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Unsupervised learning is a general definition that refers to problems where
no observable response is available, yet it is implicitly assumed that some under-
lying quantitative/qualitative latent response(s) provide a meaningful synthesis of
the available data. Therefore, unsupervised learning methods aim to gather infor-
mation from the analyzed data by estimating one (or more) latent responses using
the observed attributes.
In modern applications, however, the information at hand can hardly be coded into
a classic observations by attributes structure; hence, more complex data coding
and structures that can be referred to as symbolic data aid in better exploiting
the information from data. Symbolic data encompasses interval-valued variables,
multi-valued variables and other set-valued variables, where data cells contain
sets of categories, ranges (intervals), or weights (Billard and Diday, 2000; Bock
and Diday, 2000; Diday, 1988). Therefore, interval data are a special kind of
symbolic data, in which only quantitative variables are considered and represent
a viable coding of information concerning complex phenomena. An interval data
matrix has a complex structure because each cell does not contain a single value
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but a pair of values (center and range, or min-max). This type of data can derive
from several sources: in chemometrics, it is possible to study mineral concen-
trations in food products in different experimental situations; in meteorology, the
daily temperature, humidity, and wind speed can be recorded in different places;
in environmental sciences, concentrations of pollutants can be recorded in various
locations; in finance, the exchange rate euro-dollar varies throughout the day; in
medicine, daily systolic and diastolic pressure, heart frequency and temperature
fluctuate in a range. In all the above cases, it is often more interesting to con-
sider the minimum and maximum values for each variable rather than the average
value, which would cause the loss of information. In fact, ranges refer to the
variability of phenomena measured within each observation, and different appli-
cation fields could benefit from interval data analysis, such as behavioral analysis,
weather forecasts, statistical quality control, and financial analysis. Several other
conditions exist in the numerical coding of variables, where interval-valued vari-
ables can represent the real world better than single-valued variables. A very
appropriate condition arises when data are naturally interval-valued: this is typi-
cal when describing living species or giving a product specification (Billard and
Diday, 2003; Billard and Diday , 2007; Bock and Diday, 1999; D’Esposito et al.,
2012).
The fuzzy sets theory offers alternative approaches to account for the variability
within each statistical unit. The extensive related scientific literature introduced
diverse definitions of fuzzy numbers, yet some of the definitions some are closely
related to the concepts of uncertainty and intervals (readers may refer to Dubois,
1980; Dubois and Prade, 1993). The so-called interval algebra represents the first
attempt to deal with complex data coded as interval-valued variables: in partic-
ular, interval-valued algebra was introduced to deal with the round-off issue of
the fixed-point computer processors. Due to the specific nature of the problem,
interval-valued algebra was meant to deal with small intervals; for that reason, it
was of little or non-use in statistical analysis (see, e.g., Ferson et al., 2002; Marino
and Palumbo, 2002).
Symbolic Data Analysis (SDA) (Diday, 1988) aims to extend classical unsuper-
vised (and, supervised) methods to complex data structures. Since the publication
of the book edited by Bock and Diday (2000), several authors contributed to the
growth of the SDA framework, that, as of today, covers several topics with hun-
dreds of published scientific papers on clustering methods (Billard and Diday ,
2019), dimensionality reduction techniques (Nagabhushan et al., 1995), decision
trees (Mballo and Diday, 2005).
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This paper focuses on Principal Component Analysis (PCA, see, e.g., Jolliffe,
2005, for a thorough discussion) for interval data, in particular on the most used
approaches such as Centers PCA and Vertices PCA (respectively C-PCA and
V-PCA, Cazes et al., 1997). Furthermore, an enhancement for Midpoints and
Radii Principal Component Analysis (MR-PCA Palumbo and Lauro, 2003) is pro-
posed that exploits a symbolic variance-based pre-processing, and a Procrustean
analysis-based rotation of the data structures. In particular, the pre-processing
takes into account the center/range covariance structure, and the rotation of the
ranges preserves the general center/ranges geometric structure. The methods are
applied to synthetic and real data sets. It is worth noting that all of the reviewed
methods can also be helpful to analyze data coded as fuzzy numbers via the trian-
gular membership function.
The paper is structured as follows: in Section 2 we briefly recall the general con-
cepts for PCA of single-valued quantitative data; Section 3 discusses interval-
valued data pre-processing alternatives. Section 4 reviews the best known in the
literature PCA methods for interval-valued data; in Section 5 the so-called mid-
point and radii PCA is presented and reconsidered; in Section 6 we show the
results of our method applied to simulated data and the facial recognition data set.
The last Section is for discussion and it concludes the paper.

