamination, automatically defined as the reciprocal value of the
purity.

Of course, there is an obvious correspondence between the visual-
ized colour-level confusion matrix and the purity and completeness
statistics of its classes. For example, from the visual analysis of
Fig. 5, it is evident that the Scd and SB spectral-type classes are
well classified by all methods. This is also confirmed by their statis-
tics, since the purity is, on average, around 88 per cent for Scd and
87 per cent for SB, with an averaged completeness of 91 per cent in
the case of Scd and 82 per cent for SB.

Moreover, the confusion matrices show that the three classifi-
cations based on the machine learning models maintain a good
performance in the case of the E/S0 spectral-type class, reaching on
average a purity and a completeness of 89 per cent for both estima-
tors.

In the case of the Sab class, only the RF-based classification is
able to reach a sufficient degree of efficiency (78 per cent of purity
and 85 per cent of completeness). In particular, for the two cases
based on photo-z predicted by SED fitting models, for the Sab
class, the BPZ-based results are slightly more pure than those based
on LE PHARE (68 per cent versus 66 per cent) but much less complete
(49 per cent versus 63 per cent).

Finally, by analysing the results on the E spectral-type class,
only the RF-based case is able to maintain a sufficient compro-
mise between purity (77 per cent) and completeness (63 per cent).
The classification based on LE PHARE photo-z reaches a 69 per cent
of completeness on the E class but shows an evident high level
of contamination between E and E/S0, thus reducing its purity to
19 per cent. It must also be underlined that the intrinsic major diffi-
culty to separate E objects from the E/S0 class is due to the partial
co-presence of both spectral types in the class E/S0, which may
partially cause wrong evaluations by the classifier.

Furthermore, the fact that latter types are less affected may be
easily explained by considering that their templates are, on average,
more homogeneous than for early-type objects.
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2048 S. Cavuotiet al.

Figure 5. Normalized confusion matrices. The panels show LE PHARE classification results obtained by bounding the fitting with photo-z derived, respectively,
by (a) MLPQNA, (b) LEMON, (c) RF, (d) BPZ, and (e) LE PHARE models, based on the EXclean experiment type. Reddish blocks include higher percentages of
objects, while the opposite occurs for bluish blocks. The ideal condition (perfect classification for all classes) would correspond to have red for all blocks on
the main diagonal of the matrix and, consequently, in blue the rest of the blocks.

All the above considerations lead to the clear conclusion that
the classification performed by the LE PHARE model and based on
RF photo-z achieves the best compromise between purity and com-
pleteness of all spectral-type classes. Therefore, its spectral classi-
fication has been taken as reference throughout the further steps of
the workflow.

At the final stage of the proposed workflow, the photo-z quality
improvements obtained by the expert MLPQNA regressors on sin-
gle spectral types of objects induce a reduction of σ from 0.026 to

Table 3. Structure of a confusion matrix for a two-class experiment. The
interpretation of the symbols is self-explanatory. For example, TP denotes
the number of objects belonging to class 1 that are correctly classified.

Predicted labels
– class 1 class 2

True class 1 TP FN
Labels class 2 FP TN
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Cooperative photo-z estimation 2049

Figure 6. Histograms of �z/(1 + z) in the case of class E: The left-hand panel represents the results obtained by the expert MLPQNA regressor through the
proposed workflow, while the right-hand panel represents the results obtained by the standard MLPQNA for the same objects.

Figure 7. Histograms of �z/(1 + z) in the case of class E/S0: The left-hand panel represents the results obtained by the expert MLPQNA regressor through
the proposed workflow, while the right-hand panel represents the result obtained by the standard MLPQNA for the same objects.

Figure 8. Histograms of �z/(1 + z) in the case of class Sab: The left-hand panel represents the results obtained by the expert MLPQNA regressor through
the proposed workflow, while the right-hand panel represents the result obtained by the standard MLPQNA for the same objects.
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2050 S. Cavuotiet al.

Figure 9. Histograms of �z/(1 + z) in the case of class Scd: The left-hand panel represents the results obtained by the expert MLPQNA regressor through
the proposed workflow, while the right-hand panel represents the result obtained by the standard MLPQNA for the same objects.

Figure 10. Histograms of �z/(1 + z) in the case of class SB: The left-hand panel represents the results obtained by the expert MLPQNA regressor through
the proposed workflow, while the right-hand panel represents the result obtained by the standard MLPQNA for the same objects.

