## SUPPORTING INFORMATION

## *Ephedra foeminea* as a Novel Source of Antimicrobial and Anti-Biofilm Compounds to Fight Multidrug Resistance Phenotype

Shurooq Ismail <sup>1,2</sup>, Rosa Gaglione <sup>1,3</sup>, Marco Masi <sup>1</sup>, Srichandan Padhi <sup>4</sup>, Amit K. Rai <sup>4</sup>, Ghadeer Omar <sup>2</sup>, Alessio Cimmino <sup>1,\*</sup> and Angela Arciello <sup>1,3,\*</sup>

- <sup>1</sup> Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy
- <sup>2</sup> Department of Biology and Biotechnology, An-Najah National University, Nablus 97300, Palestine
- <sup>3</sup> Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- <sup>4</sup> Institute of Bioresources and Sustainable Development, Imphal, Manipur 795004, India
- \* Correspondence: alessio.cimmino@unina.it (A.C.); anarciel@unina.it (A.A.)

## Supporting information list

**Supplementary Table S1.** Minimal Inhibitory Concentration (MIC<sub>100</sub>) values (mg/mL) determined for fractions obtained upon extraction in hexane and two sequential steps of column chromatography.

Supplementary Figure S1. <sup>1</sup>H NMR spectrum of carvacrol, compound 1 (CDCl<sub>3</sub>, 400 MHz).

Supplementary Figure S2. <sup>1</sup>H NMR spectrum of thymol, compound 2 (CDCl<sub>3</sub>, 400 MHz).

**Supplementary Figure S3**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2",4"-di-*E-p*-coumaroyl)-rhamnoside, **compound 3** (MeOD, 400 MHz).

**Supplementary Figure S4**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E-p*-coumaroyl)-rhamnoside, **compound 3** (MeOD, 400 MHz) in the range 8.1 to 5.4 ppm.

**Supplementary Figure S5**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S6**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.5 ppm.

**Supplementary Figure S7**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S8**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.6 ppm.

**Supplementary Figure S9**. NOESY spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S10**. <sup>13</sup>C NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S11**. HSQC spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S12**. HMBC spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_{6}$ , 400 MHz).

**Supplementary Figure S13**. ESI MS spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** recorded in positive modality.

**Supplementary Figure S14**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (MeOD, 400 MHz).

**Supplementary Figure S15**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)rhamnoside, **compound 4** (MeOD, 400 MHz) in the range 8.0 to 5.3 ppm.

**Supplementary Figure S16**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)rhamnoside, **compound 4** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S17**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2"-E-p-coumaroyl,4"-Z-p-coumaroyl)rhamnoside, **compound 4** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S18**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)rhamnoside, **compound 4** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.4 ppm.

**Supplementary Figure S19**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)rhamnoside, **compound 5** (MeOD, 400 MHz).

**Supplementary Figure S20**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)rhamnoside, **compound 5** (MeOD, 400 MHz) in the range 8.0 to 5.4 ppm. **Supplementary Figure S21**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (MeOD, 400 MHz).

**Supplementary Figure S22**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (MeOD, 400 MHz) in the range 7.9 to 5.5 ppm.

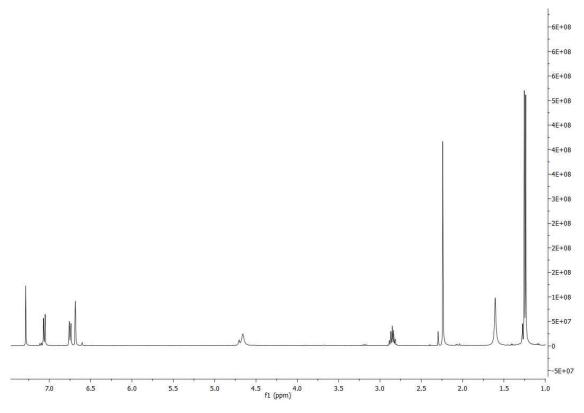
**Supplementary Figure S23**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **6** (acetone- $d_6$ , 400 MHz).

**Supplementary Figure S24**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.4 ppm.

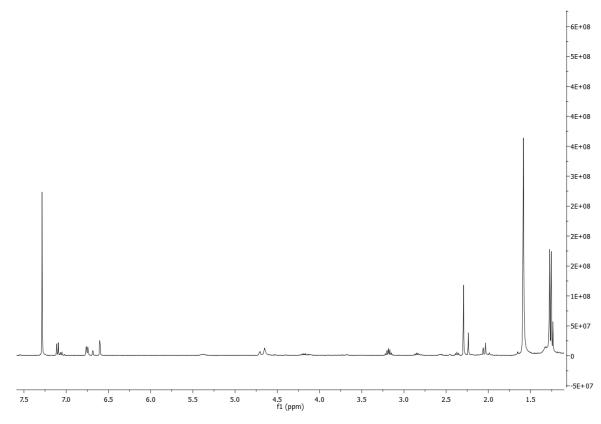
**Supplementary Table S2**. MIC<sub>100</sub> values ( $\mu$ g/mL) determined for the essential oils carvacrol and thymol purified from *E. foeminea* hexane extract.

