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ABSTRACT

Context. Filaments are ubiquitous in the Galaxy, and they host star formation. Detecting them in a reliable way is therefore key towards
our understanding of the star formation process.
Aims. We explore whether supervised machine learning can identify filamentary structures on the whole Galactic plane.
Methods. We used two versions of UNet-based networks for image segmentation. We used H2 column density images of the Galactic
plane obtained with Herschel Hi-GAL data as input data. We trained the UNet-based networks with skeletons (spine plus branches) of
filaments that were extracted from these images, together with background and missing data masks that we produced. We tested eight
training scenarios to determine the best scenario for our astrophysical purpose of classifying pixels as filaments.
Results. The training of the UNets allows us to create a new image of the Galactic plane by segmentation in which pixels belonging
to filamentary structures are identified. With this new method, we classify more pixels (more by a factor of 2 to 7, depending on the
classification threshold used) as belonging to filaments than the spine plus branches structures we used as input. New structures are
revealed, which are mainly low-contrast filaments that were not detected before. We use standard metrics to evaluate the performances
of the different training scenarios. This allows us to demonstrate the robustness of the method and to determine an optimal threshold
value that maximizes the recovery of the input labelled pixel classification.
Conclusions. This proof-of-concept study shows that supervised machine learning can reveal filamentary structures that are present
throughout the Galactic plane. The detection of these structures, including low-density and low-contrast structures that have never been
seen before, offers important perspectives for the study of these filaments.
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1. Introduction

The Herschel infrared Galactic Plane Survey, Hi-GAL
(Molinari et al. 2010), revealed that the cold and warm
interstellar medium (ISM) is organized in a network of filaments
in which star formation is generally observed above a density
threshold corresponding to AV=7 mag (André et al. 2014;
Könyves et al. 2020). The most massive stars are formed at
the junction of the densest filaments, called hubs (Kumar et al.
2020). Because filaments host star formation and link the orga-
nization of the interstellar matter to the future star formation,
studying them is central to our understanding of all properties
related to star formation, such as the initial mass function,
the star formation rate, and the star formation efficiency.
Filaments are therefore extensively studied with observations at
all wavelengths and numerical simulations (André et al. 2010;
Molinari et al. 2010; Arzoumanian et al. 2011, 2019; Hacar et al.
2018, 2022; Shimajiri et al. 2019; Clarke et al. 2020; Priestley
& Whitworth 2022, and references therein). All these data

⋆ F.-X. Dupé and S. Bensaid contributed equally to the work presented
in this article.

reveal the complex structure of filaments and show a changing
morphology, depending on the way (resolution or tracers) in
which they are observed (Leurini et al. 2019). For example,
high-resolution molecular line observations of Galactic fila-
ments with the Atacama Large Millimeter Array (ALMA) show
that they are made of fibers on a spatial scale <0.1 pc (Shimajiri
et al. 2019; Hacar et al. 2018). Their complex morphology and
dynamics are also revealed with 3D spectroscopic information
(Mattern et al. 2018; Hacar et al. 2020) and show their key role
in the accretion process from large (>10 pc) to subparsec scales,
funnelling material down to the star-forming cores. However,
the way filaments form and evolve in the ISM is still debated
(Hoemann et al. 2021; Hsieh et al. 2021). Recent results suggest
that compression from neutral (H I) and ionized (H II) shells
could play an important role in forming and impacting the
evolution of Galactic filaments (Zavagno et al. 2020; Bracco
et al. 2020). Their detection in nearby galaxies, where they are
also clearly linked to the star formation process, makes studying
filaments even more important and universal (Fukui et al. 2019).

Different algorithms are used to extract filaments from
2D images (Sousbie 2011; Schisano et al. 2014, 2020; Koch &
Rosolowsky 2015; Zucker & Chen 2018; Men’shchikov 2021)
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and from 3D spectral data cubes (Sousbie 2011; Chen et al.
2020). These algorithms often rely on a threshold definition
(for intensity or column density). Nonetheless, a close visual
inspection of 2D images and 3D cubes show that some fila-
ments are missed by all these detection algorithms, especially
when the filaments have low column density contrasts. This
means that even large surveys of the Galactic plane cannot
deliver a complete (unbiased) view of the filaments present there.
Another limitation of these algorithms comes from their com-
putation time, which can make some of them too expensive to
envision a complete run on large-scale surveys data for mul-
tiple defined threshold and extraction parameters. Because the
multi-wavelength information available on our Galaxy on all
spatial scales is so rich, proposing another way of extracting
filaments might allow a leap forward for an unbiased census
of these data. In this paper, we explore the potential of super-
vised machine learning as a new way to reveal filaments from
2D images. Using Hi-GAL data, Schisano et al. (2020) extracted
filaments from column density (NH2 ) images of the Galactic
plane. Based on these data, we study the possibility for convolu-
tional UNet-based networks (Fu & Mui 1981) to identify pixels
as belonging to the filament class, based on the input informa-
tion given as previously identified filament masks from Schisano
et al. (2020). Except for the catalog of filament candidates pub-
lished in Schisano et al. (2020) where faint filaments present in
the Galactic plane are known to be missed, no complete extrac-
tion of filamentary structures in the Galactic plane exists so far.
This fact motivates our work, in which we propose an alternative
method that could allow us to go beyond the current possibil-
ities. However, this fact also indicates that we worked with an
incomplete ground truth (see Sect. 2.2) that renders an absolute
evaluation of the method performances proposed here impossi-
ble. Nonetheless, we show that new filaments revealed by the
UNet-based algorithm and not detected before are confirmed
through imaging at other wavelengths, which gives us confidence
that this new method can progress toward an unbiased detection
of filaments.

The paper is organized as follows: in Sect. 2 we describe
the images and the information on the filament locations we
used in the supervised learning. The supervised learning itself
is described in Sect. 3. Results are presented in Sect. 4 and are
discussed in Sect. 5. Conclusions are given in Sect. 6.

2. Data

2.1. Hi-GAL catalog

The Herschel infrared Galactic Plane Survey, Hi-GAL
(Molinari et al. 2010), is a complete survey of the Galactic
plane performed in five infrared photometric bands centered at
70, 160, 250, 350, and 500µm. H2 column density (NH2 ) images
were created for the whole Galactic plane following the method
described in Elia et al. (2013) and Schisano et al. (2020). NH2

and dust temperature maps were computed from photometrically
calibrated images. The Herschel data were convolved to the
500µm resolution (36′′), and a pixel-by-pixel fitting by a
single-temperature graybody was performed. An example of the
column density image covering the l = 349–356◦ region is pre-
sented in Fig. 1. This region contains the bright and well-studied
Galactic star-forming regions NGC 6334 and NGC 6357.

Schisano et al. (2020) analyzed the whole Galactic plane by
extracting filamentary structures from the H2 column density
(NH2 ) maps. In their work, a filament is defined as a two-
dimensional, cylindric-like structure that is elongated and shows

a higher brightness contrast with respect to its surroundings. The
extraction algorithm is based on the Hessian matrix H(x, y) of
the intensity map NH2 (x, y) to enhance elongated regions with
respect to any other emission. The algorithm performs a spa-
tial filtering and amplifies the contrast of small-scale structures
in which the emission changes rapidly. Further filtering allows
identifying the filamentary structures. Figure 2 shows an exam-
ple of this filament extraction, reproducing the Fig. 3 of Schisano
et al. (2020). We chose this figure because it shows the input we
use in this work: the spine (blue line) and the branches (red lines,
both shown in the bottom left panel) associated with a given fil-
ament. Schisano et al. (2020) defined a filament as traced by its
associated region of interest (RoI; bottom right), which covers
a larger area than the region that is defined with the spine plus
branches. In this work we use this spine plus branches structure
to define a filament because the early tests we made to train the
networks with the input RoIs returned filamentary structures that
were too large compared to the structure that is observed in the
column density mosaics. This point is illustrated in Fig. 21 and
is discussed in Sect. 4.3.

The analysis of the extracted structures from Schisano et al.
(2020) resulted in the publication of a first catalog of 32 059 fila-
ments that were identified over the entire Galactic plane. We used
this published catalog of filaments and their associated spine
plus branches as ground truth of the filament class for the train-
ing process (see Sect. 2.2). The method is described in Sect. 3.

2.2. Data preprocessing

As methods based on deep learning strongly depend on the
nature and on the representativity of the input data, we took par-
ticular attention to the construction of the data set. We used four
input maps (see Fig. 3): (1) the NH2 mosaics obtained as part of
the Hi-GAL survey products (Molinari et al. 2016; Schisano et al.
2020, e.g., Fig. 1), (2) the spines plus branches of the detected
filaments from Schisano et al. (2020, e.g., Fig. 2 bottom left
corner), (3) a background map (localization of nonfilament pix-
els), and (4) a missing-data map (see Appendix A). The origin
and the ways in which these maps were obtained are presented
in Appendix A. An example of these maps is given on Fig. 3,
illustrated for the two portions of the Galactic plane that are
located at 160–171° and 349–356°. We obtained results for the
whole Galactic plane, which we illustrate in two regions that we
selected because they represent the diversity of column density
and filaments content observed in the Galactic plane well. The
160–171° region samples a low column density medium (up to
8 × 1021 cm−2) in which only a few filaments are detected, while
the 349–356° region shows a rich content in filaments that are
detected in a high column density medium (up to 9 × 1022 cm−2,
see Fig. 3). For the training step, we merged all the individual
mosaics (10°-long in longitude direction) into one global map
using the reproject module for astropy (Robitaille et al. 2020,
and Appendix A).