2. PCA for single-valued data

The best-known linear dimension reduction method for single-valued quan-
titative variables is the Principal Component Analysis (PCA, see, e.g., Jolliffe,
2005, for a thorough discussion). PCA serves different tasks, from data visual-
ization to feature extraction and data compression. In general, starting from p
variables, the PCA aims to define q ! p principal components (PC’s) that are
linear combinations of the p original variables; and explain most of the original
variability.
Formally, let X be the (n× p) data matrix, with statistical units on rows and single-
valued variables on columns. We assume X to be pre-transformed, centered, and
standardized for simplicity and without loss of generality. The transformed data
matrix can be re-written, therefore, as

X = AB′+E

where A (n×q) and B (p×q) are the so-called components scores and component
loadings matrices, respectively; E is the (n× p) residual matrix. For a specified
value of q, the analysis goal is to find the matrices A and B that minimize the

2. PCA FOR SINGLE-VALUED DATA
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squared residuals.
Based on the Eckart and Young (1936) theorem, upon defining

A = UDλ

B = V,

with U, V and Dλ obtained via the singular value decomposition of X; it results
in that

AB′ ≈ X

that is the best rank-q approximation of X, in the least-squares sense. In other
words, the PCA solution boils down to the SVD of the centered and standardized
data matrix. Due to the relation between the SVD and the eigenvalue decomposi-
tion (EVD) of X′X and XX′, the singular vectors in U and V are the eigenvectors
of

XX′ = UD∗2
λ U′

X′X = VD2
λ V′

and D∗2
λ , D2

λ are diagonal matrices of eigenvalues, that are the singular values of
X, squared. Also, D∗2

λ and D2
λ have the same non-zero elements.

Due to the correspondence between the above eigendecompositions and the sin-
gular value decomposition, the component matrices A and B can be obtained by
either the SVD of X or the EVD of X′X, to get V and Dλ and then use the transi-
tion formula to get U = XVDλ .
In PCA, the point-wise assessment of the obtained solution is measured by the
so-called absolute contributions and relative contributions (or squared cosine). In
particular, the absolute contribution ctr_absiα of a point i to the α-th PC, indicates
the influence of that point on the solution. The relative contribution ctr_reliα of
the point i on the α-th PC measures the quality of the representation of the point
on that axis. Formally, let aiα be the score of i on the α-th PC, then the absolute
contribution is

ctr_absiα =
a2

iα
nλα

.

Note that, since λα is the variance explained by the α-th component, and since
aα = 1

n ∑n
i=1 aiα = 0, then the quantity a2

iα
n is, in fact, the contribution of the i-th
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point to the variability of the α-th PC. The relative contribution ctr_reliα repre-
sents the ratio between the length (squared norm) of the projection of i on the α-th
PC (that is, aiα ) and the full-dimensional length of observation i, which is given
by the squared norm of the i-th row of X, indicated by xi. Formally,

ctr_reliα =
‖aiα‖2

‖xi‖2 .

Both the absolute and relative contribution indexes take value in [0,1].

3. Interval-valued data coding

Let [x] be a closed interval inR, such that [x]⊂R, and that [x]≡ [x,x], with x≥
x. Then an interval-valued variable [X ] is defined as [X ] = [x]1, [x]2, · · · [x]i, · · · [x]N .
Statistical methods to deal with interval-valued variables require that intervals are
defined through mathematical entities that are numerically tractable.
The interval algebra approach postulates that the knowledge about the interval is
limited to its extremes values: min and max, which have been denoted with x and
x, respectively. The generic interval value [x]i is defined as

[x]i = [xi,xi] i = 1, . . . ,N.

However, under the interval algebra paradigm, [x]i can equivalently be represented
in the center xc

i and the range xr
i (also called midpoints-radii) notation. So the

interval [x]i ≡ {xc
i ,x

r
i}, where

xc
i =

1
2
(
¯
xi + x̄i)

xr
i =

1
2
(x̄i − ¯

xi).

(1)

Note that, for sake of simplicity, we refer to the radius as range, which is half of
the min-max range.