**Supplementary Table S3.** MIC<sub>100</sub> values (μg/mL) determined for the compounds kaempferol-3-O-(2",4"-di-Ep-coumaryl)-α-L-rhamno-piranoside, kaempferol-3-O-(2"-Z-p-coumaryl,4"-di-E-p-coumaryl)-α-L-rhamnopiranoside, kaempferol-3-O-(2"-E- p-coumaryl,4"-di-Z-p-coumaryl)-α-L-rhamno-piranoside and kaempferol-3-O-(2",4"-di-Z-p-coumaryl)-α-L-rhamno-piranoside purified from *E. foeminea* dichloromethane extract.

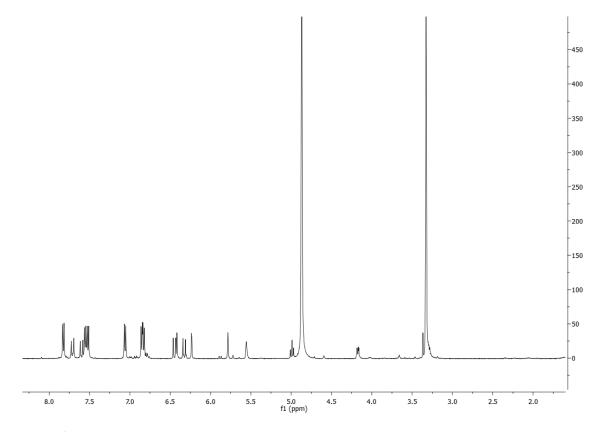
**Supplementary Figure S25.** Anti-biofilm activity of purified kaempferol-3-O-(2"-Z-p-coumaroyI,4"-E-p-coumaroyI)-α-L-rhamno-piranoside.


**Supplementary Figure S26.** Anti-biofilm activity of purified kaempferol-3-O-(2"-E-p-coumaroyI,4"-Z-p-coumaroyI)-α-L-rhamno-piranoside.

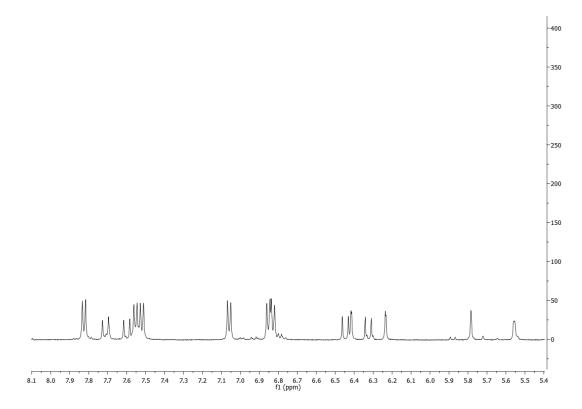
**Supplementary Figure S27.** Anti-biofilm activity of purified kaempferol-3-O-(2",4"-di-Z-p-coumaroyl)-α-L-rhamno-piranoside.


**Supplementary Table S4.** Details of the intermolecular interactions between the test ligand and *S. aureus* target enzymes tyrosyl tRNA synthetase and sortase A.

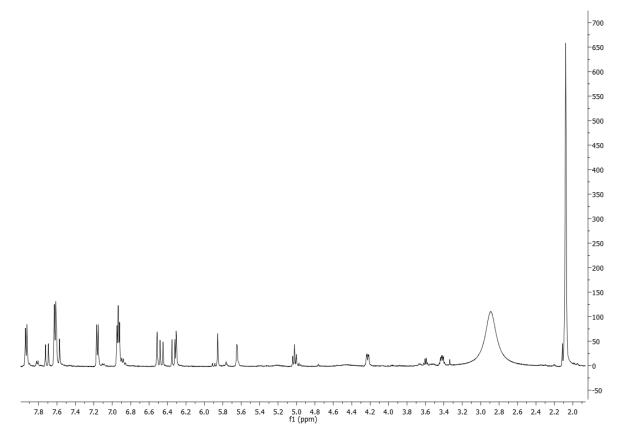
**Supplementary Table S1**. MIC<sub>100</sub> values (mg/mL) determined for fractions obtained upon extraction in hexane and two sequential steps of column chromatography.


|                           | MIC <sub>100</sub> (mg/mL) of fractions extracted in hexane |     |     |       |       | xane |      |
|---------------------------|-------------------------------------------------------------|-----|-----|-------|-------|------|------|
| Bacterial strains         | 1                                                           | 2   | 3   | 4     | 5     | 6    | 7    |
| S. aureus ATCC 29213      | 2.5                                                         | 2.5 | 2.5 | 0.313 | 0.313 | 2.5  | 1.25 |
| E. coli ATCC 25922        | 2.5                                                         | 2.5 | 2.5 | 2.5   | 2.5   | 2.5  | 2.5  |
| S. typhimurium ATCC 14028 | 2.5                                                         | 2.5 | 2.5 | 2.5   | 2.5   | 2.5  | 2.5  |