As the four input maps are very large (150 000× 2000 pix-
els), we split them into many patches that constitute the original
data set. As shown in Fig. 4, we split the maps into p× p patches.
The size of p = 32 pixels was chosen to preserve the information
on the small filamentary structures. This size is also the mini-
mum size accepted by the UNet architecture. The patches were
generated by applying a sliding window of size p (the patch size)
to the global mosaic of H2 column density (NH2 ). To ensure the
coherence between the four input maps, the four patches (NH2 ,
spine+branches, background, and missing data) were taken using
the same coordinates (see Fig. 5). In order to avoid any common
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Fig. 1. Hi-GAL H2 column density image of the l = 160–171° (top) and l = 349–356° (bottom) regions produced using Hi-GAL images as described
in Elia et al. (2013). The l = 349–356° zone contains the bright star-forming regions NGC 6334 and NGC 6357. These two regions are used in this
paper to illustrate the results. The dark pixels are saturated.
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Fig. 2. Illustration of the filament extraction method from Schisano et al.
(2020, their Fig. 3). The spine (blue line) and branches (red lines) asso-
ciated with a filament used for the supervised training process are shown
in the bottom left corner. The RoI (bottom right corner) is the zone used
by Schisano et al. (2020) to define a filament.

information between patches, the construction was made without
any overlap between the patches.

2.3. Data augmentation

Deep neural networks are greedy algorithms. In spite of the
huge size of the Galactic map, the final data set had merely
52 000 patches after empty patches were removed. Here, we refer
as “empty patches” to patches that only contain missed values
(patches located on edges) or to patches that contain “0 pixels
labeled data”. Fully unlabeled patches were removed from the
patch data set. As unlabeled pixels represent more than 80% of
the data set, this resulted in the loss of many patches. The data
augmentation is thus necessary in order to increase the num-
ber of training and validation patches and to thereby enable a
sufficient convergence of the neural network during the train-
ing step (Goodfellow et al. 2016). Two types of rotation were
used: rotation around the central pixel of the squared patch
(0°(original), 90°, 180◦, and 270°), and flipping the patch with
respect to the x- and y-axes. We also allowed a composition of
both rotations. All possible transformations are equally proba-
ble, that is, we selected the applied transformation following a
uniform distribution. To attenuate redundancy issues, the aug-
mentation was done on the fly, meaning that at each batch, we
produced a new set of patches using the augmentation process.
With our setting, we virtually increased the number of patches
by a factor equal to 64. Figure 6 shows some examples of the
data augmentation process.

3. Method
3.1. Segmentation pipeline

Our segmentation method relies on three components: a data
preparation procedure, a neural network with an architecture
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Fig. 3. Illustration of the Galactic regions located at 160–171◦ (left) and 349–356◦ (right) of the four input maps used for the supervised learning.
From top to bottom, we show the NH2 column density map, the input filament masks, a background localization map, and the missing-data map
(0 in purple, 1 in yellow). All these maps were obtained as explained in Appendix A. The filament and background mask maps are multiplied by
the missing-data map before they were used in the training process. The red rectangle shown in each column density map represents the region we
extracted to compute the performance of the training (see Sect. 4.1).

p

p

Fig. 4. Construction of patches of size p × p using a sliding window.

Dataset Set of patches

Fig. 5. Building the data set using the four input maps (on the left) into
a set of patches (on the right). On the left, the maps are the column den-
sity (top left), filament spine+branches (top right), missing data (bottom
left), and background pixels (bottom right).

dedicated to the recognition of filamentary structures, and a
training procedure adapted to the NH2 data. After the neural net-
work was trained, we used it to segment the NH2 map. The result
of the segmentation process is a map in which the pixels are
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Data augmentation

Originals Generated patches

Fig. 6. Example of data augmentation results.

classified into two classes: either a filament pixel (identified as
class 1), or a background pixel (identified as class 0). With these
two classes, we produced an intensity map with values of 0 and 1.
The values of the classification indicate whether a pixel belongs
to the filament class (the reverse map shows the classification
value according to which a pixel belongs to the background
class).

3.1.1. Segmentation with UNets

Automatic segmentation is a well-known issue in the artificial
intelligence community. Its origins lie in computer vision. It is
a well-studied problem today, especially where segmentation is
mandatory for decision or prediction, typically for medical or
biology images (Fu & Mui 1981; Alzahrani & Boufama 2021).
It has also been used for a long time in astrophysics, with recent
applications on galaxies (Zhu et al. 2019; Hausen & Robertson
2020; Bianco et al. 2021; Bekki 2021). Most previous meth-
ods are based on classical machine-learning methods, such as
Support-Vector Machine (SVM) or Random Forest (Hastie et al.
2001). These methods must extract an adapted set of features
in order to be sufficiently efficient: we have to be sure that the
extracted features represent the subject we wish to study well.
These features are usually given by expert knowledge of the
problem.

Most successful machine-learning methods for image pro-
cessing tasks today are based on deep neural network meth-
ods (Goodfellow et al. 2016). These methods have the particu-
larity of learning both the task and a representation of the data
dedicated to the task itself. Thus, they are more powerful than
methods based on hand-tuned features. While the first methods
were dedicated to classification (e.g., AlexNet, Krizhevsky et al.
2012; LeNet, LeCun et al. 1989; or ResNets, He et al. 2016),
there are now many different architectures depending on the tar-
geted task. For segmentation, one of the most promising neural
networks is the UNet, which was introduced for medical seg-
mentation (Ronneberger et al. 2015). Many extensions exist, for
instance, UNet++ (Zhou et al. 2019) with layers to encode the
concatenations, VNet (Milletari et al. 2016), which is dedicated
to 3D data, WNet (Xia & Kulis 2017), which has a double UNet
architecture, and Attention-UNet (Oktay et al. 2018), which com-
bines UNet with attention layers (Goodfellow et al. 2016). Still,
the UNet based architecture remains one of the most effective
methods for automatic segmentation.

In the context of astrophysical study, these neural networks
have been successfully used in different contexts. For exam-
ple, Bekki (2021) used the UNet to segment the spiral arms of
galaxies. Bianco et al. (2021) used a UNet based neural network
called SegUNet to identify H II regions during reionization in
21 cm. Another variant based on UNet and inception neural net-
works was used to predict localized primordial star formation

Fig. 7. Illustration of the UNet5 from Ronneberger et al. (2015).

(Wells & Norman 2021). UNet was also used to segment cosmo-
logical filaments (Aragon-Calvo 2019). We recommend Hausen
& Robertson (2020) for a good introduction to deep learning
applied to astrophysical data.

UNet is a multiscale neural network based on convolutional
and pooling layers, as presented in Fig. 7. In addition to its simple
structure, the strength of this network is an encoder-decoder-
based architecture with skip connections. First, the encoder
extracts features from the input image down to a coarse scale by
using filters and max-pooling. Then, the decoder takes the coef-
ficients at the coarse level and combines them with those from
each layer of the encoder via the skip connections, in order to re-
inject the details that were lost in the down-sampling (max-pool)
step and thereby build a better semantic segmentation map. The
final activation function of the network is done by the sigmoid
function (Goodfellow et al. 2016), as we wish to have values in
order to resolve a segmentation issue,

s(x) =
exp(x)

exp(x) + 1
. (1)

This function guarantees an output between 0 and 1. Thus, the
output of the network can be read as a probability map for
the class 1 filament (see Goodfellow et al. 2016, Sect. 6.2.2.2).
However, in our case, both the nonequilibrium between the two
classes (filament and background) and the incomplete ground-
truth prevent the direct interpretation of the segmented map
values as probabilities (see Kull et al. 2017, about sigmoid out-
put and probabilities). In the following, we name the intensity
value of the segmented maps “classification value”. In this study,
the quality of the results is assessed by comparing these classi-
fication thresholds with a given threshold (see Sect. 3.1.5). This
multiscale mirror-like structure makes the UNet very suitable for
image processing such as denoising (Batson & Royer 2019) or
segmentation (Ronneberger et al. 2015). Moreover, UNet belongs
to the family of fully convolutional networks. These networks are
almost independent of the size of the input images (Long et al.
2015). In UNet, the size of the output image will be the same as
that of the input if the input is large enough (the minimum size
is 32 × 32 pixels).