Table 4. photo-z estimation results, based on the MLPQNA model, for each spectral-type subset of the test set,
classified by LE PHARE by bounding the fit through the photo-z predicted by the RF model, which provided the
best classification. The term hybrid refers to the results obtained by the workflow discussed here and based on the
combined approach, while standard refers to the results obtained on the same objects but through the standard
approach (i.e. EXclean experiment).

Class Exp. type Datasize bias σ NMAD out. (per cent) σ 68

E Hybrid 638 − 0.0009 0.020 0.016 0.00 0.017
E Standard 638 0.0130 0.029 0.022 0.31 0.028
E/S0 Hybrid 2858 − 0.0005 0.016 0.012 0.10 0.012
E/S0 Standard 2858 − 0.0059 0.022 0.014 0.31 0.014
Sab Hybrid 1383 − 0.0003 0.015 0.015 0.00 0.014
Sab Standard 1383 − 0.0032 0.018 0.016 0.00 0.016
Scd Hybrid 3900 − 0.0011 0.024 0.019 0.18 0.019
Scd Standard 3900 0.0006 0.025 0.020 0.23 0.020
SB Hybrid 1288 − 0.0014 0.038 0.021 0.70 0.022
SB Standard 1288 0.0027 0.038 0.022 0.85 0.023
ALL Hybrid 10 067 − 0.0008 0.023 0.016 0.19 0.016
ALL Standard 10 067 − 0.0007 0.026 0.018 0.31 0.018
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Cooperative photo-z estimation 2051

Figure 11. The whole set of blind test objects: The left-hand panels represent the results obtained by grouping together all single spectral-type class outcomes
of the expert MLPQNA regressors through the proposed hybrid workflow, while the right-hand column of panels represent the result obtained by the standard
MLPQNA for the same objects. The first row shows the diagrams of zspec versus zphot; the second row shows �z/(1 + z) versus zspec diagrams, while the third
row shows the histograms of �z/(1 + z).

0.023 and of σ 68 from 0.018 to 0.016 for the overall test set, besides
the more relevant improvement for the E class (σ from 0.029 to
0.020 and of σ 68 from 0.028 to 0.017). Such virtuous mechanism
is mostly due to the reduction of catastrophic outliers. This signi-

ficative result, together with the generality of the workflow in terms
of choice of the classification/regression methods, demonstrates the
possibility to optimize the accuracy of photo-z estimation through
the collaborative combination of theoretical and empirical methods.
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2052 S. Cavuotiet al.

6 C O N C L U S I O N S

In this work, we propose an original workflow designed to improve
the photo-z estimation accuracy through a combined use of theoret-
ical (SED fitting) and empirical (machine learning) methods.

The data sample used for the analysis was extracted from the
ESO KiDS-DR2 photometric galaxy data, using a KB derived from
the SDSS and GAMA spectroscopic samples. The KiDS provides
wide and deep galaxy data sets with a good image quality in the
optical wavebands u, g, r and i.

For a catalogue of about 25000 galaxies with spectroscopic red-
shifts, we estimated photo-z using five different methods: (i) RF; (ii)
MLPQNA (Multi Layer Perceptron with the Quasi Newton learning
rule); (iii) LEMON (MLP with the Levenberg–Marquardt learning
rule); (iv) LE PHARE SED fitting; and (v) the Bayesian model BPZ.
The results obtained with the MLPQNA model on the complete
KiDS-DR2 data have been discussed in Cavuoti et al. (2015a); thus,
further details are provided there.

We find that, as also found in Carrasco Kind & Brunner (2014),
machine learning methods provide far better redshift estimates, with
a lower scatter and a smaller number of outliers when compared with
the results from SED fitting. The latter, however, is able to provide
very useful information on the galaxy spectral type. Such informa-
tion can be effectively used to constrain the systematic errors and to
better characterize potential catastrophic outliers. Furthermore, this
classification can be used to specialize the training of regression
machine learning models on specific types of objects. Throughout
the application on KiDS data, by combining in a single collaborative
framework both SED fitting and machine learning techniques, we
demonstrated that the proposed workflow is capable of improving
the photo-z prediction accuracy.