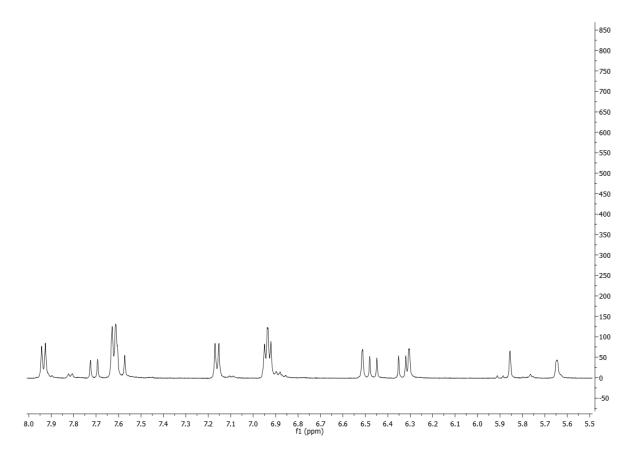



Supplementary Figure S1. <sup>1</sup>H NMR spectrum of carvacrol, compound 1 (CDCl<sub>3</sub>, 400 MHz).

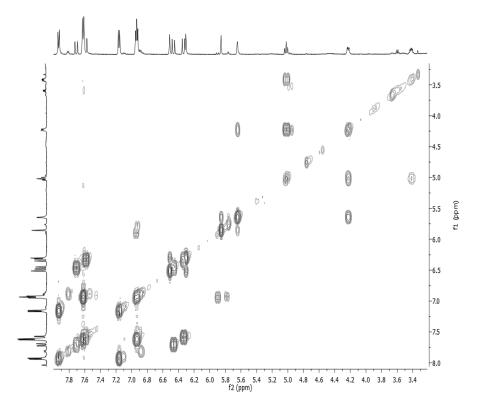



Supplementary Figure S2. <sup>1</sup>H NMR spectrum of thymol, compound 2 (CDCl<sub>3</sub>, 400 MHz).

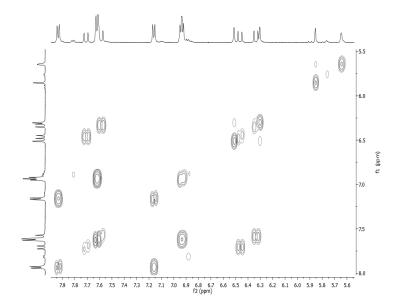



**Figure S3**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (MeOD, 400 MHz).

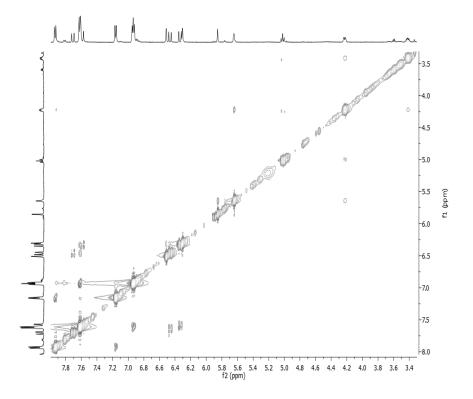



**Figure S4**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E-p*-coumaroyl)-rhamnoside, **compound 3** (MeOD, 400 MHz) in the range 8.1 to 5.4 ppm.