A recent and more powerful extension of the UNet model,
UNet++, was proposed in (Zhou et al. 2019). This network
belongs also to the fully convolutional networks. As illustrated
in Fig. 8, the plain skip connections of UNet are replaced with a
series of nested dense skip pathways in the UNet++ neural net-
work. The new design aims at reducing the semantic gap between
the feature maps of the encoder and decoder sub-networks that
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Fig. 8. Illustration of UNet++ from Zhou et al. (2019). The Xi, j are the
same convolutional layers as for UNet. The difference between UNet
and UNet++ can be depicted in three main points: 1) convolution layers
on skip pathways (in green), which reduces the semantic gap between
encoder and decoder feature maps; 2) dense skip connections on skip
pathways (in blue), which improves the gradient flow; and 3) deep super-
vision (in red), which enables model pruning (Lee et al. 2015).

makes the learning task easier to solve for the optimizer. In
fact, the model captures more efficiently fine-grained details
when high-resolution feature maps from the encoder are gradu-
ally enriched before fusion with the corresponding semantically
rich feature maps from the decoder. Note that these “inner”
layers have also a mirror-like structure allowing a larger multi-
scale representation. However, it is worthy to note that UNet++
requires more data than UNet as the latter has less parameters to
tune (see Table 3 in Zhou et al. 2019).

3.1.2. Local normalization

Neural networks such as UNet are highly sensitive to the con-
trast inside the input images (or patches). This sensitivity comes
from the filters that belong to the different convolution layers.
In order to avoid this issue, input data are usually normal-
ized, generally by performing a global min-max normalization
(Goodfellow et al. 2016). This normalization allows us to tem-
per the dynamic of the contrast while keeping useful physical
information about the structures (morphology and gradient).
However, in our case, the intensity of the NH2 map presents a very
high dynamical range, and a global normalization would artifi-
cially weaken many filamentary structures. To avoid this issue,
we performed a local min-max normalization on each patch.
As shown in Fig. 9, this normalization helps to deal with high-
contrast variation in nearby regions of the image. However, while
this approach solves this issue, the contrast still has high local
variations in some cases, so that two nearby patches may show
different normalization.

3.1.3. Training with UNet and UNet++

Training a neural network requires a loss function that computes
the errors between the model and the ground truth. For seg-
mentation, a recommended function is the binary cross-entropy
(BCE), which casts the problem as a classification problem
(Jadon 2020). For the sake of clarity, we introduce some nota-
tions before we give the expression of the loss function. Let {xi}i
be the set of normalized NH2 patches. Let {yi}i be the set of seg-
mentation target, that is, the set of binary patches with 1 for
filaments pixels and 0 for background pixels. Let {mi}i be the set
of missing data patches, that is, the set of binary patches with 0
for missing pixels and 1 elsewhere. For a given value of i, xi, yi,

Fig. 9. The local min-max normalization of the patches helps to avoid
contrast issue allowing a better definition of the filaments.

and mi share the same Galactic coordinates. The cross-entropy
loss for a set of n patches is given by

L({xi, yi,mi}i; θ) =
1

np2

n∑
i=1

p∑
k,l=1

mi[k, l]
(
yi[k, l] log( fθ(xi)[k, l])

+ (1 − yi[k, l]) log(1 − fθ(xi)[k, l])
)
,

(2)

where fθ is the function that applies the forward propagation, and
θ are the weights of the neural network. By using {mi}i∈[i...n], we
ensure that only labeled data are used.

As we have many unlabeled pixels in the patches (see
Sect. 2.2), we have to adapt the training step to avoid inconsis-
tencies. We summarize the different steps in Fig. 10. First, in
step (1), we take a set of patches (a batch) and then apply the
augmentation process (step (2)) on these patches. During this
step (2), we ensure that for a given i, the same transformation
is applied on xi, yi, and mi. The following steps are about com-
puting the prediction errors of the model on the patches and
making the back-propagation of the gradient of these errors in
order to update the weights of the neural networks (Goodfellow
et al. 2016). Therefore, in step (3), we begin to apply the network
fθt on the patches (forward propagation). Since this step implies
using the convolution layers in the network, we use both unla-
beled and labeled pixels. This is important as the neural network
needs the neighboring pixels to compute the value for one pixel.
After we restrict the result (step (4)) to labeled and nonmissing
pixels using the mask mi, we can compute (step (5)) the errors
on the restricted results compared to the ground truth. Finally,
in step (6), we update the weight of the network using the back-
propagation of the gradients of the errors. This is done by using a
stochastic gradient descent scheme (Goodfellow et al. 2016) with
a learning rate µt that changes during the training step following
the epochs.

3.1.4. Building the segmentation map

When the neural network has been trained, we can apply the
model to segment an image. As we described before, during the
creation of the data set (Sect. 2.2), we must deal with the high
dynamic contrast in images. Again we propose to solve the issue
by taking small patches and apply a local min-max normaliza-
tion. Moreover, since two closed patches may have a different
contrast, the normalization can lead to variation in the results
when applying the neural network. Therefore, in order to resolve
this issue, we propose to use an overlapping sliding window to
obtain the patches: the segmentation result is then the average
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(1) Batch of patches (2) Data augmentation

(3) Apply current model at step t

f( ; θt) = res

(4) Reduce to observed/labelled data

res ∗ = r̂es

(5) Compute model error

L(r̂es, , ; θt) = err

(6) Update weights (back-propagation)

θt+1 = θt − µt∇θL(r̂es, , ; θt).

Fig. 10. Five steps of an epoch during the training. For illustration purposes, we reduced the batch to a set of one patch. θt represents the weights
of the neural network at epoch t, and µt is the learning rate at epoch t.

b) Normalization + Segmentation

a) Observation c) Segmentation result d) Pixel weights

Fig. 11. Segmentation process. It takes patches from an observation
(a), then normalizes the patch and applies the segmentation model (b),
the segmented patch is positioned at the same coordinates (c), and is
finally weighted by coefficients (d) representing the number of patches
in which each pixel appears. Because a sliding window with overlap is
used, a given pixel is segmented several times (as long as it falls in the
sliding window). Then, we obtain several segmentation values for the
same pixel. The final segmentation value assigned to the pixel corre-
sponds to the average of all the segmentation values computed from the
contributing sliding windows.

between the output of the neural network applied on the patches.
These patches are distinct from those used for learning the net-
work (see Sect. 2.2). As the variance of contrast between patches
introduced variance inside the output results of the neural net-
work, the overlap and averaging operation (see Fig. 11) allows
us to decrease the artifact that may appear (Pielawski & Wählby
2020).

Thus, we apply the following segmentation procedure (illus-
trated in Fig. 11). We browse the image using an overlapping
sliding window that gives patches (step (a)). Each patch is then
normalized using a min–max normalization (step (b)); here we
avoid the missing data (around borders and saturated areas).

Table 1. Confusion matrix.

Predicted
Filament Background

A
ct

ua
l Filament TP FN

Background FP TN

Then, we apply the trained neural network on the patch to obtain
the density map output and add on the output image at the coordi-
nate of the patches (step (c)). Since we use an overlapping sliding
window, the results are added to the output, and then we divide
each pixel by a weight representing the number of patches in
which the pixel appears (this is done using the weight map built
in step (d)).

3.1.5. Metrics

In supervised classification problems, the confusion matrix, also
called error matrix, is computed in order to assess the perfor-
mance of the algorithm. We refer to the filament and background
classes as the positive (P) and the negative (N) classes, respec-
tively. We also refer to the correctly and misclassified pixels
as true (T) and false (F), respectively. In a binary classification
problem, the confusion matrix is thus expressed as in Table 1.

The confusion matrix is evaluated on the estimated fila-
ment masks that are deduced from the segmented map at a
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Segmentation result

Ground truth

(a) Intersection (b) Seeds using ground truth (c) Reconstruction

Fig. 12. Morphological reconstruction is a method that computes shapes from marked pixels called seeds. (a) We first compute the seeds using the
intersection between the segmentation results and the ground truth. (b) We use the intersection pixels as seeds (see the red seeds in the bottom left
corner). (c) We apply the reconstruction to obtain the filaments with at least one seed.

classification threshold. It is important to recall, however, that
the evaluation set is restricted to labeled data. The classifica-
tion scores are thereafter derived from the confusion matrix.
In this work, the recall, precision, and dice index defined in
Eqs. (3), (4) and (5), respectively, are used to evaluate the clas-
sifier performance. Maximizing recall and precision amounts to
minimizing false-negative and false-positive errors, respectively,
whereas maximizing the dice index amounts to finding the opti-
mal tradeoff between the two errors. Therefore, the closer to 1
these scores, the better.

