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Abstract: The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in
three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor
potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the
simultaneous extraction and analysis through high-performance liquid chromatography coupled
with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and
structural bioinformatics based on the protein modelling and molecular simulations of protein–ligand
docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were
quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka
variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello
(3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of
the homotetrameric human TRPV1, and it was used for docking simulations with the compounds
detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The
simulations indicate that different capsaicinoids can interact with the receptor, providing details on
the molecular interaction, with similar predicted binding energy values. These results offer new
insights into the interaction of capsaicinoids with TRPV1 and their possible actions.

Keywords: Capsicum annuum; phenolic compounds; capsaicinoids; HPLC-MS; transient receptor poten-
tial vanilloid member 1 (TRPV1); TRPV1–capsaicin interaction; protein modelling; docking simulations

1. Introduction

The Capsicum genus (Solanaceae family) is native to South America and includes over
30 species, five of which have been domesticated: C. annuum, C. baccatum, C. chinense,
C. frutescens and C. pubescens [1]. Peppers are grown all over the world, and their annual
production has increased significantly over the years. The cultivated area covers 3.7 million
hectares with a total production of about 41 million tons (FAOSTAT 2021) [2]. A tremendous
wealth of genetic variation in fruit size and shape [3], colour [4] and flavour [5–8] is known
within the Capsicum species. Today, pepper fruits are used for different purposes as fresh,
dehydrated or processed vegetables and spices in medicine, pest and animal control and
even in law enforcement, giving this crop immense cultural and economic importance [9].
Peppers are good sources of ascorbic acid (vitamin C) and other phytochemicals, such as
polyphenols, including flavonoids and carotenoids [10]. Phenolic compounds are abundant
secondary metabolites in plants. Their great chemical variability includes several thousands
of compounds from simple phenolic acids to complex flavonoids [11]. Different lines of
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evidence indicate that the use of a diet rich in phenolic compounds reduces the risk of
chronic diseases. Due to their ability to inactivate or prevent the formation of reactive free
radicals, polyphenolic compounds have antioxidant properties, although some of them are
also regarded as antimicrobial or anticarcinogenic [11,12]. The carotenoid and anthocyanin
pigments are responsible for the fruit colour and for the nutritional value of the pepper
fruits. The colour of each Capsicum variety is variable, starting from green, yellow or
white in the case of the unripe fruit and turning to red, dark red, brown, and sometimes
almost black at the fully ripe stage [13]. The predominant red pigments are capsanthin and
capsorubin, and the yellow and orange pigments are lutein, β-carotene (provitamin A),
zeaxanthin, violaxanthin and antheraxanthin [14]. All these compounds found in Capsicum
provide many nutritional and health benefits that include antioxidant, anti-inflammatory,
and antimicrobial activities, reduced prevalence of type 2 diabetes and obesity, protection
against hypercholesterolemia, reduced prevalence of atherosclerotic cardiovascular diseases
and a protective effect on some pro-oxidants that can induce lipid peroxidation in brain
and liver [15–18]. The amount of these compounds in peppers depends on many factors,
including cultivar, maturity, growing conditions and climate [10,19,20].

An important distinctive feature of pepper fruits is the presence or absence of pun-
gency. Hot peppers are called chiles, chillis or chilis; conversely, non-pungent varieties are
referred to as sweet peppers, although the sugar content can vary greatly in the fruit. Hot
peppers are characterised by different levels of pungency and other aroma and flavour
molecules [21]. Hot peppers are used fresh or dried in various pharmacological prepa-
rations and are widely used in cooking to enrich foods with their unique flavour. The
spiciness of chili peppers is due to the presence of lipophilic alkaloids at different concen-
trations, collectively called capsaicinoids [22]. Capsaicin and dehydrocapsaicin are the
predominant molecules, representing ~90% of the total capsaicinoid content, and usually,
the evaluation of their quantity is fundamental for determining pungency. Some additional
related compounds, such nordihydrocapsaicin, homocapsaicin and homodihydrocapsaicin,
are also present in minor concentrations in the fruits [23]. Capsaicinoids are synthesized
and accumulated in the epidermal cells of the placenta and are transported into the apoplast
and stored in the vesicles of the placenta, also called “blisters” [24]. Several health benefits
have been associated with polyphenols and capsaicinoids present in different Capsicum
genotypes and include antioxidant, antimicrobial, anti-inflammatory, antihypertensive,
antihyperglycemic, metal chelating and antitumoral activities [25].

The affinity of capsaicin with the transient receptor potential vanilloid member 1
(TRPV1) has been the subject of several studies. TRPV1 is a homotetrameric calcium-
permeable ion channel expressed mainly in neuronal cells, such as trigeminal nerves,
dorsal region ganglia, central nerves, and peripheral sensory nerve endings [26]. TRPV1 is
known to also be present in non-neural tissues, including vascular smooth muscle cells [27],
lung tissues, and cells of the immune system where it plays a key role in inflammation
and immunity [28]. Different agents can activate TRPV1: high temperature; extracellular
osmolality alterations; extracellular acidification; vanilloid compounds, such as capsaicin
or dihydrocapsaicin; or other compounds, such as arachidonic derivative or piperine.
Additionally, many natural (oleic acid) and synthetic (SB-366791) compounds with an
antagonist role are described [26].