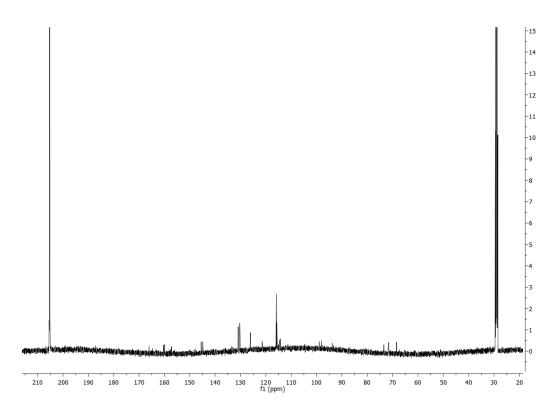



**Figure S5**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone-*d*<sub>6</sub>, 400 MHz).

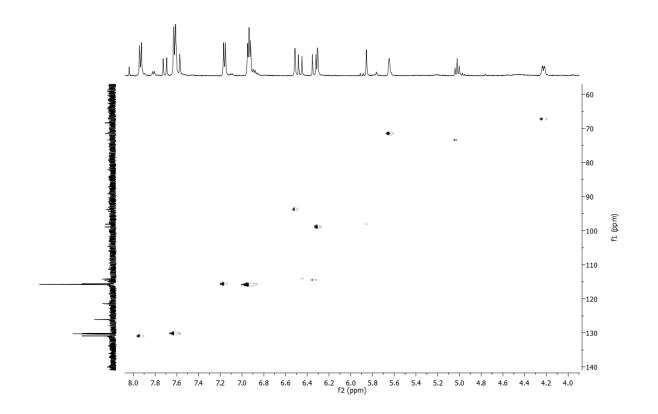



**Figure S6**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.5 ppm.

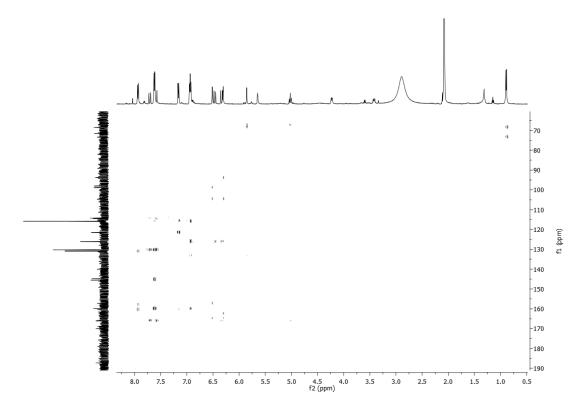



**Figure S7**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

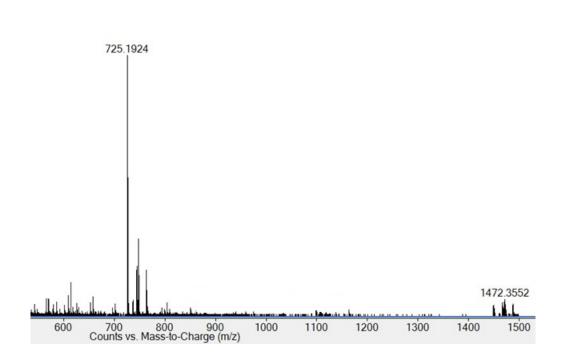



**Figure S8**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.6 ppm.

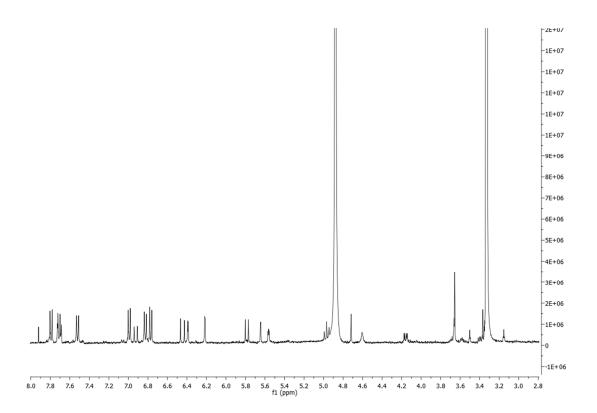



**Figure S9**. NOESY spectrum of kaempferol-3-*O*- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone-*d*<sub>6</sub>, 400 MHz).

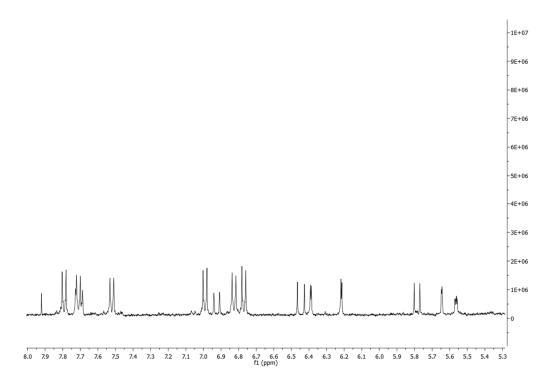



**Figure S10**. <sup>13</sup>C NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

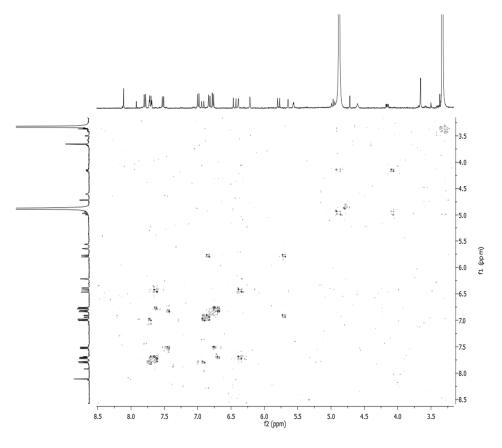



**Figure S11**. HSQC spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone- $d_6$ , 400 MHz).

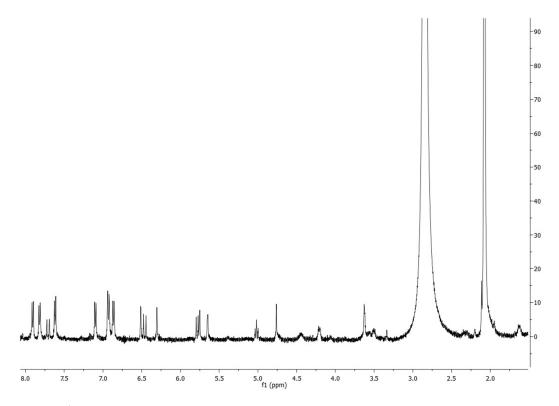



**Figure S12**. HMBC spectrum of kaempferol-3-*O*- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** (acetone-*d*<sub>6</sub>, 400 MHz).