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Dice =
2 TP

2 TP + FP + FN
. (5)

In addition to the recovery scores, we also calculate the rate
of missed structures (MS) in segmentation for the same set of
thresholds. The MS score can be defined as the ratio of the
missed filament structures over all the input filament structures,

MS =
Number of missed structures

Total number of filament structures
. (6)

The MS metric is based on morphological reconstruc-
tion (Vincent 1993; Soille 2003; Robinson & Whelan 2004).
Figure 12 shows how we apply this method to assess which
known filaments are recovered. First, we compute the inter-
section between the known filaments (ground truth) and the
segmentation results (Fig. 12a). Then we use this intersection
as the seed for the reconstruction method: in Fig. 12b, the
yellow elements are the seeds, and the red elements are the
part of filaments that is missed. The morphological reconstruc-
tion takes the seeds to recover the known filaments by using
a shape-constrained growing process (Fig. 12c). Only the fil-
aments for which at least one pixel is used as seed will be
recovered (Robinson & Whelan 2004). By subtracting the mor-
phological reconstruction result from the ground truth, we can
identify the missed structures (see also Fig. 17). Then we count
the number of missed structures by using a direct labeling of
the pixels where two neighboring pixels share the same label

Table 2. Experimental setup.

Parameter Value

Patch size (p) 32 pixels
Dataset split {80%, 10%, 10%}
Batch size 64 patches
Epochs 100
Initial learning rate {10−5, 10−4, 10−3, 10−2}

Notes. Parameters used in the experimental setup for UNet and UNet++
training

(Fiorio & Gustedt 1996). Then, we can compute the MS met-
ric and qualitatively assess the recovery of filaments in terms of
structures, rather than individual pixels.

3.2. Experimental setup

Taking the analysis of the normalization in Sect. 2.2 into consid-
eration, the patch size was fixed to the lowest value accepted by
the UNet family, p = 32. In order to have proper training, vali-
dation, and test steps, we randomly split our initial set of patches
(Sect. 2.2) into three sets, namely, the training, validation, and
test sets, with proportions of 80%, 10%, and 10%, respectively.
The random split ensures the presence of the two classes (fila-
ment and background) in the three sets. The patches in training
and validation sets were then shuffled after each epoch to help
avoiding unwanted bias (see, Goodfellow et al. 2016). The total
number of epochs was set to 100. UNet and UNet++ were trained
using the Adam optimization scheme with a multistep learn-
ing rate (Kingma & Ba 2015; Ronneberger et al. 2015). During
the first 30 epochs, the initial learning rate value was divided
by 10 every five epochs. Four initial values of the learning
rate, 10−5, 10−4, 10−3, and 10−2, were tested for both networks.
We denote by UNet[lr] (UNet++[lr]) the UNet (UNet++) model
learned with lr as the initial value of the learning rate, where
lr ∈ {10−5, 10−4, 10−3, 10−2}. A summary of the parameter values
used in the training step is given in Table 2. In the segmentation
step, an overlapping sliding window of size 32× 32 was applied,
where an overlap of 30 pixels was used in order to limit edge
artifacts and to generate highly smooth segmentation.
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In order to compare the performance of UNet with UNet++,
two zones of the global NH2 mosaic were excluded from the
initial patch data set. Constrained by the limited number of
patches in the data set, small zones were removed, namely,
the zones 166.1–168.3◦ and 350.3–353.5°. The choice of the
removed regions was motivated by assessing the network per-
formance in regions with a highly diverse column density and
filaments content. While 350.3–353.5°, removed from mosaic
349–356°, is dense and rich in filaments (38541 filament pixels),
the region 166.1–168.3°, removed from the mosaic 160–171°, is
sparser and contains fewer filaments (1459 filament pixels). The
filament density is always inferred based only on the incomplete
ground truth (labeled part of the data set). The two removed
zones were then segmented by the learned models, and the
segmentation quality was assessed using the evaluation scores
described in Sect. 3.1.5. The evaluation scores were also com-
puted on the fully segmented Galactic plane in order to have a
global performance evaluation of models.

4. Results

4.1. Scores and segmented mosaic analysis

In order to evaluate the training performances, we discuss below
the different scores we obtained for the different tested scenar-
ios. Two neural networks were tested (UNet and UNet++) with
four different initial learning rates for each. For an input column
density image, the segmentation process (see Sect. 3.1.4) returns
a classification value mask from which it is possible to identify
pixels that likely belong to a filamentary structure. Nevertheless,
we did not attempt to extract the filaments like Schisano et al.
(2020) did. We postpone this physical analysis on the newly iden-
tified filaments to a follow-up work. Here we present the method
as a proof-of-concept and analyze its performances and returned
results (segmented map of the whole Galactic plane). We illus-
trate these results on two portions of the Galactic plane that were
selected for their characteristics in terms of column density and
filament content (as known from the input data set of filament
mask based on the spine+branches).

To evaluate the performances of the different scenarios,
Fig. 14 presents the BCE curves for the training set and the val-
idation set during the first 30 epochs. For all models, these loss
curves reach a plateau around the tenth epoch, confirming the
rapid convergence of UNet-based networks. The performance of
UNet++[10−2] was removed from the displayed results due to
convergence issues. As shown in Fig. 14 and confirmed by this
analysis, the models have similar performances and converge to
a training error around 0.01, except for schemes with a starting
learning-rate value of 10−5 , where higher errors are reported
(more than 0.016 and 0.012 for UNet[10−5] and UNet++[10−5],
respectively). The similar performances obtained for the two
architectures and the different learning rates indicate that the
method is robust. Validation errors are slightly higher than train-
ing errors, with a difference up to 0.0011, except for UNet[10−5]
(around 0.002) and UNet++[10−5] (around 0.0018). The reported
values indicate that the learned models show low bias and low
variance.

For both UNet and UNet++, the best performance is with
an initial learning-rate value of 10−3. Overall, the best model in
terms of loss function is the UNet++[10−3]. For each scenario,
the best-performing model in validation was used to segment the
test set and compute the underlying BCE (see Table 3). BCEs
calculated on the test set corroborate the previous analysis: sce-
narios with initial learning rates in [10−2, 10−3, 10−4] result in

similar test errors that do not exceed 0.009, whereas scenarios
with initial learning rates of 10−5 show a higher error. The lowest
test error corresponds to the scenario UNet++[10−3].

In Fig. 13 the dice index curves for the training and valida-
tion sets is plotted for different classification thresholds. The dice
index was also computed on a test set using the best-performing
models in validation (the models used in Table 3), and the cor-
responding results are given in Fig. B.1. In the same way, the
dice index results are in line with the BCE. These models were
used afterwards to segment the removed zones 166.1–168.3◦ and
350.3–353.5°. Figure 16 presents the results of the segmenta-
tion process for the different scenarios tested and presented in
Table 2. All segmented maps are presented within the range
[0, 1]. Overall, the obtained images are in line with the analyzed
BCEs. The scenarios with initial learning rates of 10−2, 10−3,
and 10−4 return very similar segmented maps. A noticeable dif-
ference is seen in maps that were segmented by both UNet and
UNet++ with an initial learning rate of 10−5. In these cases, the
filamentary structures are broader than those obtained for the
other scenarios, especially for UNet. Moreover, the intensity of
the segmentation maps also varies for these last two scenarios,
where the low-value structures are better revealed (intensity vari-
ation up to a factor of 10 in those zones). The ability of these
two last scenarios (and of the UNet in particular) to better reveal
structures with a lower classification threshold might be used to
detect structures that are not well seen on the original map, either
due to their low contrast and/or their low column density. A close
visual inspection of the column density images confirms that fea-
tures revealed by UNet[10−5] and UNet++[10−5] are low-contrast
filaments that were present in the original images, but absent
from our input catalog of filaments that was used as ground truth.

In Fig. 15, precision–recall curves (P–R curves) are shown
for 350.3–353.5◦ (top left) and 166.1–168.3◦ (top right). The P-R
curve represents precision vs recall for different threshold values.
It is used to estimate the optimal threshold that maximizes the
dice index (a trade-off between precision and recall). The more
the P-R curve tends to the (1, 1) corner, the better the model.
In other terms, the larger the area under the curve, the better
the model. The objective is to estimate the optimal threshold
that returns a trade-off between precision and recall. For clarity
sake, all curves are zoomed in from 0–1 to 0.7–1 for precision
and recall. In all figures, black asterisks refer to the precision-
recall values at the optimal threshold; the values of the latter
are reported in Tables 4, 5, and B.2. Different approaches can
be used to compute the optimal threshold, such as minimizing
the difference between the precision and recall, or minimizing
the Euclidean distance between the P–R curve and the opti-
mal performance, corresponding to a precision-recall of (1, 1).
Here, we computed the optimal threshold as the one that maxi-
mized the dice index (trade-off between filament and background
recovery). In Tables 4 and 5, we report four samples from these
P-R curves corresponding to conservative (0.8), medium (0.5),
relaxed (0.2) and optimal (giving the best Dice index) thresholds.
When investigating the dense zone of 350.3–353.5°, we note
that, for a given threshold, all the models give results with sim-
ilar performances (Dice indices >85%), except for UNet[10−5]
(74.79% at threshold 0.2). Close optimal threshold are also
obtained for all models, where values are situated between 0.35
and 0.48. Note that at the conservative threshold 0.8, UNet[10−5]
and UNet++[10−5] result in low recall values compared with
the remaining scenarios (72.96% and 75.14%, respectively), con-
firming the results reported with the segmented map where
salient filaments are detected with lower values in these two sce-
narios compared with the remaining ones. However, they tend
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Fig. 13. Dice curve evolution of schemes reported in Fig. 14 are displayed over the first 30 epochs in training (continued lines) and validation
(dashed lines) steps, at classification threshold values 0.8, 0.6, 0.4, and 0.2. The displayed curves are aligned with the results deduced from BCE
curves, where close performances were obtained with initial learning-rate values of 10−4, 10−3, and 10−2, and a poorer performance is obtained for
schemes with a learning-rate value of 10−5. The highest dice score is reported for UNet++[10−3] (purple), and the lowest performance corresponds
to the UNet[10−5] scheme, (red) especially at thresholds 0.2 and 0.4. Similar to the BCE curves and for all displayed schemes, a plateau regime is
reached within the first ten epochs.