Each TRPV1 monomer is composed of a repeating ankyrin domain in the N-terminal
region, a transmembrane domain in the core region, with six transmembrane helices per
subunit (S1 to S6) forming the pore of the channel, and a C-terminal domain; both N- and
C- terminal regions are located intracellularly [29]. When TRPV1 is activated, calcium or
sodium ions flow into the cell depolarizing the nociceptive neurons, resulting in the spicy
sensation; however, TPRV1 activation is involved in the modulation of certain processes,
such as synaptic transmission, temperature regulation, pain perception and apoptosis [30].

In this work, an analytic approach for the simultaneous extraction and analysis
via high-performance liquid chromatography coupled with ion trap mass spectrometry
(HPLC/ITMS) and UV detection (HPLC-UV) of phenolic compounds (PCs) and capsaici-
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noids (CAPs) in three varieties of Capsicum annuum was integrated withstructural bioinfor-
matics, based on protein modelling and molecular simulations of protein–ligand docking,
to verify the affinity of compounds to TRPV1. The results suggest possible molecular
mechanisms underlying TRPV1 activation or inhibition, with more capsaicinoids able to
bind the TRPV1 receptor with comparable values of predicted interaction energy.

2. Results and Discussion
2.1. Qualitative and Quantitative Analysis of Phenolic Compounds and Capsaicinoids in Pepper
Fruit Extracts

The highest content of total polyphenols was recorded in RP3 (8.91 ± 0.05 gGAE/Kg
DW); the lowest was found in GP (3.58 ± 0.02 gGAE/Kg DW) (Table 1).

Table 1. Total phenolic content in extracts from the four different C. annuum samples.

Sample Total Phenols Content
(gGAE/Kg DW)

GP 3.58 ± 0.02
RP1 5.24 ± 0.16
RP2 7.55 ± 0.05
RP3 8.91 ± 0.05

Abbreviations: GP (green pepper); RP1 (red pepper 1); RP2 (red pepper 2); RP3 (red pepper 3).

HPLC-UV and HPLC-ESI-ITMS analysis allowed the identification of phenolic com-
pounds and capsaicinoids in pepper fruit extracts. HPLC-UV chromatograms of GP and
RP3 samples are shown in Figure 1A,B.

Overall, a total of 35 compounds were identified in the different samples on the
basis of their pseudomolecular [M-H]− ions, together with the interpretation of their
collision-induced dissociation (CID) fragments. When authentic standards were available,
identification was conducted by comparing retention times and fragmentation spectra with
those of the standards.

The classes of compounds detected agreed with those already reported in previous
studies on Capsicum species [25,31–36] and included hydroxycinnamic acids, lignans,
flavones and flavonols in all the four samples analysed as well as capsaicinoids in the three
pungent C. annuum samples (Table 2).

Furthermore, in all analysed samples, we found the lignan glycoside icariside E5,
isolated for the first time in 1989 in a plant of the genus Epimedium (E. diphyllum) [37] and
found by Iorizzi et al. (2001) [38] in ripe fruits of Capsicum annuum L. var. acuminatum. In
particular, Iorizzi et al. (2001) demonstrated that icariside E5, while not showing capsaicin-
like activity, significantly prevented serum withdrawal-induced apoptosis in Jurkat cells,
indicating a potential antioxidant role in cultured cells.

The HPLC/ESI-ITMSn analyses of RP3 extract showed a compound with pseudo-
molecular ion [M-H]− at m/z 593 in peak 20 (Figure 1B; Table 2) that was tentatively
identified as luteolin deoxyhexosylhexoside, according to MS fragmentation, leading to the
luteolin aglycone at m/z 285 after a sequential loss of deoxyhexose and hexose moieties
[M-H− 146–162]. Interestingly, apigenin 7-O-(malonylapiosyl) hexoside (Peak 26; Figure 1B;
Table 2) was previously found in extracts of the leaves of C. chinense [39] and in the leaves
of several Capsicum species [40], but, to the best of our knowledge, the presence of this
phenolic compound in the extracts of pungent pepper fruits is reported here for the first
time. As for the quantitative analyses of capsaicinoids, capsaicin is the most abundant com-
pound in all three hot pepper samples (RP1, RP2 and RP3), followed by dihydrocapsaicin
and nordhydrocapsaicin. Furthermore, RP3 has the highest amount of total capsaicinoids
(40.75 ± 0.54 g/kg of DW), as shown in Table 3.
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Figure 1. HPLC-UV chromatograms of extracts from green pepper (GP) (A) and red pepper 3 (RP3)
(B) recorded at 280 nm. For peak assignments, see Table 2.