3.1. Variance and covariance for interval valued data
Just like for PCA, in interval data PCA, one wants to pre-process (or trans-

form) the data prior to the analysis, and the data transformation must be consis-
tent with the intrinsic nature of the interval-valued variables at hand. Therefore,
a crucial point to extend the PCA applicability to interval-valued variables is the
definition of a proper mean and deviation (squared deviation) for interval data and

3. INTERVAL-VALUED DATA CODING

3.1 VARIANCE AND COVARIANCE FOR INTERVAL VALUED DATA
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the definition of distance between intervals. The variance can be defined start-
ing from Hausdorff’s distance between two intervals. Given two generic intervals
coded in the center and range notation (1), the squared distance between {xc

i ,x
r
i}

and {xc
i′ ,x

r
i′} is defined as (Ferson et al., 2007)

d([x]i, [x]i′)2 = (|xc
i − xc

i′ |+ |xr
i − xr

i′ |)2.

Let [X] be the raw interval data matrix containing min and max values for p
interval-valued variables registered for n statistical units, it has dimensions (n×
2p). Furthermore, let X̃c and X̃r be the midpoint and range matrices (n× p); in
the following Xc and Xr denote the centered versions, that is:

Xc =

(

X̃c − 1
n

11′X̃c
)

, Xr =

(

X̃r − 1
n

11′X̃r
)

.

A measure of overall variability can be obtained starting from the matrix X̂ ob-
tained by juxtaposing Xc and Xr:

X̂ =
[

Xc Xr]

and by considering:

VX = diag(ΣX̂),

where ΣX̂ is the variance and covariance matrix for X̂:

X̂′X̂ =ΣX̂ =
1

2n

[

X′cXc X′cXr

X′rXc X′rXr

]

.

In particular, Palumbo and Lauro (2003) first defined the variability as the mean
of the squared Hausdorff distances between each interval in a set of n intervals
and the mean interval:

σ2 =
1
N

N

∑
i=1

(xc
i + xr

i )
2

=
1
N

N

∑
i=1

(

xc
i

2 + xr
i
2 +2|xc

i ||xr
i |
)

, (2)

so that in matrix notation:

VARX = (X′cXc)+(X′rXr)+(|X′cXr|+ |X′rXc|).
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Note that the interval data coding is equivalent to a triangular symmetric fuzzy
coding: in fact, Giordani and Kiers (2004) proposed the variance

σ2 = =
1
N

N

∑
i=1

(xc
i +λxr

i )
2,

where λ is a weight; under the symmetric triangular fuzzy number condition, λ
is a constant equal to .5; in other words, the ranges have a weight equal to .5 with
respect to the min/max coding. Therefore, the interval and symmetric triangular
fuzzy coding are equivalent.
More recently, Le-Rademacher and Billard (2012) introduced the definition of
symbolic mean and the symbolic covariance matrix Σsymb for interval-valued vari-
ables; the latter results from the variability of the interval-valued variables, where
the interval values are considered as a whole. Let [X ] = ([X ]1, ..., [X ]p) be a p-
variate interval-valued random variable and [xi j,xi j] the interval-valued realiza-
tion of the j-th variable for the i-th observation ( j = 1, ..., p; i = 1, ...,n), where
xi j ≤ xi j. Then the symbolic mean w̄ j and the symbolic variance σ2

jsymb
of [x] j are

defined according to the following formulae:

w̄ j =
1

2n

n

∑
i=1

(
¯
xi j + x̄i j), (3)

σ2
jsymb

=
1

3n

n

∑
i=1

(
¯
x2

i j + ¯
xi jx̄i j + x̄2

i j)−
(

1
2n

n

∑
i=1

(
¯
xi j + x̄i j)

)2

. (4)

It is worth noting that w̄ j corresponds to the mean of the midpoints for the j-th
variable. The variance (4) can be extended to the bivariate case for the covariance
for j and j′:

σ j j′symb
=

1
6n

n

∑
i=1

[2(xi j − w̄ j)(xi j′ − w̄ j′)+(xi j − w̄ j)(xi j′ − w̄ j′)

+(xi j − w̄ j)(xi j′ − w̄ j′)+2(xi j − w̄ j)(xi j′ − w̄ j′)] (5)

Then, the symbolic covariance matrix Σsymb has diagonal and extra diagonal ele-
ments (4) and (5), respectively.