to be more performing when decreasing classification thresh-
old, especially at threshold 0.2 where they are performing better
than the remaining scenarios (the best recall is of 98.1% with
UNet[10−5], followed by UNet++[10−5] with a recall value of
97.26%). This can be explained by the low value structures that
are better revealed in these two scenarios as noticed before in the
segmented map. In Table B.2, precision, recall and Dice index
are computed on the fully-segmented Galactic plane, to infer the
global segmentation performance. The resulting global scores

are inline with the ones obtained with the dense zone where,
for a given threshold, all models show close performances,
except UNet[10−5] and UNet++[10−5] slightly less performing.
Moreover, the optimal thresholds obtained with the global seg-
mentation are close to thresholds obtained for the dense mosaic,
where values range from 0.3 to 0.44. This result suggests that
either the training step is more driven by high density regions
and/or that these regions better represent the global properties
observed on the Galactic plane.
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Fig. 14. BCE evolution over the first 30 epochs in training (contin-
ued lines) and validation (dashed lines) steps. UNet++[10−2] schemes
is removed as its corresponding BCE diverged. The displayed schemes
show similar performances. Models with a learning-rate value of 10−5

resulted in higher BCEs. The lowest error is reported for UNet++[10−3]
(purple), and the highest error corresponds to the UNet[10−5] scheme
(red). A plateau regime is reached within the first ten epochs for
all models, which confirms the rapid convergence of the UNet-based
networks.

Table 3. Binary cross entropy.

Model BCE Score

UNet[10−2] 0.0085
UNet[10−3] 0.0084
UNet[10−4] 0.0088
UNet[10−5] 0.0161
UNet++[10−3] 0.0081
UNet++[10−4] 0.0088
UNet++[10−5] 0.0122

Notes. Binary cross entropy (BCE) evaluation on the test set for the
schemes reported in Fig. 14. The lowest (highest) achieved BCE is given
in blue (red). BCE values in test are inline with performances in training
and validation steps with UNet++[10−3] and UNet[10−5] resulting in the
best and less performing schemes, respectively.

When examining the scores of the sparse zone of 166.1–
168.3◦ in Table 5, all the models result in similar performances
in precision. However, the recall performance per threshold has
a higher contrast, where UNet++[10−5] shows lower recall val-
ues for thresholds 0.8, 0.5, and 0.2. While the background is
well recovered (the lowest precision is of 98.97%), lower recall
values are obtained compared to the dense zone, where we
had to relax the threshold to 0.2 in order to improve filament
recovery and obtain recall values higher than 70%. Similarly to
the dense zone, close optimal dice indices were obtained for
all models, where the difference between the best dice given
by UNet++[10−4] (99.38%) and the more poorly performing
UNet[10−2] (98.8%) is less than 0.6%. Although interesting
scores are obtained at the optimal thresholds, it is very impor-
tant to underline the very low values of these thresholds in all

scenarios. Optimal thresholds range from 0.01 to <0.03, except
for UNet[10−5] (0.12). The obtained values reflect the difficulty
of the different networks to reveal structures in this mosaic,
where almost 40% to 60% of the filament pixels are detected
with classification values lower than 0.5 (see the segmented
maps in Fig. 16). Moreover, we clearly note the discrepancy
between scores computed on the sparse zone and the global
scores reported in Table B.2, which might suggest that the
trained models are more successful in revealing filaments in
dense than in lower density zones. It is difficult, however, to con-
clude about the origin of this discrepancy because the number of
labeled pixels (in both filament and background) is very differ-
ent between the sparse and the dense zone. Limited labels in the
sparse mosaic also imply that the computed scores with higher
uncertainties need to be considered. Nevertheless, visual inspec-
tion of the segmented maps in Fig. 16 results in similar trends as
observed for the dense zone, where close performances are noted
for all models except for the models with an initial learning rate
of 10−5. These models reveal more details at moderate to low
classification values.

4.2. Analysis of missed structures

In addition to pixel-level scores, the structure-level score was
also computed in order to evaluate filament recovery in terms of
structures. When some pixels of a given filament are missed, it
does not automatically imply that the whole structure is missed.
In Tables 4 and 5, the MS rate is computed at different clas-
sification thresholds for dense and sparse zones. As expected,
the higher the threshold, the more structures are missed. Overall,
we note that at conservative (0.8) and moderate (0.5) thresholds,
low MS rates are obtained for dense mosaics compared with
the sparse mosaic. In the latter, more strongly contrasting val-
ues are obtained across the classification thresholds where MS
rates range from 0 (all structures are revealed) to almost 60%
(more than half of the structures are missed; see the MS rates
in Table 5). In a region with a low concentration of filaments,
missing (or detecting) a structure would have more impact on
the MS rate variation than in a dense region. Similarly to pixel-
level scores, the global MS rates reported in Table B.2 are closer
to the values obtained with the dense zone than the sparse zone,
and this for the same reasons as we invoked for pixel-level scores.

In order to learn more about the structure of missed fila-
ments, a missed-structure map at a classification threshold of
0.8 was built. In this map, any structure that was missed by
any model is represented. Here, the map intensity encodes the
number of models that missed the structure, so that values range
from 0 (detected structure) to 7 models (missed by all models).
In Fig. 17, representative portions from the sparse and dense
regions are displayed. We note the prevalence of structures that
were missed by all the models (yellow). In fact, 50% of the
missed structures in the whole Galactic plane are the same for
all the models. After a close visual inspection of the missed
structures, two categories are reported. The first category con-
sists of small structures, which is the most prevalent category.
These structures either correspond to small isolated filaments
and/or to small parts that are missed in larger filaments. The
second category corresponds to larger filaments that are misiden-
tified as filaments in the ground truth. For example, structures
reported in Fig. 17 (bottom right) at positions (349◦, 1°) and
(350.5◦, −1°) are excluded from the filament class. There are
also isolated square-shaped structures that are mislabeled as fila-
ments in the ground truth, corresponding to saturated pixels (see
Fig. 17 (bottom right) at position (350.8◦, 1°)). Unfortunately,
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Fig. 15. P–R curves of the schemes reported in Fig. 14, computed on the segmented removed zones (top) and the full Galactic plane (bottom). (a)
P–R curves computed on the segmented 350.3–353.5◦, which corresponds to the dense region that was removed from the patches data set. (b) P–R
curves computed on the segmented 166.1–168.3◦, which corresponds to the sparse region that we removed from the patches data set. (c) P–R curves
computed on the full segmented Galactic plane. Unlike in Fig. 15b, P–R curves obtained on the latter are close to those obtained in Fig. 15a.

trained models fail to reject these saturation bins when they are
entangled within a true large filamentary structure.

4.3. New possible filaments revealed by deep learning

Based on the performance analysis in Sect. 4.1, two groups of
models can be derived based on the initial learning rate: (1) mod-
els with an initial learning rate of 10−4, 10−3, and 10−2, and (2)
models with an initial learning rate of 10−5. In the following,
we present the segmentation results that we illustrate for the best
model, UNet++[10−3], on the two selected submosaics.

Figure 18 presents the evolution of the segmented map for
the two selected regions as a function of the segmented map
threshold.

In both regions, more pixels are classified as filaments by the
training and segmentation processes than in the input structures
(input filament mask used as the ground truth in the supervised
training). The ratio (new filament pixels to input filament pix-
els) varies between 2 and 7, depending on the threshold value
(from 0.8 to 0.3, the optimal threshold). The same conclusions
are drawn for the whole Galactic plane. In Fig. 19, the distribu-
tion of candidate filament pixels across the entire Galactic plane,
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Fig. 16. Segmented maps obtained for the models analyzed in Fig. 14, zooming in on a part of the two regions that was removed from the training
namely, the l = 166.1–168.3◦ (top) and l = 350.3–353.5◦ (bottom; see the red zones identified in Fig. 3). The segmented images are displayed in
the range [0, 1] representing the classification value according to which a pixel belongs to the filament class. For each region, the first row shows
results of the UNet segmentation, and the second row shows results of the UNet++ segmentation with initial learning-rate values of 103 (left), 10−4

to 10−5 (right). The UNet++ with a learning rate of 10−2 is not presented because of diverging results (see Sect. 4.1). The NH2 is shown at this
position for each region. The regions are 0.45° × 0.45 ° wide.

estimated in bins of 4.8◦ × 0.16◦, is displayed for the ground truth
and the segmentation results at different classification thresh-
olds. Even at a conservative classification threshold of 0.8, more
pixels are labeled as filaments than in the ground truth used in
the learning step. As expected, the more we decrease the clas-
sification threshold, the more pixels are labeled as filament. A
close visual inspection of the segmented images indicates that
structures observed at thresholds lower than the optimal value
are also seen on the original column density image, but were not
previously detected due to their low contrast with respect to the
surrounding background emission. The squared structures shown
in Fig. 18 (bottom) are saturated pixels corresponding to bright
sources located in filaments. These structures also appear in the

ground truth, and we therefore retrieve them when applying our
model. Because we lack information about the column density in
these saturated pixels, we left them as squares in the segmented
maps.