Table 2. List of compounds tentatively identified via HPLC-ITMS in the four different C. annuum
samples, including quasi-molecular ions and fragment ions.

Peak [M-H]−
m/z

MS/MS
m/z Identified Compound GP RP1 RP2 RP3

Phenolic compounds
1 341 179 Caffeic acid hexoside x x x x
2 337 191 Coumaroylquinic acid x x x
3 325 163, 119 Coumaric acid hexoside x x x x
4 353 191, 179, 173 3-O-caffeoylquinic acid x x x x
5 355 337, 309, 265, 235, 217, 193, 175, 163 Ferulic acid hexoside x x x x
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Table 2. Cont.

Peak [M-H]−
m/z

MS/MS
m/z Identified Compound GP RP1 RP2 RP3

6 385 223, 205, 191 Sinapic acid hexoside x x x x
7 741 579, 285 Luteolin 7-(2′′-pentosyl-4′′-O-hexosyl)hexoside x x
8 355 337, 309, 265, 235, 217, 193, 175, 163 Ferulic acid hexoside x x
9 579 561, 489, 459, 399, 369 Luteolin C-pentosyl-C-hexoside Isomer 1 x x x x

10 593 575, 503, 473, 383, 353 Apigenin 6,8-di-C-glucoside (Vicenin-2) x x x x
11 579 561, 489, 459, 399, 369 Luteolin C-pentosyl-C-hexoside Isomer 2 x x
12 563 473, 443, 383, 353, 325, 297 Apigenin C-pentosyl-C-hexoside x x x x
13 563 473, 443, 383, 353, 325, 297 Apigenin 6-C-arabinoside-8-C-glucoside (Isoschaftoside) x x x x
14 563 473, 443, 383, 353, 325, 297 Apigenin 6-C-glucoside-8-C-arabinoside (Schaftoside) x x x x
15 521 359, 341, 329 Icariside E5 x x x x
16 431 269, 225, 151, 149 Apigenin-O-hexoside x
17 609 463, 447, 343, 301 Quercetin-O-rhamnosyl-O-hexoside x x x
18 579 447, 285 Luteolin-O-(apiosyl)hexoside x x x x
19 463 301, 255, 179, 151 Quercetin-O-hexoside x x
20 593 285 Luteolin deoxyhexosylhexoside x
21 563 269, 225 Apigenin 7-O-(2′′-O-apiosyl)glucoside (Apiin) x
22 447 429, 369, 357, 327, 299, 285, 255 Luteolin-C-hexoside x
23 447 301, 179, 151 Quercetin-3-O-rhamnoside (Quercitrin) x x x
24 433 301, 271, 151 Quercetin-O-pentoside x

25 621
665

579, 561, 489, 447, 285
621, 579, 489, 285

Luteolin-O-(apiosyl-acetyl)hexoside
Luteolin-O-(apiosyl-malonyl)hexoside x x x x

26 649 605, 563, 269 Apigenin 7-O-(malonylapiosyl) hexoside x

Capsacinoids
27 292 277, 156 Nordihydrocapsaicin x x x
28 304 289, 168 Capsaicin x x x
29 306 291, 170 Dihydrocapsaicin x x x
30 318 303, 182 Homocapsaicin x x x
31 320 305, 184 Homodihydrocapsaicin x x x

Other compounds
32 191 173, 171, 155, 127, 111, 109 Quinic acid x x x x
33 164 147 Phenylalanine x x x x
34 203 185, 159, 116 Tryptophan x x x x

Abbreviations: GP (green pepper); RP1 (red pepper 1); RP2 (red pepper 2); RP3 (red pepper 3). x = detected.

Table 3. Content of capsaicinoids in extracts from the three hot pepper samples (g/kg DW).

RP1 RP2 RP3

Nordihydrocapsaicin 1.12 ± 0.02 0.28 ± 0.00 9.59 ± 0.12
Capsaicin 4.85 ± 0.09 2.62 ± 0.07 16.76 ± 0.14
Dihydrocapsaicin 4.12 ± 0.17 1.65 ± 0.07 12.36 ± 0.17
Homocapsaicin 0.15 ± 0.01 0.07 ± 0.00 1.00 ± 0.03
Homodihydrocapsaicin 0.26 ± 0.01 0.10 ± 0.00 1.04 ± 0.08
Total Capsaicinoids 10.51 ± 0.28 4.72 ± 0.14 40.75 ± 0.54

Abbreviations: RP1 (red pepper 1); RP2 (red pepper 2); RP3 (red pepper 3).