4. Principal component analysis for interval-valued variables

This section is devoted to illustrating three of the most widespread principal
component analysis (PCA) methods for interval-valued data. Before going into

4. PRINCIPAL COMPONENT ANALYSIS FOR INTERVAL-VALUED
VARIABLES
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details, it is worth pinpointing that points in the reduced space cannot consistently
represent statistical units described by interval variables. They are represented as
segments in R, parallelograms in R2, parallelepipeds when in R3, and parallelo-
topes (generally hyper-rectangles) in Rp when p > 3 (Palumbo and Irpino, 2005).
Consequently, interval PCA must account for aspects other than the location.

4.1. Centers Principal Component Analysis
Given the previously defined Xc and Xr, the standardization is given by

Zc = XcV−1/2
c

Zr = XrV−1/2
c

where Vc =
1
n diag(X′cXc); therefore, both matrices share the same scaling opera-

tor, that is, V−1/2
c .

C-PCA (Cazes et al., 1997; Chouakria et al., 1998) is a PCA of Zc, with A be-
ing the centers’ scores and B the loadings. The interval bounds are then repre-
sented as supplementary points. Therefore, each observation is represented as
a d-dimensional hyper-rectangle, obtained by joining the corresponding interval
bound projections.
To show how the hyper-rectangles are obtained, consider the component matrix
B, and let the positive and negative loadings stored in the non-zero elements of
B+ and B−, respectively. Formally:

b+jα =

{

b jα if b jα ≥ 0
0 otherwise

b−jα =

{

b jα if b jα ≤ 0
0 otherwise

In matrix notation, the bounds of the component scores matrix are given by:

A = (Zc +Zr)B−+(Zc −Zr)B+

A = (Zc +Zr)B++(Zc −Zr)B−.

The interpretation of C-PCA is straightforward, as it resembles the single-valued
PCA results in terms of plots (observation and loadings) and in terms of quality
of the representation (absolute and relative contributions). The drawback of the
C-PCA approach is that it does not preserve the nature of the data because it
transforms each interval into a single value: its center. While it is possible to
represent the hyper-rectangles on the factorial map, the solution is not based on
the complete information at hand, as it does not depend on the ranges.

4.1 CENTERS PRINCIPAL COMPONENT ANALYSIS
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In order to account for the centers and the ranges simultaneously, V-PCA
replaces the interval data matrix that contains the min and max values by trans-
forming the ith row of the matrix [X] into a vertices numeric matrix Yi, i = 1, ...,n.
In other words, for p variables, the rows of Yi contain one of the 2p vertices of the
ith hyperrectangle:

Yi =











xi1 xi2 . . . xip
xi1 xi2 . . . xip
...

...
. . .

...
xi1 xi2 . . . xip











.

Stacking the Yi’s together, one obtains the (n2p× p) vertices data matrix Y (Cazes
et al., 1997), that is

Y =







Y1
...

Yn







. (6)

V-PCA is a PCA on the centered and scaled version of Y.
V-PCA maximizes the explained variability that characterizes vertices; therefore,
using the vertices data re-coding, the variables’ minima and maxima are con-
sidered irrespectively of the observations they are associated with. The analysis
maximizes the explained variability among the vertices and not among the units.
Note that V-PCA implicitly considers the interval widths by considering all the
vertices of each hyperrectangle. For each observation and each component, all
the vertices can be derived using (6).
V-PCA contributions are calculated as the squared correlation between the j-th
variable and the α-th factor

ctr_abs j,α =
(λ 1/2u j,α)2

λα
= u2

j,α .

The vector ψi,α = yiuα gives the vertices coordinates of each statistical unit on the
principal axes. The representation of the i-th unit on the generic axis α is given
by the segment that includes all vertices projections. Adopting the same criterion
in a two-dimensional space spanned by the first two principal components, the
extreme vertices projections define a rectangle called Maximum Covering Area
Rectangle (MCAR). The main problem of this kind of representation is the in-
evitable MCARs oversize that depends on the leakage of any relationship between