AC K N OW L E D G E M E N T S

The authors would like to thank the anonymous referee for ex-
tremely valuable comments and suggestions. Based on data prod-
ucts from observations made with European Southern Observatory
(ESO) telescopes at the La Silla Paranal Observatory under pro-
gramme IDs 177.A-3016, 177.A-3017 and 177.A-3018, and on data
products produced by Target/OmegaCEN, Istituto Nazionale di As-
tro Fisica (INAF)-Osservatorio Astronomico di Capodmonte Napoli
(OACN), INAF-Osservatorio Astronomico di Padova (OAPD) and
the KiDS production team, on behalf of the KiDS consortium.
OmegaCEN and the KiDS production team acknowledge support
by NOVA and NWO-M grants. Members of INAF-OAPD and
INAF-OACN also acknowledge the support from the Department
of Physics & Astronomy, University of Padova, and from the De-
partment of Physics, Univ. Federico II (Naples). CT is supported
through an NWO-VICI grant (project number 639.043.308). MB
and SC acknowledge financial contribution from the agreement
ASI/INAF I/023/12/1. MB acknowledges the PRIN-INAF 2014:
‘Glittering kaleidoscopes in the sky: the multifaceted nature and
role of galaxy clusters’. GL acknowledges for partial funding from
PRIN-MIUR 2011: The ‘Dark universe and the cosmic evolution of
baryons: from present day surveys to Euclid’.

R E F E R E N C E S

Ahn C. P. et al., 2012, ApJS, 203, 21
Albrecht A. et al., 2006, preprint (arXiv:astro-ph/0609591)
Annunziatella M. et al., 2016, A&A, 585, A160
Arnouts S. et al., 1999, MNRAS, 310, 540

Baum W. A., 1962, in McVittie G. C., ed., Proc. IAU Symp. 15, Problems
of Extra-Galactic Research. Macmillan Press, New York, p. 390

Beck R. et al., 2016, MNRAS, 460, 1371
Benitez N., 2000, ApJ, 536, 571
Benı̈tez N. et al., 2004, ApJS, 150, 1, 1
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bishop C. M., 1995, Neural Networks for Pattern Recognition. Oxford Univ.

Press, Oxford
Biviano A. et al., 2013, A&A, 558, A1
Bolton A. S. et al., 2012, AJ, 144, 144
Breiman L., 2001, Mach. Learn., 45, 25
Brescia M., Cavuoti S., D’Abrusco R., Mercurio A., Longo G., 2013, ApJ,

772, 140
Brescia M. et al., 2014, PASP, 126, 942
Brescia M., Cavuoti S., Longo G., De Stefano V., 2015, A&A, 568, A126
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Byrd R. H., Nocedal J., Schnabel R. B., 1994, Math. Program., 63, 129
Calzetti D. et al., 2000, ApJ, 533, 682
Capozzi D., De Filippis E., Paolillo M., D’Abrusco R., Longo G., 2009,

MNRAS, 396, 900
Carrasco Kind M., Brunner, R. J., 2014, MNRAS, 442, 3380
Cavuoti S., Brescia M., Longo G., Mercurio A., 2012, A&A, 546, 13
Cavuoti S., Brescia M., Longo G., 2014, in Heavens A., Starck J.-L., Krone-

Martins A., eds, Proc. IAU Symp., 306, Statistical Challenges in 21st
Century Cosmology. Cambridge Univ. Press, Cambridge, p. 307

Cavuoti S. et al., 2015, MNRAS, 452, 3100
Cavuoti S., Brescia M., De Stefano V., Longo G., 2015, Exp. Astron., 39,

45
Chen Y.-M. et al., 2012, MNRAS, 421, 314
Chih-Chung C., Chih-Jen L., 2011, ACM Trans. Intell. Syst.Technol., 2, 27
Coleman G. D., Wu C.-C., Weedman D. W., 1980, ApJS, 43, 393
Connolly A. J. et al., 1995, AJ, 110, 2655
Csabai I. et al., 2003, AJ, 125, 580
de Jong J. T. A. et al., 2015, A&A, 582, A62, 26
Driver S. P. et al., 2011, MNRAS, 413, 971
Fotopoulou S. et al., MNRAS, in press
Hildebrandt H., Wolf C., Benitez N., 2008, A&A, 480, 703
Hildebrandt H. et al., 2010, A&A, 523, 31
Hogg D. W., Cohen J. G., Blandford R., Pahre M. A., 1998, ApJ,