2.2. Human TRPV1 Model

The model of the complete structure of the homo-tetrameric human TRPV1 receptor
in its agonist-bound conformation was obtained for the first time in this study (Figure 2).
The crystal structures available in the Protein Data Bank (PDB) lack the C and N terminal
regions and often have some regions missing in the core region as well; moreover, the
available AlphFold model is monomeric and unfolded at the ends. Comparing the quality
of the model constructed with the template and the AlphaFold monomer, it is found that
the template has a Z-score equal to −5.9 for each of its chains and the Ramachandran plot
values of 87.8% core; 12% allowed; 0.2% generously allowed; and 0% disallowed.

The AlphaFold single-chain model has a Z-score of −8.57, and Ramachandran plot
values of 83.2%; −14.2%; −2.1%; and −0.4% (core, allowed, genereously allowed, disal-
lowed regions, respectively). The model obtained, instead, has Z-score of −7.95 for chain
A, −7.98 for chain B, −8.02 for chain C and −8.01 for chain D, with the Ramachandran
plot highlighting 88.8% of dihedral angles in the most favoured regions (core), 9.2% in
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those allowed, 0.8% in those generously allowed and 0.6% in those disallowed. The Qmean
4 values are quite comparable: 0.650 for the template, 0.615 for the AlphaFold model and
0.678 for the TRPV1 model.
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Figure 2. Model of the human TRPV1. (A) The ‘cartoon’ representation of the homotetrameric model
of TPRV1, coloured by chain. (B) Overlap between the model of TRPV1 (green) and the template
(PDB code: 7LPB) (cartoon). (C) Overlap between the chain A of the TRPV1 model (green) and the
single chain of the Alpha Fold model (pink).

The development of automated procedures for predicting the 3D structure of proteins,
and in particular, the success of AI-based methods has greatly improved the quality of the
structures that can be predicted. However, great care still needs to be taken in assessing
the quality of the models obtained, and in fact, the models produced using AlphaFold
are accompanied by several tools to assess their quality. In this work, it was necessary
to generate models for human TRPV1 with a procedure that integrated both automatic
server-based predictions and modelling guided by the careful definition of alignments
between templates and target sequence. The quality of the obtained model is a prerequisite
for applying reliable molecular docking procedures. Moreover, it should be noted that the
AlphaFold models accessible by the UniProt database are in a monomeric, apo, inactive
conformation that often is not suitable to perform docking simulations, so that refinement
procedures may improve these valid models on the base of suitable selected crystallographic
templates [41].

2.3. Docking Results

Docking analyses were performed with all detected capsaicinoids, in order to investi-
gate their ability to interact with the receptor, and with two phenolic compounds, namely
the caffeic acid hexoside and the icariside E5, to test the absence of capsaicin-like activi-
ties. As positive and negative controls, capsaicin and the inhibitor SB-366791 were also
tested [26]. Table 4 lists the docking results.
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Table 4. Summary of the docking results. If the numerousness and best energy values are not
attributable to a single cluster or if the cluster density values are very similar, both cluster IDs are
reported. Residues involved in H-bonds are underlined and highlighted in bold.

Receptor Ligand Lowest Binding
Energy (Kcal/mol) Ki No. in

Cluster Interacting Residues

Agonist-bound
conformation

Capsaicin −7.33 4.21 uM 62 Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Ala666(D)-Leu670(D)

Dihydrocapsaicin −6.76 11.14 uM 44
Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Arg557-
Ala566-Ile569-Glu570-Ile573-Phe591(D)-Leu670(D)

Nordihydro-capsaicin
−6.7 12.26 uM 7 Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-

Tyr554-Arg557-Ala566-Glu570-Phe591(D)-Leu670(D)

−6.36 21.86 uM 31 Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Tyr554-
Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D)

Homocapsaicin

−7.14 5.82 uM 15
Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Tyr554-Arg557-
Ala566-Il569-Glu570-Ile573-Phe591(D)-Leu663(D)-Ala666(D)-
Leu670(D)

−6.69 12.50 uM 12
Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-
Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Leu670(D)

Homodihydro-
capsaicin −5.97 11.09 uM 30

Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Leu663(D)-Ala666(D)-
Leu670(D)

Caffeic acid hexoside
−6.31 23.55 uM 27 Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-

Tyr554-Arg557-Ala566-Glu570-Phe591(D)

−5.97 42.38 uM 29 Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Arg557-Phe587(D)-Phe591(D)-Leu670(D)

Icariside E5 −4.88 266.06 uM 2
Phe507-Tyr511-Leu515-Leu518-Phe543-Ala546-Leu547-Thr550-
Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D)

Caffeic acid −5.09 186.59 uM 49 Tyr511-Leu515-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557

SB-366791 −7.25 4.87 uM 97
Tyr511-Leu547-Thr550-Arg557-Ala566-Ile569-Glu570-Ile573-
Phe591(D)-Leu670(D)