Figure 20 presents the same result as Fig. 18, but for the bina-
rized version of the segmented map. The filamentary structures
identified at a given threshold are now represented as 1 when
the associated pixel belongs to the filament class 0 instead. This
representation allows a more direct comparison with the input
filament mask (spine plus branches; see Fig. 2). However, the
classification value itself (that indicates whether a pixel belongs
to the filament class) no longer appears in this representation.
As for results presented in Fig. 18, the threshold decrease has
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Table 4. Segmentation scores (350.3–353.5◦).

Scores (%)
Model

UNet [10−2] UNet [10−3] UNet [10−4] UNet [10−5] UNet++ [10−3] UNet++ [10−4] UNet++ [10−5]

Precision at 0.8 99.67 99.76 99.84 99.89 99.71 99.76 99.65
Precision at 0.5 97.45 98.06 98.24 97.11 97.87 97.87 95.13
Precision at 0.2 88.10 89.75 88.79 60.42 90.12 87.59 78.58
Precision at thropt 96.01 95.63 96.45 96.38 96.06 96.48 94.32

Recall at 0.8 79.15 79.45 79.10 72.96 78.34 79.71 75.14
Recall at 0.5 91.15 90.86 91.63 91.75 90.45 91.73 90.97
Recall at 0.2 96.55 96.27 96.83 98.10 96.09 96.82 97.24
Recall at thropt 92.86 93.91 93.86 92.49 93.17 93.37 91.82

Dice at 0.8 88.24 88.45 88.27 84.33 87.74 88.62 85.67
Dice at 0.5 94.19 94.33 94.82 94.35 94.02 94.70 93.00
Dice at 0.2 92.13 92.89 92.64 74.79 93.01 91.98 86.92
Diceopt 94.41 94.76 95.14 94.40 94.59 94.90 93.05

MS at 0.8 4.25 4.96 4.96 7.79 4.96 5.31 6.02
MS at 0.5 1.06 1.24 1.24 1.42 1.59 1.42 1.06
MS at 0.2 0.35 0.18 0.35 0.18 0.35 0.18 0.18
MS at thropt 0.53 0.35 0.53 1.24 0.53 0.53 0.88

thropt 0.41 0.35 0.38 0.48 0.37 0.42 0.47

Notes. Segmentation scores evaluated on the dense zone of 350.3–353.5◦ segmented by the models reported in Fig. 14. Precision, recall, dice
index, and MS rate are evaluated at classification threshold values of 0.8, 0.5, 0.2, and the optimal threshold. The latter refers to the threshold value
optimizing the dice index and estimated using P-R curves (see Fig. 15a). Blue (red) refers to the best (least performing) model in each row. The
bold scores correspond to the absolute best (if in blue) or lowest (if in red) performance per score.

Table 5. Segmentation scores (166.1–168.3°).

Scores (%)
Model

UNet [10−2] UNet [10−3] UNet [10−4] UNet [10−5] UNet++ [10−3] UNet++ [10−4] UNet++ [10−5]

Precision at 0.8 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision at 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision at 0.2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision at thropt 99.04 98.97 99.65 99.66 99.25 99.32 99.24

Recall at 0.8 25.91 28.38 25.22 25.29 33.45 30.64 20.84
Recall at 0.5 49.01 58.40 49.01 54.90 63.33 60.59 41.74
Recall at 0.2 77.11 87.32 81.49 94.59 87.18 87.73 72.86
Recall at thropt 98.56 98.83 98.90 99.04 99.31 99.45 99.04

Dice at 0.8 41.15 44.21 40.28 40.37 50.13 46.90 34.49
Dice at 0.5 65.78 73.73 65.78 70.88 77.55 75.46 58.90
Dice at 0.2 87.07 93.23 89.80 97.22 93.15 93.46 84.30
Diceopt 98.80 98.90 99.28 99.35 99.28 99.38 99.14

MS at 0.8 61.02 45.76 57.63 50.85 32.20 37.29 44.07
MS at 0.5 16.95 6.78 10.17 15.25 6.78 6.78 11.86
MS at 0.2 1.69 0.00 1.69 0.00 0.00 1.69 1.69
MS at thropt 0.00 0.00 0.00 0.00 0.00 0.00 0.00

thropt 0.03 0.03 0.02 0.12 0.01 0.02 0.02

Notes. Same as in Table 4, but for the sparse zone of 166.1–168.3°.

two effects: (i) more pixels are identified as belonging to the
filament class (new structures are detected, in particular, those
with a faint-to-low contrast that are barely visible in the orig-
inal NH2 image), and (ii) a given structure becomes thicker.
This last effect can be identified as a lowering of the corre-
sponding column density threshold, where the highest threshold

identifies the densest part of the filament. It is interesting to note
that the optimal threshold (as well as lower threshold values) in
both regions identifies the filamentary structures as observed in
the original column density map, down to their external enve-
lope emission, before reaching the background emission. This
result is important because it will allow a precise study of the
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Fig. 17. Input filaments missed by the segmentation process on the l = 160–171◦ (top) and l = 349–356◦ (bottom) regions of the Galactic plane,
respectively. We show. The input filament mask (left) and the missed structures at a classification threshold of 0.8 in a cumulative way (for all the
scenarios; right). The unit (color-coding) for the missed structures maps corresponds to the number of tested scenarios (from 1 to 7) that missed a
given structure.

filament-background relation. The widening of the filamentary
structures can also be seen as the definition of the RoI given by
Schisano et al. (2020; see also Fig. 2, bottom right). Schisano
et al. (2020) defined the RoI as the objects that define fila-
mentary candidates in their catalog. This point is important
because it implies that the comparison of our segmented map
results with the RoI would lower the factor we derived that
represents the number of pixels classified as filament as the
RoI are always thicker than the spine plus branches we used
as input in this work to train the network to learn what a fila-
ment is. In this work, we infer the filament mask as a ground
truth from the filament spine plus branches, as shown on Fig. 2
(bottom left). However, the RoI defines the filament in order to

delineate its spread on the column density map, and this corre-
sponds to the observed widening of the structures with the lower-
ing of the threshold. The comparison of the different structures
is illustrated in Fig. 21. Because we used spine plus branches
as input to define a filament here, we kept this input structure
as a reference to compare with the result of the segmentation
process.

A key point in this work is to ascertain the nature of the fil-
amentary structures we reveal. Filaments are made of gas and
dust. The filaments detected by Schisano et al. (2020) are traced
in dust emission maps. Dust grains emit over a wide range of
wavelengths, and they act as absorbers in the optical, near-,
and mid-infrared parts of the spectrum. Because of their dusty
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Fig. 18. Zoom-in on the evolution of segmentation results as a function of the classification threshold showing the filamentary structures estimated
by UNet++ 10−3 in 160–171◦ (six top images) and 349–356◦ (six bottom images) regions of the Galactic plane. The original H2 column density
image (top left in each group), the ground-truth input filament mask, and the corresponding segmented image at different thresholds (0.8, 0.5, 0.2,
and the optimal threshold) are shown from top left to bottom right. The regions are 2° × 2° wide.
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(a) Ground truth
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(b) Segmentation at classification threshold of 0.8
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(c) Segmentation at classification threshold of 0.5
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(d) Segmentation at classification threshold of 0.2
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Fig. 19. Number density distribution of candidate filament pixels across the entire Galactic plane, estimated in bins of 4.8◦ × 0.16◦ and comparing
the ground truth of Fig. 19a with the segmentation results of the model UNet++ 10−3 at classification thresholds of 0.8 in Fig. 19b, 0.5 in Fig. 19c,
and 0.2 in Fig. 19d. In Fig. 19e, we display the ratio of candidate filament pixels in the segmentation at a classification threshold of 0.8 to the
ground truth.