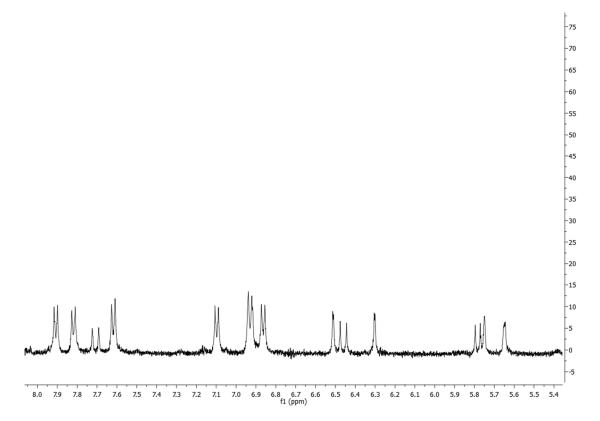



**Figure S13**. ESI MS spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*E*-*p*-coumaroyl)-rhamnoside, **compound 3** recorded in positive modality.

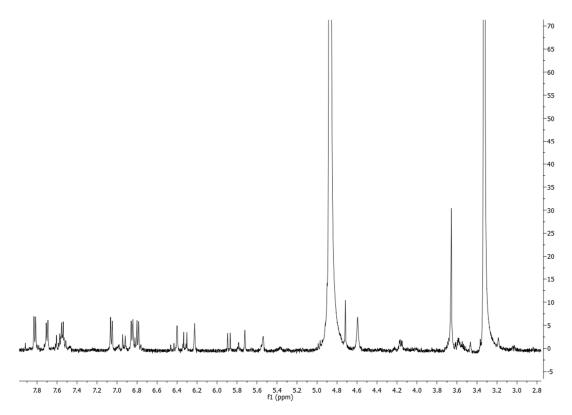



**Figure S14**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (MeOD, 400 MHz).

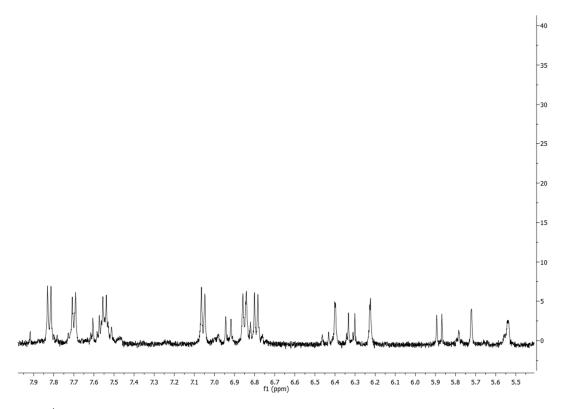



**Figure S15**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (MeOD, 400 MHz) in the range 8.0 to 5.3 ppm.

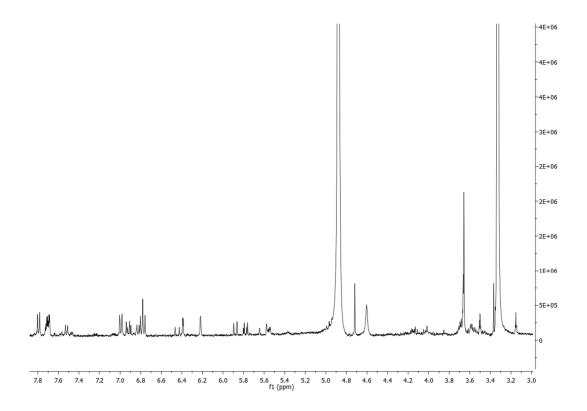



**Figure S16**. COSY spectrum of kaempferol-3-O- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (acetone- $d_6$ , 400 MHz).