Antagonist-bound
conformation

caffeic acid
−5.94 23.65 uM 75

Ser512-Leu515-Thr550-Asn551-Leu553-Tyr554-Arg557-Ala566-
Val567-Glu570-Gln701

−4.83 289.79 uM 1 Leu515-Leu547-Thr550-Leu553-Ala566-Ile569-Glu570-Leu670(B)

capsaicin

−8.2 189.50 nM 25 Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Tyr554-Thr556-
Arg557-Ala566-Val567-Glu570-Phe591-Gln701-Leu670(B)

−7.77 704.99 nM 48
Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Glu570-Leu663(B)-Ala666(B)-Phe591(B)-Leu670(B)

caffeic acid hexoside

−6.43 1.79 uM 16
Tyr511-Leu515-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-
Ala566-Val567-Ile569-Glu570-Ile573-Gln701-Leu670(B)

−5.61 21.30 uM 24 Tyr511-Ser512-Leu515-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Ala566-Ile569-Glu570-Phe587(B)-Phe591(B)

−5.53 22.72 uM 32
Tyr511-Ser512-Leu515-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Arg557-Ala566-Phe587(B)-Phe591(B)-Leu670(B)

−5.48 52.79 uM 6
Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-
Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-Ala666(B)-
Leu670(B)

Homocapsaicin −7.96 1.35 uM 29
Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-
Leu553-Tyr554-Arg557-Ile569-Glu570-Phe587(B)-Phe591(B)-
Leu663(B)-Ala666(B)-Leu670(B)

Nordihydro-capsaicin −6.59 4.91 uM 38 Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-
Ala566-Ile569-Glu570-Phe591(B)-Leu663(B)-Leu670(B)

Homodihydro-
capsaicin −6.58 4.44 uM 39

Tyr511-Ser512-Phe522-Phe543-Ala546-Leu547-Thr550-Asn551-
Leu553-Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-
Leu670(B)

Dihydrocapsaicin −6.62 2.53 uM 47
Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-
Leu553-Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-
Ala666(B)-Leu670(B)

SB-366791 −8.12 923.53 nM 100
Tyr511-Ser512-Leu515-Phe516-Ala546-Leu547-Thr550-Asn551-
Leu553-Tyr554-Ile573-Phe591(B)

Since the TRPV1 agonist and antagonist share the same binding pocket, the former
inducing the conformational change that leads to the pore opening and the latter inhibiting
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it [42], the same docking simulations were performed, exploiting a dual state of TRPV1:
one bound to the inhibitor (referred to as antagonist-bound conformation in Table 4) and
the other modelled to bind capsaicin (referred to as agonist-bound conformation in Table 4).

Capsaicin and SB-366791 exhibit similar binding energy for both TRPV1 conformations:
−7.33 Kcal/mol and −7.25 Kcal/mol, respectively, for the agonist-bound conformation,
with comparable estimated inhibition constants (Ki), and in the range of −8.20 Kcal/mol
to −7.77 Kcal/mol for capsaicin and −8.12 Kcal/mol for the inhibitor binding to the
antagonist-bound conformation.

However, in the latter case, two possible capsaicin binding positions were detected: the
one with the best energy is displaced with respect to the inhibitor position (Figure 3A) and
shows an estimated nine-folds lower inhibition constant, and the other is characterised by
a lower binding energy and is in the same conformation as the inhibitor and the capsaicin
in active conformation (Figure 3A,B).
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Figure 3. Docking results for capsaicin and inhibitor. (A) Overlay of the docking pose of the capsaicin
with the best energy cluster (orange stick) with the capsaicin with the best numerousness in cluster
(cyan stick) and the inhibitor (pink stick). (B) Overlay of the docking pose of the capsaicin with the
best energy cluster (orange stick) with the capsaicin with the best numerousness in the cluster (cyan
stick) and the capsaicin bound to the TRPV1 agonist-bound conformation (pink stick); in cyan/beige
and pink cartoon TRPV1 in antagonist- and agonist-bound conformation, respectively. Pointed by
the red arrows the different orientations of the Arg 557 before and after the conformational change.

The side chain orientation of Arg557 on S4 plays a crucial role in receptor activation
because H-bond formation with Glu 570 leads to the rotation of the S4–S5 linker where
glutamine is located, performing one of the relevant conformation changes required for
channel opening [43].

Capsaicin, unlike the inhibitor SB-366791, seems to play a role in the correct orientation
of this residue by interacting directly with it [44]. The docking simulation highlighted
how capsaicin can perform H-binding with Arg557 not only when TRPV1 is in an active
conformation but also when it is in an inhibited one.

Among the remaining capsaicinoids tested, the only one with already known TRPV1
agonist activity is dihydrocapsaicin; for all the others, no pharmacological activity has
been recorded [26]. The results showed that dihydrocapsaicin, homocapsaicin and nordihy-
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drocapsaicin, in addition to sharing the same position in the pocket (Figure 4), also have
comparable binding energies.