composition, filaments are well visible as absorbing features
at shorter wavelengths (optical, near-, and mid-infrared) in the
Galactic plane, and these data can be used to ascertain the nature
of the structures returned by the training and segmentation pro-
cesses. Only filaments that are visible in absorption on a strong
emission background can be detected at short wavelengths.
(Sub)millimeter emission of cold dust also reveals filaments
(Mattern et al. 2018; Leurini et al. 2019) and can be used to
ascertain the nature of the structures without encountering the
extinction problem. This empirical (data-based) validation of
the results is a first step in the analysis. In Fig. 22, we illus-
trate the interest of this multiwavelength analysis to ascertain
the nature of new detected filaments on the Galactic region
G351.776-0.527. This region hosts a high-mass star-forming
region analyzed by Leurini et al. (2019). Region G351.776-0.527
is located at the center of Fig. 22 and appears as a hub with

filaments converging toward the saturated central point located
at l = 351.77°, b = −0.538°. A filamentary structure observed
in the segmented map right of the bright central source that is
not visible in the input filament mask is seen in the 2MASS
K-band image, confirming its nature. The segmented image also
suggests that the region might be located at the edge of a bub-
ble. A bright ionized region, G351.46-00.44, is located nearby
and could explain the high level of turbulence and the high-
mass star formation observed in this zone (Lee et al. 2012).
The large-scale view of this region, revealed by the segmented
map with suggested multiple filament connections of the cen-
tral source with the surrounding medium, has to be confirmed
with high-sensitivity observations of dust emission that could
be complemented by spectroscopic data of dense gas molec-
ular tracers, keeping in mind that, as pointed by Hacar et al.
(2022), filaments identified with Herschel data (i.e., using dust
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Fig. 20. Zoom-in on the evolution of segmentation results generated by UNet++ 10−3 model in mosaics 160–171◦ (six top images) and 349–356◦
(six bottom images). Here, the estimated binary filament masks are displayed at classification thresholds 0.8, 0.5, 0.2, and the optimal threshold.
The original H2 column density image (image with the color bar) and the true input filament mask are also displayed for comparison. The regions
are 2°× 2° wide.
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Fig. 21. Comparison of the segmented map result using the
UNet++ 10−3 with the input spine plus branches (black contours) and
the RoI (red contours).

continuum emission) might be a different family of objects than
those detected in molecular line tracers.

5. Discussion and future prospects

The purpose of this work was to study the potential of super-
vised deep learning as a new way to detect filaments in images
of the Galactic interstellar medium. At this stage, the filamen-
tary structures are revealed, but the filaments themselves are not
extracted, with a measurement of their physical properties, from
the segmented images. While the first task requires semantic seg-
mentation, the second task consists of instance segmentation (Gu
et al. 2022). In the first, the task is limited to attributing a class
to each pixel, which is done in this paper, whereas in the latter,
existing filaments are in addition enumerated to allow a global
statistical study. In this paper, we used UNet-based networks
which are the most modern methods in semantic segmentation.
The analyzed performance in Sect. 4 proves the efficiency of
these networks not only in revealing structures already existing
in the initial catalog, but also in adding new structures that have
not been detected before and that are confirmed through a detec-
tion at shorter and/or longer wavelengths, namely, at near- and
mid-infrared and/or (sub)millimeter wavelengths, respectively.
In astrophysics, several independent estimators can be used to
ascertain the true nature of the detected filamentary structures,
such as expert knowledge or a knowledge based on a large sta-
tistical definition, such as the one used in citizen projects, of
particular interest for machine learning (Christy et al. 2022).
Results of numerical simulations and/or data obtained at other
wavelengths can also be used. On the multiwavelength data side,
for example, filaments are clearly visible at other wavelengths in
the Galactic plane because they are composed of dust, and these
data can be used to ascertain the nature of the structures returned
by the segmentation process, as shown in Fig. 22.

The UNet-based networks are supervised deep-learning
algorithm. In spite of the incomplete ground truth, these net-
works produced a good estimate of filamentary structures. It is
important to build a more enriched ground truth, however, to
solve more complex tasks such as instance segmentation. This

Table 6. Training time.

Model Training time (h)

UNet[10−2] 2.08
UNet[10−3] 2.23
UNet[10−4] 2.19
UNet[10−5] 2.17
UNet++[10−3] 3.22
UNet++[10−4] 2.79
UNet++[10−5] 2.73

Notes. Training time in hours for the schemes reported in Fig. 14. The
shortest (longest) training time, in blue (red), is achieved by UNet[10−2]
(UNet++[10−3]).

might be possible by combining several existing catalogs of fila-
ments obtained on the Galactic plane, for example, by combining
the Hi-GAL catalog (Schisano et al. 2020) with getSF extrac-
tions made on several regions of the plane (Men’shchikov 2021).
Another possibility is to use filament segmentation by UNets as
a prestep and then consider the produced filaments mask as the
ground truth for the instance segmentation.

Another crucial step in filament segmentation using deep-
learning algorithms is data normalization. Filament detection
depends not only on the intrinsic column density of the structure,
but also on the column density and the structure of the back-
ground. By using local (per patch) normalization, the filament
contrast relative to the neighboring background is enhanced. As
illustrated in Fig. 9, a classical local normalization method was
used in this work in order to enhance low-contrast filaments that
are in turn well integrated in the training process, allowing them
to be representative. Recently, more sophisticated multiscale nor-
malization has been used in the Hi-GAL image processing to
highlight the faintest structures observed on the Galactic plane
(Li Causi et al. 2016). These normalized data are very interesting
as input for deep-learning networks. Unfortunately, no ground
truth exists for these normalized images so far, which does not
allow their use for the moment.

An important result of the segmentation for astrophysical
purposes is to determine the classification threshold (intensity
of the segmentation map) that allows for an optimal detection
of filaments. While the optimal thresholds reported in Table B.2
allowed a good recovery of existing and new filaments, filaments
are still missed at these classification thresholds, some because
they were misclassified in the ground truth (see Sect. 4.2).

Another key point is to consider a region-specific optimal
threshold rather than a unique global one. According to results
reported in Tables 4, 5, and B.2, the optimal threshold of a given
model is affected by the column density of the studied zone. In
this work, the optimal thresholds in Tables 4 and 5 were inferred
in narrow zones, with a low number of labeled pixels for the
sparse zone. To obtain a robust estimate of a region-specific opti-
mal threshold, a split of the Galactic plane divided into large
homogeneous zones in terms of filament concentration is envi-
sioned. The optimal thresholds can then be inferred on these
slices.

From the computational point of view, we trained the dif-
ferent networks on a NVIDIA RTX 2080Ti. Table 6 gives the
training time for the different scenarios for 100 epochs. As
UNet++ is a larger network than UNet, it takes slightly more
time to train: while UNet requires about 2.2 h, UNet++ asks for
about 2.8 h. As the patch data set is small (around 210 MB), these
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Fig. 22. Segmented map obtained for star-forming region G351.776-0.527 (bottom left) compared with the 2MASS K-band image (top left), where
filaments are observed in absorption, and the column density map (top right), where filaments are observed in emission. The filamentary structures
visible in the image segmented by UNet++[10−3] (bottom left) and displayed in the [0,1] range are both visible in the 2MASS K and NH2 column
density images, ensuring their nature. The G351.776-0.527 source is located at the center of the images, connected to a filamentary network (hub).
The corresponding input filament mask is shown (bottom right).

times are not impacted by the loading of the data. When the train-
ing step is completed, the neural networks are usually faster on
CPU than on GPU (Goodfellow et al. 2016) because the transfer
from CPU memory to GPU memory takes time. The segmenta-
tion of the mosaics was therefore built on an Intel CPU machine
(i7-10610U). It took about 4 h per mosaic with an overlap of
30 pixels and 32×32 patches. The total training and segmentation
time is therefore estimated to be 6.5 h per mosaic.

From the method point of view, future works will include
an improvement of the segmentation process by using dedi-
cated windows to build the patches as in Pielawski & Wählby
(2020). These tools may dramatically lower the computational
burden. We also investigate alternative ways of building a larger
set of patches while keeping good statistical properties. The
method used in this work guarantees a good preservation of
the statistical distribution, but leads to a small number of
patches.

Although this method has some limitations, that is, the lim-
ited quantity of patches for the training and the incomplete

ground truth, and although it reveals filament structures instead
of extracting them, the net increase (a factor between 2 and 7 on
the whole segmented map) of the number of pixels that belongs
to the filament class and the robust detection of intrinsically
faint and/or low contrast ones offers important perspectives. We
currently explore the implementation of an augmented ground-
truth data set using results of numerical simulations on Galac-
tic filaments. The extraction and separation of filament pixels
observed in the 2D segmented map is also ongoing, and we add
3D spectroscopic data.

6. Conclusions

We explored whether deep-learning networks, UNet-5 and
UNet++, can be used to segment images of the whole Galactic
plane in order to reveal filamentary structures:

– Using molecular hydrogen column density image of the
Galactic plane obtained as part of the Hi-GAL survey and
filaments previously extracted by Schisano et al. (2020),
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we trained two different UNet-5 based networks with six
different scenarios based on a different initial learning rate.

– We showed the results and estimated the performances of the
different scenarios that we presented for two representative
mosaics of the Galactic plane selected for their low and high
column density density and filament content.