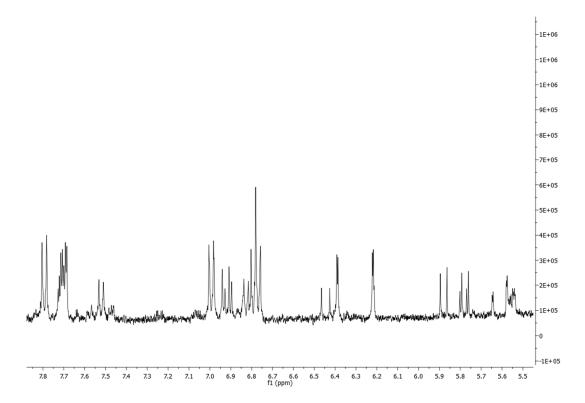



**Figure S17**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (acetone-*d*<sub>6</sub>, 400 MHz).

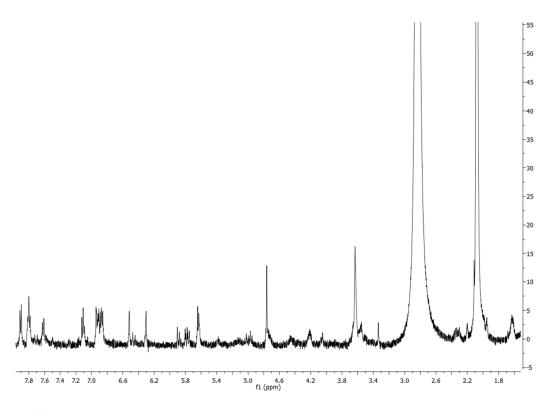



**Figure S18**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*E*-*p*-coumaroyl,4"-*Z*-*p*-coumaroyl)-rhamnoside, **compound 4** (acetone-*d*<sub>6</sub>, 400 MHz) in the range 8.0 to 5.4 ppm.

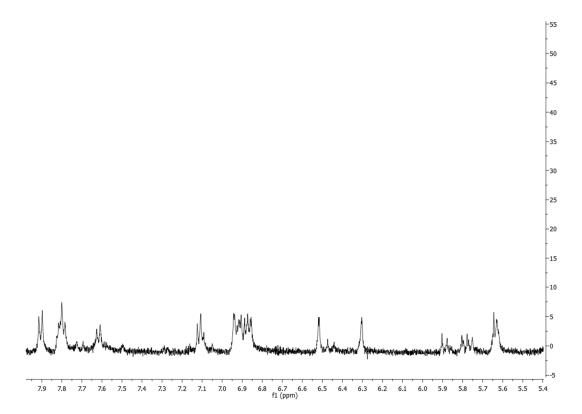



**Figure S19**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)-rhamnoside, **compound 5** (MeOD, 400 MHz).




**Figure S20**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*- $\alpha$ -L-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)-rhamnoside, **compound 5** (MeOD, 400 MHz) in the range 8.0 to 5.4 ppm.




**Figure S21**. <sup>1</sup>H NMR spectrum of kaempferol-3-*O*-α-L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (MeOD, 400 MHz).