4.2 VERTICES PRINCIPAL COMPONENT ANALYSIS
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the vertex and its corresponding interval data unit in the analysis (Le-Rademacher
and Billard, 2012). The observation unit reconstruction via MCAR is done ex-
post, and consequently, the interpretation of the principal components cannot be
referred to its main characteristics (Lauro and Palumbo, 2000).
Furthermore, it is worth pinpointing that the number of rows of Y (6) increases
exponentially as the number p of variables increases. For example, suppose we
deal with n = 16 observation units and p = 12 interval-valued variables, then, for
this relatively small data set, Y has dimension 65536× 12, which results hard
to handle. Actually, thanks to the PCA properties, the number of rows does not
represent an insurmountable computational limit. Nevertheless, many variables
soon make the PCA of Y unfruitful because of the huge number of vertex points
that refer to every single unit and that inevitably tend to cause over-sized MCARs
(Giordani and Kiers, 2006). To (partially) address this issue, getting more consis-
tent MCARs concerning the units’ variations, Chouakria et al. (1998) proposed to
retain only those vertices having a satisfactory quality of the representation index
in the considered q dimensional subspace. Each vertex is a single point, hence its
corresponding index is measured in terms of the squared cosines criterion

ctr_rell,α =

p
∑
j=1

(zl, ju j,α)

∑ j z2
l, j

, (7)

where l indicates a generic vertex, and 1 ≤ l ≤ 2p. However, the choice of the
cut-off level for ctr_rell,α remains arbitrary, although it strongly affect the final
solution and the consequent results interpretation.

5. Midpoints and radii Principal Component Analysis: reconsidered

The midpoints and radii PCA (MR-PCA, Palumbo and Lauro, 2003) solution
takes into account ranges (radii), centers (midpoints) and the inter-connection be-
tween centers and ranges. In their paper, the authors refer to the centers and ranges
as midpoints and radii, respectively. Without loss of generality, to be consistent
with the rest of the article, midpoints and radii are named centers and ranges from
now on.
MR-PCA performs two independent analyses of X′cXc and X′rXr, which, how-
ever, are not sufficient to cover the whole variability in the interval data matrix.
So Palumbo and Lauro’s (2003) method provides an additional step to take into
account the covariance attributable to the inter-connection between centers and
ranges. Towards that end, the MR-PCA exploits a Procrustean rotation (Kiers and

5. MIDPOINTS AND RADII PRINCIPAL COMPONENT ANALYSIS:
RECONSIDERED
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Groenen, 1996) to maximize the congruence coefficient (Tucker, 1951) between
the first right eigenvector of the standardized ranges matrix Zr and the first right
eigenvector of standardized centers matrix Zc. The method starts with two in-
dependent PCAs on Zc and Zr, and upon rotating the ranges, the coordinates of
the corresponding range are projected on the centers factorial map. The obtained
configuration of points depends, therefore, on both centers and ranges.
In Palumbo and Lauro (2003), the MR-PCA pre-processing step, the standardiza-
tion, is the same as C-PCA. While this kind of standardization has been adopted
in the literature (see, e.g. Cazes et al., 1997; Giordani and Kiers, 2004), it does
not take into account the variability of the ranges, as the centers’ variability stan-
dardizes both centers and ranges.
This article proposes a two-fold improvement to the Palumbo and Lauro’s MR-
PCA: (i) standardization of centers and ranges via the SDA-based approach de-
scribed in subsection 3.1; (ii) an enhanced Procrustean rotation. In particular:
the symbolic variance as a scaling operator is more appropriate, as outlined by
Le-Rademacher and Billard (2012); the updated rotation procedure of the ranges
maximizes the average congruence (Tucker, 1951) between all the pairwise con-
sidered eigenvectors (not just the first one) of the standardized centers matrix and
the corresponding ones of the standardized ranges matrix.
More specifically, the symbolic standardized versions of the centers and ranges
are:

Zc = XcS−1 =

(

X̃c − 1
n

11′X̃c
)

S−1;

Zr = XrS−1 =

(

X̃r − 1
n

11′X̃r
)

S−1,

where S is a diagonal matrix with general term s j j =
√

σ2
j jsymb

, for j = 1, . . . , p.
The rotation matrix T is such that Zc is as close as possible to the rotated version
of Zr. Therefore the definition of T is obtained solving the following constrained
optimization problem:

min
T

: tr (Zc −ZrT)(Zc −ZrT)′

tr
(

ZcZc′)+ tr
(

ZrTT′Zr′)−2tr
(

Zc′ZrT
)

s.t. TT′ = I.
(8)

It is easy to see that the problem in 8 can be re-written as

max
T

: tr
(

Zc′ZrT
)

s.t. TT′ = I,
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which is equivalent to the maximize the correlation coefficient among the columns
of the centers matrix and the corresponding columns of the ranges matrix

p

∑
j=1

t′jZ′rzc
j

(t′jZ′rZrt j)1/2(z′j
czjc)1/2 ,

where t j and zc
j are the j-th column of the n× p matrices T and Zc, respectively.