Molecules 2023, 28, 6772 10 of 17 
 

 

 
Figure 4. Docking results for capsaicinoids. Overlay of the docking pose of the capsaicin (green 
stick), dihydrocapsaicin (yellow stick), homocapsaicin (pink stick) and nordihydrocapsaicin (cyan 
stick). TRPV1, in agonist-bound conformation, is represented in cartoon, with cyan and beige 
colours for two different chains. 

Notably, homocapsaicin seems to achieve even higher binding values than 
dihydrocapsaicin in both tested TRPV1 conformations: −7.96 Kcal/mol (model) and −7.14 
Kcal/mol (antagonist-bound conformation) for homocapsaicin compared to −6.62 
Kcal/mol (model) and −6.76 Kcal/mol (antagonist-bound conformation) for 
dihydrocapsaicin. 

Docking analysis for icariside E5 indicates that it does not appear to be a good ligand 
for TRPV1, due to its unfavourable binding energy to the receptor in the agonist-bound 
state and its higher estimated inhibition constant. The case of the caffeic acid hexoside is 
different, as the interaction energy for this compound is comparable to that of other 
capsaicinoids, especially for TRPV1 in the antagonist-bound state. Indeed, its role seems 
to be more comparable to that of an inhibitor. Caffeic acid is known for its inhibitory role 
in TRPV1 [45], which is why we decided to also perform docking simulations with this 
compound as a control. A common feature for inhibitors is the low number of interactions 
with the other chain at the interface and fewer interactions with the subunit S6, an active 
component of the pore domain (Figure 5). As can be seen from the interactions detected 
via the docking analysis, caffeic acid hexoside shows little interaction with the B or D 
chain. This may lead to a minor conformational change compared to that induced by 
capsaicin and may explain the minor/absent response of the receptor to this molecule, 
despite the appreciable position in the pocket, the energy of the interactions and the 
estimated inhibition constants. 

Figure 4. Docking results for capsaicinoids. Overlay of the docking pose of the capsaicin (green stick),
dihydrocapsaicin (yellow stick), homocapsaicin (pink stick) and nordihydrocapsaicin (cyan stick).
TRPV1, in agonist-bound conformation, is represented in cartoon, with cyan and beige colours for
two different chains.

Notably, homocapsaicin seems to achieve even higher binding values than dihydrocap-
saicin in both tested TRPV1 conformations: −7.96 Kcal/mol (model) and −7.14 Kcal/mol
(antagonist-bound conformation) for homocapsaicin compared to −6.62 Kcal/mol (model)
and −6.76 Kcal/mol (antagonist-bound conformation) for dihydrocapsaicin.

Docking analysis for icariside E5 indicates that it does not appear to be a good ligand
for TRPV1, due to its unfavourable binding energy to the receptor in the agonist-bound
state and its higher estimated inhibition constant. The case of the caffeic acid hexoside
is different, as the interaction energy for this compound is comparable to that of other
capsaicinoids, especially for TRPV1 in the antagonist-bound state. Indeed, its role seems
to be more comparable to that of an inhibitor. Caffeic acid is known for its inhibitory role
in TRPV1 [45], which is why we decided to also perform docking simulations with this
compound as a control. A common feature for inhibitors is the low number of interactions
with the other chain at the interface and fewer interactions with the subunit S6, an active
component of the pore domain (Figure 5). As can be seen from the interactions detected via
the docking analysis, caffeic acid hexoside shows little interaction with the B or D chain.
This may lead to a minor conformational change compared to that induced by capsaicin
and may explain the minor/absent response of the receptor to this molecule, despite
the appreciable position in the pocket, the energy of the interactions and the estimated
inhibition constants.
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Figure 5. Docking results for TRPV1 agonist, antagonist, and caffeic acid hexoside. Docking inter-
actions between TRPV1 in antagonist-bound conformation (cyan and beige depict chain A and B,
respectively) and capsaicin (pink sticks in panel (A)), SB-366791 (yellow sticks in panel (B)), caffeic
acid (orange sticks in panel (C)) and caffeic acid hexoside (green sticks in panel (D)). In beige and
cyan, stick residues depict the interaction between the ligand s and the chain A and B, respectively.
Caffeic acid hexoside, as well the caffeic acid, and the inhibitor SB-366791 do not interact with S6 helix.

The results obtained highlight that homocapsaicin, nordihydrocapsaicin and dihy-
drocapsaicin could have a similar effect as capsaicin on the TRPV1 receptor, representing
a resource in the therapeutic field. Actually, the role of capsaicin via its modulation of
TRPV1 is widely studied for its implications in the antidiabetes and antihypertension
mechanisms [46]. Notably, the object of several studies is also the induction of TRPV1 via
capsaicin which may result in glucose homeostasis regulation and a reduction in hyperinsu-
linemia with an enhancement of insulin sensitivity or may result in the regulation of cellular
lipid content, inducing an increase in fatty acid oxidation through the TRPV1-induced
calcium flux [47]. It is also noteworthy that the capsaicin application in analgesia exploits its
ability after activation to desensitise the TRPV1 receptor present in the small fibre sensory
afferent nerve endings [48].
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3. Materials and Methods
3.1. Materials and Chemicals