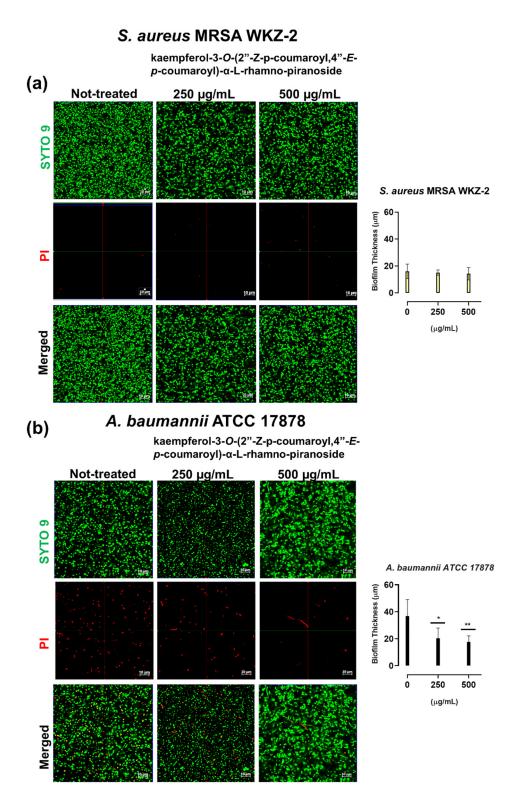


**Figure S22**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (MeOD, 400 MHz) in the range 7.9 to 5.5 ppm.

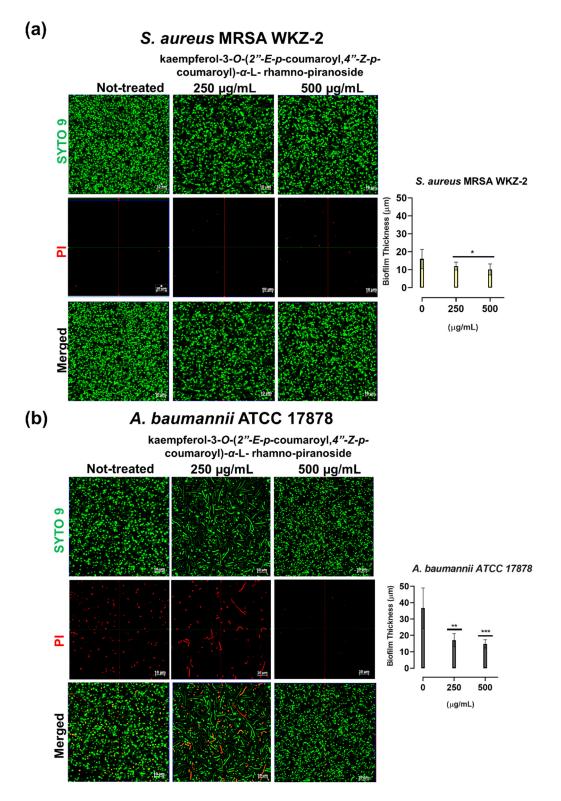


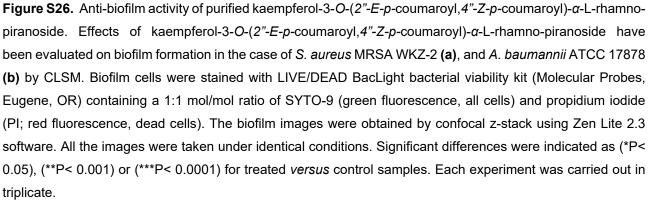
**Figure S23**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (acetone- $d_6$ , 400 MHz).

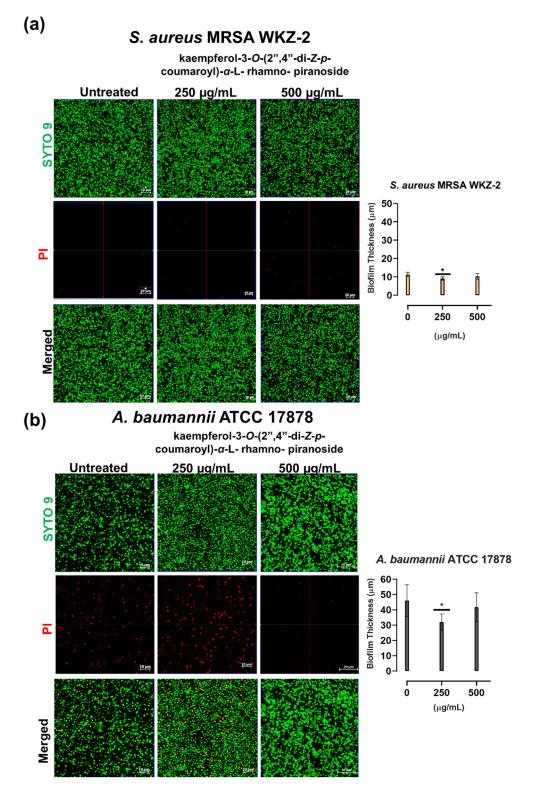



**Figure S24**. <sup>1</sup>H NMR spectrum of kaempferol-3-O- $\alpha$ -L-(2",4"-di-*Z*-*p*-coumaroyl)-rhamnoside, **compound 6** (acetone- $d_6$ , 400 MHz) in the range 8.0 to 5.4 ppm.

**Supplementary Table S2**. MIC<sub>100</sub> values (µg/mL) determined for the essential oils carvacrol and thymol purified from *E. foeminea* hexane extract.


|                           | MIC100 (μg/mL) |        |  |
|---------------------------|----------------|--------|--|
| Gram-positive strains     | Carvacrol      | Thymol |  |
| S. aureus ATCC 29213      | 100            | 600    |  |
| S. aureus MRSA WKZ-1      | 50             | 2,400  |  |
| E. faecalis ATCC 29212    | 100            | 1,200  |  |
| Gram-negative Strains     |                |        |  |
| E. coli ATCC 25922        | 200            | 600    |  |
| S. typhimurium ATCC 14028 | 100            | 300    |  |
| A. baumannii ATCC 17878   | 100            | 1,200  |  |


**Supplementary Table S3.** MIC<sub>100</sub> values (µg/mL) determined for the compounds kaempferol-3-O-(2",4"-di-E-p-coumaryl)- $\alpha$ -L-rhamno-piranoside, kaempferol-3-O-(2"-Z-p-coumaryl,4"-di-E-p-coumaryl)- $\alpha$ -L-rhamno-piranoside and kaempferol-3-O-(2",4"-di-Z-p-coumaryl)- $\alpha$ -L-rhamno-piranoside and kaempferol-3-O-(2",4"-di-Z-p-coumaryl)- $\alpha$ -L-rhamno-piranoside purified from *E. foeminea* dichloromethane extract.