The solution of the optimization problem in Formula 9 is obtained via the iterative
procedure proposed by Kiers and Groenen (1996). The convergence is guaranteed
as the target function increases at each iteration; local optima can be avoided using
different initialization. The procedure is detailed in Algorithm 1.
The coordinates for ranges and centers are

Ψc = ZcUc
(d) and Ψr = ZrTUr

(d),

where Uc
(d) and Ur

(d) are the first d columns of the eigenvector matrices of Z′rZr

and Z′rZr, respectively.

Algorithm 1: Monotonically convergent algorithm for orthogonal con-
gruence rotation
1 W := Z′rZc(diag(Z′cZc))−1/2 (with general column w j).
2 C := Z′rZr.
3 ρ := largest eigenvalue of C.
4 Choose Tc (as an orthonormal initialization of T); if W′Tc has negative diagonal

elements, multiply the corresponding columns of Tc by −1.
5 f := trW′Tc(diag(T′

cCTc))−1/2.

6 f old := f
For j := 1 to p
(I). p j = t′j

cCtj
c.

(II). q j = w′
jtc

j.

(III). If q j ! 0, u j := p j
−3/2q j(Ctc

j −ρtc
j)−2p−1/2

j q−1
j w′

jw jt j
c − p−1/2

j w j.
(IV). If q j = 0, u j := 0.

7 Find P and Q by means of SVD: U = PDQ′

8 T =−PQ′

9 If W′T has negative diagonal elements, multiply the corresponding columns of
T by −1

10 f := trW′T(diag(T′CT))−1/2

11 if f < f old + ε ∗ | f |, where ε is a small positive constant, consider the algorithm
converged, else Tc := T and go to step 6.
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The projection of the ith range on the α th component is

ψi,α = [(ψc
iα −ψr

iα),(ψc
iα +ψr

iα)],

where ψc
i,α and ψr

i,α are the coordinates of the ith center and range on the α th axis.
Let the covariance matrix for projected centers and ranges in the d-dimensional
subspace be:

Ω=Ψ′cΨc +Ψ′rΨr + |Ψ′cΨr|+ |Ψ′rΨc|,

then tr(Ω) will be used to calculate the percentage of variability explained ac-
cording to d:

I(d) =
tr(Ω)

total inertia
×100, (9)

where the total inertia is represented by the trace of the global variance and co-
variance matrix (3) calculated on Zc and Zr.
For interval-valued data the analogue of the PCA relative contributions is given
by

ctr_reliα =
∑α(|ψc

i,α |+ |ψr
i,α |)2

p
∑
j=1

(|zc
i, j|+ |zr

i, j|)2
.

6. Results

In this section a simulation study is carried out to assess the explained vari-
ability performance of MR-PCA for different scenarios. Then a real data compar-
ative review of the interval PCA approaches is presented.

6.1. Simulation
The simulation set up is derived from the one introduced by Giordani and

Kiers (2004) with some differences. The generated data structures refer to 18
observations and four interval-valued variables: V1, · · · ,V4. In particular, data
were generated according to the following simulation scheme:

• centers are generated from a multivariate random Gaussian variable consid-
ering three different mean vectors, each mean vector for six units;

• two different correlation structures:
S1: positive correlation between V1 and V2 and a negative correlation be-

tween V3 and V4
S2: mild positive correlation between V1 and V3 and a high negative corre-

lation between V2 and V4

6. RESULTS

6.1 SIMULATION
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• α = (0.2,0.5,0.8) noise levels ;
• τ = (0.8,0.6,0.4) proportion of variability due to the centers (e.g. τ = 0.8

means that 80% of total variability is due to centers and 20% to ranges);
• For each combination of α and τ , 100 data sets are generated.

Note that V 1 and V 2 are considered signal, whereas V 3 and V 4 are considered
noise, therefore data structures under the S1 scenario are supposed easier to recon-
struct, because of the pairwise correlations characterizing signal only and noise
only variables. Data structures in scenario S2 are harder to reconstruct because
of the signal/noise correlations. Table 1 summarizes the simulation main results.
In particular, the average and standard deviation of I(d) (in full dimensions, see
Formula 9), the average and standard deviation of the number of iteration needed
for the Procrustean rotation. Also, we report for each combination of scenario, α
and τ , the proportion of inertia due to centers and ranges (see the inertia decom-

Table 1: Simulation results for S1 (signal/signal and noise/noise correlations)
and S2 (signal/noise correlations). Average and sd explained inertia, average
and sd of iteration counts; proportion of inertia due to centers and ranges

τ α av. I(d). sd I(d) av. iter. sd. iter. in. cen. in. ran.