Acetonitrile and methanol (all HPLC grade) were obtained from Merck (Darmstadt,
Germany). Glacial acetic acid was purchased from Carlo Erba (Cornaredo, Milan, Italy).
HPLC-grade water (18.2 MΩ) was prepared using a Millipore Milli-Q purification sys-
tem (Millipore Corp., Bedford, MA, USA). Chlorogenic acid, quercitrin (quercetin-3-O-
rhamnoside), isoquercitrin (quercetin-3-O-glucoside), rutin (quercetin-3-O-rutinoside),
capsaicin and Folin-Ciocalteu reagent were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

3.2. Plant Materials and Sample Treatment

Three varieties of Capsicum annuum with different levels of pungency were analysed.
These included the non-pungent variety Friariello (GP: green pepper), two different samples
of the pungent Cayenne variety (RP1: red pepper 1; RP2: red pepper 2) and one pungent
Dzuljunska Sipka variety (RP3: red pepper 3). GP and RP1 were purchased at the local
markets of Avellino (AV), Italy (40◦54.8964′ N and 14◦47.4618′ E); RP2 was purchased at
the local market of Grottaminarda (AV), Italy (41◦4.1832′ N and 15◦3.5364′ E); and RP3
was kindly provided by a farm located in Sicily (Southern Italy). Fresh pepper fruits were
rapidly washed in distilled water, freeze-dried and kept at −20 ◦C until use. Once the
peduncles were removed, the freeze-dried peppers were ground in a kitchen grinder and,
for each variety, 0.5 g aliquots of ground sample were subjected to extraction with 5 mL of
80% aqueous methanol for 30 min in an ultrasonic bath (Astrason 10E, Farmingdale, NY,
USA). After centrifugation (4000 rpm, 4 ◦C, for 10 min), the supernatant was removed, the
pellet was suspended in 5 mL of 80% aqueous methanol and the extraction was repeated
under the same conditions. The two supernatants were pooled and dried first under
nitrogen flow and then in a rotary evaporator (LaboRota 4000/HB Efficient, Heidolph,
Schwabach, Germany). Samples were stored at −20 ◦C until use.

3.3. Analysis of Total Phenolic Content

The amounts of total phenols in the pepper fruit extracts were determined according to
the Folin–Ciocalteu method [49], using gallic acid as a reference standard. Folin–Ciocalteu’s
reagent (62.5 µL) and 250 µL of distilled water were added to 62.5 µL of suitable aqueous
dilutions of dry extracts. The reaction mixture was mixed and allowed to stand for 6 min.
Finally, 625 µL of sodium carbonate 7.5% (w/v) and 500 µL of distilled water were added,
and the solution was incubated in the dark for 90 min. The absorbances of the samples
were measured at 760 nm. The total phenolic content was expressed as grams of gallic acid
equivalents (GAE) per kilogram of dry weight (gGAE Kg−1 DW). All measurements were
carried out in triplicate.

3.4. Analysis of Phenolic Compounds and Capsaicinoids Using Reversed-Phase High Performance
Liquid Chromatography–Ultraviolet (RP-HPLC–UV) and HPLC-Electrospray Ionization Ion Trap
Mass Spectrometry (HPLC-ESI-ITMS)

Dried samples were reconstituted in 0.1% acetic acid/methanol 80:20 and analysed
using HPLC/ESI-ITMSn on a Surveyor MS micro-HPLC with a diode array detector
and coupled with a LCQ DECA XP Max ion trap mass spectrometer, equipped with
Xcalibur® system manager data acquisition software (version 1.3; Thermo Finnigan, San
Jose, CA, USA).

Phenolic compounds and capsaicinoids were separated on a Luna C18 (2) column
(150 × 2 mm, 5 µm, 100 Å) manufactured by Phenomenex (Torrance, CA, USA), at a flow
rate of 200 µL min−1; solvent A was 0.1% acetic acid in water, and solvent B was 0.1% acetic
acid in acetonitrile. After holding for 2 min in 5% solvent B, elution was performed under
the following conditions: 5 to 30% solvent B in 30 min, 30 to 45% solvent B in 13 min, 45 to
50% solvent B in 13 min and 50 to 95% solvent B in 5 min, followed by a 7 min hold.
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The column effluent was split in two by a “T junction” placed after the chromato-
graphic column and analysed “on-line” both using UV and ESI/MS; 80% of the effluent
was sent to the UV detector (detection 280 nm) while 20% of the effluent was analysed
via ESI/MS. Mass spectra were recorded from mass-to-charge ratio (m/z) 120 to 1600 in
negative ionization mode. The capillary voltage was set at −10 V, the spray voltage at
3.0 kV, and the tube lens offset at −10 V. The capillary temperature was 275 ◦C. Data were
acquired in MS, MS/MS and MSn scan modes.