|                                                    | MIC <sub>100</sub> (μg/mL)     |                                   |  |
|----------------------------------------------------|--------------------------------|-----------------------------------|--|
|                                                    | <i>S. aureus</i><br>MRSA WKZ-1 | <i>A. baumannii</i><br>ATCC 17878 |  |
| kaempferol-3-O-(2",4"-di-E-p-                      | 0.49                           | 1,000                             |  |
| coumaryl)- <i>α</i> -L-rhamno-                     |                                |                                   |  |
| piranoside                                         |                                |                                   |  |
| kaempferol-3- <i>O</i> -(2"- <i>Z-p</i> -          | >1,000                         | 1,000                             |  |
| coumaryl,4"-di- <i>E-p</i> -coumaryl)- <i>α</i> -  | MIC <sub>95</sub> = 1,000      |                                   |  |
| L-rhamno-piranoside                                |                                |                                   |  |
| kaempferol-3- <i>O</i> -(2"- <i>E</i> - <i>p</i> - | >1,000                         | 1,000                             |  |
| coumaryl,4"-di-Z-p-coumaryl)-α-                    | MIC <sub>98</sub> = 1,000      |                                   |  |
| L-rhamno-piranoside                                |                                |                                   |  |
| kaempferol-3- <i>O</i> -(2",4"-di- <i>Z-p</i> -    | >1,000                         | 1,000                             |  |
| coumaryl)-α-L-rhamno-                              | MIC <sub>98</sub> = 1,000      |                                   |  |
| piranoside                                         |                                |                                   |  |



**Figure S25.** Anti-biofilm activity of purified kaempferol-3-O-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)- $\alpha$ -L-rhamnopiranoside. Effects of kaempferol-3-O-(2"-*Z*-*p*-coumaroyl,4"-*E*-*p*-coumaroyl)- $\alpha$ -L-rhamno-piranoside have been evaluated on biofilm formation in the case of *S. aureus* MRSA WKZ-2 (**a**), and *A. baumannii* ATCC 17878 (**b**). Biofilm cells were stained with LIVE/DEAD BacLight bacterial viability kit (Molecular Probes, Eugene, OR) containing a 1:1 mol/mol ratio of SYTO-9 (green fluorescence, all cells) and propidium iodide (PI; red fluorescence, dead cells). The biofilm images were obtained by confocal z-stack using Zen Lite 2.3 software. All the images were taken under identical conditions. Significant differences were indicated as (\*P< 0.05) or (\*\*P< 0.001) for treated *versus* control samples. Each experiment was carried out in triplicate.







**Figure S27.** Anti-biofilm activity of purified kaempferol-3-O-(2",4"-di-*Z*-*p*-coumaroyl)- $\alpha$ -L-rhamno-piranoside. Effects of kaempferol-3-O-(2",4"-di-*Z*-*p*-coumaroyl)- $\alpha$ -L-rhamno-piranoside have been evaluated on biofilm formation in the case of *S. aureus* MRSA WKZ-2 (**a**), and *A. baumannii* ATCC 17878 (**b**) by CLSM. Biofilm cells were stained with LIVE/DEAD BacLight bacterial viability kit (Molecular Probes, Eugene, OR) containing a 1:1 mol/mol ratio of SYTO-9 (green fluorescence, all cells) and propidium iodide (PI; red fluorescence, dead cells). The biofilm images were obtained by confocal z-stack using Zen Lite 2.3 software. All the images were taken under identical conditions. Significant differences were indicated as (\*P< 0.05) for treated *versus* control samples. Each experiment was carried out in triplicate.

**Supplementary Table S4.** Details of the intermolecular interactions between the test ligand and *S. aureus* target enzymes tyrosyl tRNA synthetase and sortase A.

| Interaction between antimicrobial<br>compound and tyrosyl tRNA synthetase |                         |                    | Interaction between antimicrobial<br>compound and sortase A |                        |                       |  |
|---------------------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------|------------------------|-----------------------|--|
| Interacting<br>amino acid                                                 | Type of<br>interaction  | Bond<br>length (Å) | Interacting<br>amino acid                                   | Type of<br>interaction | Bond<br>length<br>(Å) |  |
| His 50                                                                    | Carbon-hydrogen<br>bond | 3.57               | Val 168                                                     | Hydrogen bond          | 2.21                  |  |
| His 47                                                                    | Pi-Sigma                | 3.92               | Arg 197                                                     | Hydrogen bond          | 2.35                  |  |
| His 47                                                                    | Pi-Pi T shaped          | 5.02               | Ala 92                                                      | Hydrogen bond          | 2.66                  |  |
| His 47                                                                    | Pi-Pi T shaped          | 4.96               | Val 168                                                     | Hydrogen bond          | 2.70                  |  |
| Gly 38                                                                    | Amide Pi<br>Stacked     | 3.52               | Thr 180                                                     | Hydrogen bond          | 2.49                  |  |
| Ala 43                                                                    | Pi -Alkyl               | 5.00               | Val 193                                                     | Pi-Sigma               | 3.79                  |  |
| Leu 223                                                                   | Pi -Alkyl               | 5.37               | Ala 92                                                      | Pi-alkyl               | 5.11                  |  |
|                                                                           |                         |                    | Ala 104                                                     | Pi-Alkyl               | 5.07                  |  |
|                                                                           |                         |                    | Val 168                                                     | Pi-Alkyl               | 4.65                  |  |
|                                                                           |                         |                    | Ile 199                                                     | Pi-Alkyl               | 4.54                  |  |