0.2 99.39 0.895 3.15 1.635 0.89 0.01
0.8 0.5 98.65 1.604 3.45 2.615 0.82 0.02

0.8 98.80 1.872 2.92 1.895 0.77 0.03

0.2 98.70 1.805 3.37 2.135 0.78 0.03
S1 0.6 0.5 99.07 1.932 3.29 2.129 0.75 0.03

0.8 98.89 2.110 3.24 1.990 0.73 0.04

0.2 98.35 2.681 3.45 2.105 0.62 0.08
0.4 0.5 98.92 2.486 3.30 2.028 0.66 0.06

0.8 98.77 2.296 3.25 1.546 0.68 0.06

0.2 98.67 0.986 2.74 1.488 0.88 0.01
0.8 0.5 98.64 1.359 3.02 2.025 0.82 0.02

0.8 99.01 1.914 3.03 1.795 0.77 0.03

0.2 96.54 1.789 3.50 1.667 0.75 0.03
S2 0.6 0.5 98.59 2.064 3.29 1.805 0.75 0.03

0.8 98.94 2.359 2.68 1.384 0.73 0.04

0.2 95.22 2.564 3.75 2.564 0.60 0.07
0.4 0.5 98.74 2.408 3.37 1.790 0.65 0.06

0.8 98.37 2.572 2.84 1.606 0.68 0.06

14

Tab. 1: Simulation results for S1 (signal/signal and noise/noise correlations) and S2 (signal/
noise correlations).  Average and sd explained inertia,  average and sd of iteration

counts; proportion  of inertia due to centers and ranges
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position in Formula 2).
From the results we see that the average value of I(d) never drops below the 95%,
that is, the reconstruction of data structure is always satisfactory. In particular,
in scenario S1 neither α nor τ affect the results. In scenario S2, as expected,
the method performance slightly decreases with the proportion of variance due to
centers (τ).

6.2. Application: Face Recognition Data Set

The face recognition data set refers to 27 man faces images; for each face, a
sequence of 1000 images was recorded to calculate the distances between six pairs
of informative points; hence altogether, there are 1000× 6 values for each face.
Then, for each image, the six variables (distances) are summarized into min-max
interval data. Therefore, the considered data set (Douzal-Chouakria et al., 2011;
Le-Rademacher and Billard, 2012) contains six interval-valued variables for 27
units. The interval-data coding allows for considering both the variability among
the units (through the centers) and the uncertainty within each unit (through the
range). It is worth remarking that any analysis on the whole data set, based on
single-valued variables, should consider that the 27000 observations are not in-
dependent since, for each considered unit, there are 1000 replications. Figure 1
summarizes the variables by identifying both points of interest and distances, and
the variables are referred to.
For the sake of comparing C-PCA and V-PCA with MR-PCA results, the centers

and ranges matrices were standardized by the centers’ deviations before the anal-
ysis for C-PCA and V-PCA. In the MR-PCA, data were standardized according to
the symbolic variance (formula 4). As a consequence, the results map for C-PCA

Fig. 1: Variables for face recognition. (Fig. 5 in Douzal-Chouakria  et al., 2011)

6.2 APPLICATION: FACE RECOGNITION DATA SET
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AD BC AH DH EH GH
AD 1.000 0.684 0.387 0.639 -0.003 0.167
BC 0.684 1.000 0.269 0.456 0.242 0.272
AH 0.387 0.269 1.000 0.702 -0.319 -0.644
DH 0.639 0.456 0.702 1.000 -0.449 -0.286
EH -0.003 0.242 -0.319 -0.449 1.000 0.676
GH 0.167 0.272 -0.644 -0.286 0.676 1.000

Table 2: Symbolic correlation matrix.

and V-PCA differ from the ones in Douzal-Chouakria et al. (2011).
Figures 2 and 3 show the C-PCA and V-PCA observation maps, respectively.