– We determined the best models for these mosaics based
on machine-learning metrics. We focused the training esti-
mates on the recovery of input structures (filaments and
background) and defined for each mosaic and for the whole
plane an optimal classification threshold that ensured the
best recovery of input structures.

– We show that depending on the model and the selected
threshold, new pixels classified as filament candidates
increase by a factor between 2 to 7 (compared to the input
spine+branches structures used as ground truth). This sug-
gests that this new method has the potential of revealong
filamentary structures that may not be extracted by non-ML-
based algorithms.

We point out the high potential of the produced database for
future studies of filaments (statistical analysis or follow-ups). We
will use the results of the numerical simulations to enrich the
ground truth and assess the uncertainties on segmented maps.
The astrophysical analysis of the produced database is ongoing
and will be published in a separate paper.
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Appendix A: Different input data maps

All the input maps used in the training process (the column
density map, the filament mask, the background mask, and the
missing data mask maps; see Section 2.2) were originally pro-
duced from the individual Hi-GAL mosaics extending over 10°
of longitude (see Schisano et al. (2020)). To facilitate the use
of the four input maps during the training process, we merged
the individual maps using the Python module reproject1. The
patches were then cut as shown in Figure 4. The four input maps
used in the supervised training process are presented in Figure 3.
These maps are described below.

NH2 map

The column density maps NH2 were obtained as part of the
Herschel observations of the Galactic plane, Hi-GAL. The col-
umn density NH2 maps were computed from the photometrically
calibrated Hi-GAL mosaics following the approach described
in Elia et al. (2013). The Herschel data were convolved to the
500µm resolution ( 36′′) and rebinned on that map grid. Then
a pixel-by-pixel fitting with a single-temperature greybody func-
tion was performed, as described in Elia et al. (2013); Schisano
et al. (2020). We directly used the data derived and presented in
Schisano et al. (2020).

Missing-data map

The NH2 map presents local degraded zones (noise, saturation,
and overlap issues) that we wished to exclude from the training
process. Examples of these degraded zones are shown in Fig-
ure A.1. In Figure A.1 we show the four sources of missing data.

(a) (b)

(c) (d)

Fig. A.1: Four sources of missing data. (a) Example of a com-
plex boundary due to satellite scanning. (b) Example of a noisy
pattern inside the column density map (in log scale) due to the
satellite scan. (c) Saturated pixels. (d) Example of structured arti-
facts built by the mapping process.

1 https://reproject.readthedocs.io/en/stable/index.
html

First, the boundaries of the mosaics show a grid-like pattern, as
shown in Figure A.1a. These features are due to the scanning
pattern followed by the Herschel satellite while performing the
observations of an Hi-GAL tile. The grid pattern corresponds
to the slewing phase of the scanning pattern, when the satellite
inverted the scan direction. Second, the Hi-GAL mosaics were
built using the Unimap mapmaking (Traficante et al. 2011) fol-
lowing a strategy to avoid large-scale intensity gradients over the
image. We refer to Appendix A of Schisano et al. (2020) for
a detailed description of how the mosaics were built. In short,
UNIMAP mapmaker was run to simultaneously process the data
of two adjacent Hi-GAL tiles, creating what the authors call a
texel, spanning 4°× 2°. The UNIMAP processing is able to deal
with the slewing region along the side covered by observation
of both Hi-GAL tiles. This produces an image of better quality
with respect to the simple mosaicking of the two tiles. Multiple
texels are combined together to produce the overall mosaic that
is 10◦ wide in longitude. While it is possible to directly process a
larger portion of the Galactic plane with UNIMAP, this approach
introduces large gradients in intensity over the entire mosaic. The
UNIMAP mapmaker produces maps with an average intensity
level equal to zero. Therefore, the texels require to be calibrated
in flux (Bernard et al. 2010). In some cases, there are discrepan-
cies in the calibration level of adjacent texels that introduce sharp
variations in intensity in the overlapping region between texels.
An example is show in Figure A.1b and Figure A.1d. These vari-
ations are not physical and were masked out from the learning
process.

The final full map of missing data was built by combining all
the types of possible missing data described above. They were
then removed from the training.

Filament-mask map

Schisano et al. (2020) published a catalog of filaments detected
in the Galactic plane from NH2 images obtained with Hi-GAL
photometric data. The position of spines and branches is avail-
able through binary masks in which pixels belonging to these
structures are tagged for the 32059 filaments published in the
catalog (see Figure 2 and their figure 3). We used this informa-
tion as an input mask to define our ground truth for the filaments.
The ground truth was defined over the outputs of the Hi-GAL
filament catalog, and it depends on the completeness of that cat-
alog. This implies that the ground truth is not absolutely fully
defined because it will miss the information from any feature
that may not have been detected by Schisano et al. (2020).

Background map

On all pixels, the column density mosaic contains emission from
both filaments and background (Schisano et al. 2020). We exam-
ined each 10◦ mosaic to define a background level as the lowest
level of emission observed on the mosaic that does not overlap
any filament branches that were detected and used as ground
truth. This means that our definition of the background emission
sets the background class on a very low number of pixels, but
ensures that these pixels do not contain filaments. We work on a
more precise definition of the background to allow more pixels to
be labeled in this class. We are primarily interested in detecting
filamentary structures here. Moreover, the local normalization
applied to all patches before the training process (see Figure 9)
tends to limit the impact of the background on the detection of
filaments. This reduces the need for a precise definition of the
background further.
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Appendix B: Supplementary quantitative scores

Table B.1: Dice index

Model Dice index [0.2] Dice index [0.4] Dice index [0.6] Dice index [0.8]
UNet[10−2] 93.19 94.34 94.07 92.06
UNet[10−3] 93.13 94.37 94.16 92.43
UNet[10−4] 92.75 94.09 93.79 91.9
UNet[10−5] 82.4 89.6 91.3 87.66
UNet++[10−3] 93.46 94.61 94.28 92.36
UNet++[10−4] 93.04 94.07 93.6 91.57
UNet++[10−5] 90.24 91.88 91.02 87.67

Notes. Dice index evaluation on the test set for the schemes reported in Figure 14 at classification threshold values of 0.8, 0.6, 0.4, and 0.2. Blue
(red) refers to the best (less performing) scheme in each column. The bold scores correspond to the absolute best (if in blue) or lowest (if in red)
dice index. The closer the dice index to 1, the better. Dice index values in test were aligned with performances in training and validation steps as
close performances are obtained for schemes with initial learning-rate values in [10−4, 10−3, 10−2] and lower performance are noted for schemes
with a learning-rate value of 10−5. Moreover, UNet++[10−3] and UNet[10−5] result in the best (94.61% at 0.4) and least performing (82.4% at 0.2)
schemes, respectively.

Table B.2: Segmentation scores

Scores (%)
Model

UNet [10−2] UNet [10−3] UNet [10−4] UNet [10−5] UNet++ [10−3] UNet++ [10−4] UNet++ [10−5]

Precision at 0.8 99.71 99.74 99.75 99.73 99.74 99.74 99.72
Precision at 0.5 98.29 98.45 98.54 97.07 98.47 98.42 97.35
Precision at 0.2 91.43 92.08 91.75 64.85 92.45 91.17 86.16
Precision at thropt 95.65 95.85 95.88 94.95 95.75 95.94 93.61

Recall at 0.8 72.38 71.34 70.50 65.14 70.87 71.74 65.54
Recall at 0.5 90.13 89.90 89.13 89.25 89.78 89.78 85.59
Recall at 0.2 97.49 97.64 97.29 98.72 97.61 97.50 95.81
Recall at thropt 95.26 95.50 94.96 92.24 95.67 94.97 91.56

Dice at 0.8 83.88 83.19 82.62 78.81 82.87 83.46 79.10
Dice at 0.5 94.05 94.00 93.62 93.01 93.95 93.92 91.11
Dice at 0.2 94.41 94.82 94.49 78.31 95.01 94.27 90.76
Diceopt 95.46 95.68 95.42 93.58 95.71 95.45 92.57

MS at 0.8 14.36 14.81 16.51 17.58 15.28 15.10 17.69
MS at 0.5 4.61 4.40 5.25 4.07 4.62 4.55 5.83
MS at 0.2 0.83 0.77 0.81 0.28 0.85 0.82 1.10
MS at thropt 1.95 1.69 1.88 2.72 1.68 1.97 2.85

thropt 0.32 0.31 0.31 0.44 0.30 0.33 0.34

Notes. Segmentation scores evaluated on the Galactic plane segmented by the models reported in Figure 14. Precision, recall, dice index, and MS
rate are evaluated at classification threshold values of 0.8, 0.5, 0.2, and the optimal threshold. The latter refers to the threshold value optimizing the
dice index and estimated using P-R curves (see Figure 15c). Blue (red) refers to the best (least performing) scheme in each row. The bold scores
correspond to the absolute best (if in blue) or lowest (if in red) performance per score. Overall, the segmentation scores obtained on the fully
segmented Galactic plane consolidate the results obtained with the zone of 350.3-353.5◦ in Table 4
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