115, 1418
Ilbert O. et al., 2006, A&A, 457, 841
Ilbert O. et al., 2009, ApJ, 690, 1236
KimE. J., Brunner R. J., Carrasco Kind M., 2015, MNRAS, 453, 507
Kinney A. L., Calzetti D., Bohlin R. C., 1996, AJ, 467, 38
Koo D. C., 1985, AJ, 90, 418
Koo D. C., 1999, in Weymann R. J., Storrie-Lombardi L. J., Sawicki M.,

Brunner R. J., eds, ASP Conf. Ser. Vol. 191, Photometric Redshifts and
High Redshift Galaxies. Astron. Soc. Pac., San Francisco, p. 3

Kuijken K., 2011, The Messenger, 146, 8
Kuijken K. et al., 2015, MNRAS, 4, 3500
La Barbera F. et al., 2008, PASP, 120, 681
Liske J. et al., 2015, MNRAS, 452, 2087
Loh E. D., Spillar E. J., 1986, ApJ, 303, 154
Massarotti M., Iovino A., Buzzoni A., 2001a, A&A, 368, 74
Massarotti M., Iovino A., Buzzoni A., Valls-Gabaud D., 2001b, A&A, 380,

425
Masters D. et al., 2015, ApJ, 813, 1, 53
McCulloch W., Pitts W., 1943, Bull. Math. Biophys., 5, 115
McFarland J. P. et al., 2013, Exp. Astron., 35, 45
Napolitano N. R. et al., 2016, in Napolitano N. R., Longo G., Marconi

M., Paolillo M., Iodice E., eds, Astrophysics and Space Science Proc.,
Vol. 42, The Universe of Digital Sky Surveys. Springer International
Publishing, Switzerland, p. 129

Nocedal J., Wright S. J., 2006, Numerical Optimization, 2nd edn. Springer,
New York

Noll S. et al., 2004, A&A, 418, 885
Peacock J. A. et al., 2006, ESA-ESO Working Group on Fundamental

Cosmology, Technical Report

MNRAS 466, 2039–2053 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/466/2/2039/2666395 by FAC
O

LTA' D
I LETTER

E E FILO
SO

FIA user on 09 N
ovem

ber 2022

http://arxiv.org/abs/astro-ph/0609591


Cooperative photo-z estimation 2053

Polletta M. et al., 2007, ApJ, 663, 81
Prevot M. L., Lequeux J., Prevot L., Maurice E., Rocca-Volmerange B.,

1984, A&A, 132, 389
Provost F., Fawcett T., 2001, Machine Learning, 42, 203
Puschell J. J., Owen F. N., Laing R. A., 1982, ApJ, 257, L57
Radovich M., Puddu E., Bellagamba F., Moscardini L., Roncarelli M., Get-

man F., Grado A., 2016, in Napolitano N. R., Longo G., Marconi M.,
Paolillo M., Iodice E., eds, Astrophysics and Space Science Proc., Vol.
42, The Universe of Digital Sky Surveys. Springer International Pub-
lishing, Switzerland, p. 189

Rosenblatt F., 1961, Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Spartan Books, Washington, DC

Russell S., Norvig P., 2003, Artificial Intelligence: A Modern Approach,
2nd edn. Pearson Education

Sanches et al., 2014, MNRAS, 445, 1482
Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103
Shirangi M. G., Emerick A. A., 2016, J. Pet. Sci. Eng., 143, 258
Silva L., Granato G. L., Bressan A., Danese L., 1998, ApJ, 509, 103
Speagle J.S., Eisenstein D.J., 2015, MNRAS, preprint (arXiv:1510.08073)
Tortora C. et al., 2016, MNRAS, 457, 2845
Umetsu K. et al., 2012, ApJ, 755, 1, 56
Wolpert, D. H.1992, Neural Netw., 5, 241
Zitlau R., Hoyle B., Paech K,., Weller J., Rau M. M., Seitz S., 2016, MNRAS,

460, 3152

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 466, 2039–2053 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/466/2/2039/2666395 by FAC
O

LTA' D
I LETTER

E E FILO
SO

FIA user on 09 N
ovem

ber 2022

http://arxiv.org/abs/1510.08073