Pursuant to the prior equal standardization of the data structures, the two config-
urations are directly comparable coherently. For the sake of brevity, and consid-
ering that the two first dimensions explain most of the variability, comments just
refer to the 2-dimensional solutions. The explained inertia is similar considering
the first factorial plan: 80.49% for C-PCA, 79.37% for V-PCA. It is worth noting
that, in V-PCA, observations are mostly represented by larger rectangles than the

Fig. 2: C-PCA: observations map (80.49% explained inertia). Centers- based configuration;
supplementary  representation of ranges

Tab. 2: Symbolic correlation matrix.
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C-PCA representation. Lauro and Palumbo (2000) underlined that the active role
of minima and maxima in V-PCA accounts for the within-unit variations in the
analysis, leading to oversized unit representations. In contrast, in C-PCA, vertices
are just projected on the centers-based map as supplementary points: the over-
sizing effect is limited, but the internal unit variations have no active role in the
analysis.
To illustrate the MR-PCA results, it is worth starting from the maps of the load-
ings in Figure 4. The data structures are standardized according to the square roots
of the diagonal values of the symbolic covariance matrix, and Table 2 reports the
corresponding correlation matrix. The two sides of the Figure refer to centers and
ranges, respectively. The arrows represent the loadings, and the spread of the maps
is proportional to the overall variability accountable to centers and ranges, respec-
tively. The more significant proportion of variability comes from the centers. The
left-hand side plot in Figure (4) helps to understand the centers’ correlation struc-
ture and explain the units positioning in Figure 6. In a complementary manner,
the right-hand side plot allows for explaining the ranges correlation structure and

Fig. 3: V-PCA: observations map (79.37%  explained inertia). Maximum covering area
rectangle representation
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their orientations and lengths in the plot.
In Figure 6 rectangles’ transparency refers to the quality of the representation. It

is measured by the ratio between the length of the projections of the rotated range
and the original length of the standardized range. In this example, the centers-
ranges correlation structure allows for high values of quality of the representation
on the first two dimensions. In particular, it is very high for HUS1 and INC2,
while the worst represented is KHA3 that is represented by a segment. Looking
at the MR-PPCA map, the ranges orientations on the factorial plan allow tracing
back the variations to the source variables: e.g., INC2 and ROM3 ranges have the
same direction meaning that they depend on the same variables; ROM1 and ROM2
ranges have opposite orientations. Returning on the un-rotated ranges represen-
tations and having at hand the ranges correlations map, it is possible to identify
the variables that have mainly affected the range length and orientations. Looking
again at the KHA3 range, it is evident that it has been penalized by the rotation
that led to poor representation. This interpretation is allowed only by MR-PCA,
representing a significant added value for the method.

Fig. 4:   Symbolic covariance-based standardization: two-dimensional maps of the centers
(LHS) and ranges loadings.
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Fig. 6:  MR-PCA: observations map (98.23% explained inertia).  Pro- crustean rotation of
ranges.  Darker rectangles have lower relative contri- butions (ctr_rel)

Fig. 5: Un-rotaded ranges representation
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Principal component analysis for complex data structures represents a topic be-
coming ever more relevant as the total amount of available data increases. Several
approaches were proposed in the literature to perform a consistent factorial analy-
sis on interval data when dealing with uncertainty in continuous data. This paper
considered three among the most used methods that exploit the PCA on interval-
valued data matrices: C-PCA, V-PCA, and MR-PCA. Moreover, starting from
Palumbo and Lauro’s proposal (2003), it proposes some novelties in the method.
In particular, it introduces in the technique the symbolic variance (Le-Rademacher
and Billard, 2012) as a measure of variability that allows considering centers and
ranges contribution to the total variability. A quite extensive simulation study and
an example on a real data set demonstrated the MR-PCA capability in summariz-
ing the information from interval-valued variables.
Data dimensionality and complexity may refer to the number of statistical units
and the number of variables. The most recent contributions in analyzing large
and massive data sets are often aimed at jointly facing both issues: dimensionality
reduction and observations clustering. It is reasonable to assume that integration
between dimensionality reduction and clustering could be one of the following
challenges in the interval data analysis domain.
Interval data analysis, and PCA in particular, has been applied in an increasing
number of fields, such as fault detection (Harkat et al., 2019; Lahdhiri and Taouali,
2021), process monitoring (Ait-Izem et al., 2018), and energy consumption analy-
sis (Gatto and Drago, 2020). Despite the renewed interest, there is lack of specific
software for interval data: an R package implementing unsupervised learning and
visualization methods for interval-valued data is in the works. Furthermore, sup-
plementary material for reproducible results is available as a Github repository2.

2 https://github.com/alfonsoIodiceDE/Interval_data_project

7. CONCLUSION
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