3.5. Quantification of Capsaicinoids

The quantitative analyses of capsaicinoids present in the extracts of the three hot
pepper samples (RP1, RP2 and RP3) were carried out through HPLC–UV, using an HP
1100 Series HPLC (Agilent, Palo Alto, CA, USA) equipped with a binary pump (G-1312A)
and a UV detector (G-1314A). The chromatographic conditions were as described for the
HPLC–MS system, except that phenols were separated on a XBridge BEH C18 column
(130 Å, 5 mm, 4.6 mm × 150 mm) (Waters, Milford, MA, USA) at a flow rate of 1 mL min−1.
The detection wavelength was 280 nm. The quantification of capsaicinoids was performed
using external calibration curves generated via the repeated injections of a fixed volume of
capsaicin standard solutions in a concentration range of 0.005–0.1 µg/µL with four different
concentration levels and duplicate injections at each level. All samples were analysed in
duplicate. The results were expressed as g kg−1 DW.

3.6. TRPV1 Model Construction

In order to obtain the 3D model of the human TRPV1 protein sequence (UniProt code:
Q8NER1), homology modelling and fold recognition strategies were combined due to the
complexity of the structure and the lack of templates for the whole sequence.

Multiple models were created by Modeller 9.22 [50] using three templates: one for
the N-terminal region, one for the core and one for the C-terminal region of the protein
sequence. In detail, the E3 ubiquitin–protein ligase (PDB code: 8D4X) was used as a
template to model the first 126 residues. The template selected to model the core was the
structure of TRPV1 from Rattus Norvegicus (PDB code: 7LPB) in the presence of capsaicin
at 25 ◦C (85.83% identity). The C terminal region (residues 752 to 839) was modelled using
the squirrel TRPV1 structure for residues from 753 to 779 (PDB code: 7LQY) as a template;
the models of the regions in the ranges 780–812 and 813–839 were obtained by running
Alpha Fold [51] and Phyre2 [52], respectively. Supplementary File S1 provides a detailed
description of the modelling procedure and the alignments used as input files for Modeller.

The models were validated in terms of structural features by analysing the Z-scores
computed by ProSA-web [53], the Q-means determined by QMEAN-SWISS-MODEL [54]
and the Ramachandran plots generated by PROCHECK [55]. Finally, the model with
the best features was selected. Supplementary File S2 is the final PDB file of the TRPV1
tetrameric structure.

3.7. Docking Simulations

The docking simulation procedure applied in this study is as follows. The PubChem
database [56] was used to download in SDF format the structures of nordihydrocapsaicin
(CID_168836), dihydrocapsaicin (CID_107982), homocapsaicin (CID_6442566), homodihy-
drocapsaicin (CID_3084336), icariside E5 (CID_91884923), caffeic acid (CID_689043) and
caffeic acid hexoside (CID_6124135). The structure of capsaicin (CID_1548943) was also
present in the PDB structure 7LPB). Structures in SDF format were converted to PDB format
by Chimera (www.rbvi.ucsf.edu/chimera, accessed on 20 July 2023). For docking simula-
tions, two target protein structures were used: the previously described model of human
TRPV1 in an active conformation (Supplementary File S2) and the Cryo-EM structure of
human TRPV1 in complex with the analgesic drug SB-366791 (PDB code: 8GFA) for the in-
active form. The structures of ligands and proteins were prepared for docking by AutoDock
Tool 1.5.6 [57]. The docking simulations were performed using a 64 × 68 × 80 grid and

www.rbvi.ucsf.edu/chimera
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0.375 Å spacing (gridcenter: 161.616–135.517–126.286 for the active conformation and
107.152–80.204–92.147 for the inactive one). Docking simulations were computed using
AutoDock 4.2.5.1 [58] and ligand interactions were analysed using AutoDock Tool 1.5.6
and LigPlot+ v.2.2.8 [59].

4. Conclusions

In the three Capsicum annuum varieties Friariello, Cayenne and Dzuljunska Sipka, a
total of 35 compounds belonging to different classes were identified and a quantitative
analysis of capsaicinoids was performed. Furthermore, to the best of our knowledge, this
is the first report describing the presence of apigenin-7-O-(malonylapiosyl) hexoside in
the extracts of pungent pepper fruits. The Dzuljunska Sipka variety presented the highest
values for phenolic and capsaicinoid content. The modelling, for the first time, of the
complete 3D structure of the homotetrameric human TRPV1 offered the chance to evaluate
the interaction of the detected compounds with a more comprehensive model. Results
suggest that more compounds may interact as capsaicin at the binding site of the receptor
and open the possibility for further studies on the possible activity of these compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28196772/s1, Supplementary File S1: Detailed description of the
procedure applied to generate a 3D model for the complete human TRPV1 sequence. Supplementary
File S2: TRPV1_model as PDB file.
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