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Abstract: The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable
among individuals. We performed a systematic review of published evidence supporting the hypoth-
esis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics,
efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota
was also reviewed. The PubMed and Scopus databases were searched using specific keywords
without limits of species (human or animal) or time from publication. One thousand and fifty five
published papers were retrieved in the initial database search. After screening, 50 papers were
selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were
observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophe-
nolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one
of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while
all the others showed significant changes in the relative abundance of specific intestinal bacteria.
However, no unique pattern of microbiota modification was observed across the different studies. In
conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute
to the variability in the response to some cIMDs, whereas data are still missing for others.

Keywords: corticosteroids; cyclosporine; everolimus; microbiota; methylprednisolone; mycophenolic
acid; prednisolone; prednisone; sirolimus; tacrolimus

1. Introduction

Classical immunosuppressant drugs (cIMD), which include glucocorticoids (GCs), cy-
closporine (CyA), tacrolimus (TAC), the mammalian target of rapamycin (mTOR) inhibitors
sirolimus (SIR) and everolimus (EVERO), and the Inosine Monophosphate Dehydroge-
nase (IMPDH) inhibitor mycophenolic acid (MPA) and its prodrug mycophenolate mofetil
(MMF), still have a central role in transplant medicine since they represent the cornerstone
of the pharmacological treatment to prevent and treat organ rejection [1]. In addition, these
drugs are also used for the treatment of autoimmune diseases in selected circumstances in
which biological immunosuppressant drugs are not indicated. The use of cIMDs in clinical
practice is complicated by their narrow therapeutic window, which makes it difficult to
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achieve good immunosuppression without toxicity [2]. A further element complicating
the use of many cIMDs is their unpredictable pharmacokinetics with large variations in
the plasma concentrations that are attained when similar doses are given to different pa-
tients [3–5]. This problem has traditionally been addressed by performing therapeutic drug
monitoring (TDM), assessing the concentration of cIMDs in the blood and then adjusting
their doses according to the results obtained [6]. Whilst this approach improves safety
and efficacy of the treatment, it is far from optimal due to the empirical “fail and correct”
approach, which implies that drug plasma concentrations could be dangerously higher
(or lower) than optimal for a while before being corrected. As a matter of fact, organ
rejection and cIMD toxicity also occur in patients undergoing accurate TDM [7]. It would
be, therefore, highly desirable to identify difficult patients early to design their therapeutic
plan on a personalized basis. Even though it has not yet been routinely implemented yet
in transplant medicine, pharmacogenotyping might help achieve this goal by identifying
patients with polymorphisms in genes encoding key enzymes involved in immunosuppres-
sant drug metabolism [8]. A new factor, only recently identified, that could be responsible
for the interindividual variability in drug response is the patient’s microbiota, i.e., the whole
population of microorganisms living in a commensal status in humans (or animals) [9].
These microorganisms are metabolically active and able to affect host health in different
ways, such as processing of nutrient molecules, modulating immune response in the gut
and liver, and the generating small molecule mediators acting systemically, after being
absorbed into the general circulation [10]. Importantly, human microbiota may also affect
patient response to pharmacological therapy [11]. The term Pharmacomicrobiomics has been
coined, in consonance with the already existing term Pharmacogenomics, to design the whole
array of interactions by which microbiota may modify host response to pharmacologically
active substances [12,13]. Some evidence that bacteria of the intestinal microflora could
metabolize specific drugs and, therefore, affect their efficacy was already obtained long time
ago, and probably the first documented case of such an interaction is the conversion of the
inactive dye prontosil red into the potent antibacterial compound sulphanilamide, reported
in 1937 [14]. Thereafter, several other drugs such as digoxin have been demonstrated to be
victims of bacterial metabolism in the gut. In addition, pharmacological strategies have
been developed to exploit the metabolizing capacities of intestinal bacteria in the design
of new drugs. More specifically, the ability of bacteria selectively located in the colon to
perform azoreduction reactions has been used to design drugs intended to be specifically
active in the colon such as sulphasalazine and its congeners, which still have an important
pharmacological role in the treatment of ulcerative colitis [12]. Whilst what has just been
mentioned represents well acquainted issues in the pharmacology of selected medicines,
much more recently the interest in microbial metabolism of drugs has reemerged strongly
since it has been realized that it may contribute to the interindividual variability in the
response to a wider group of drugs than originally suspected [15] either by exerting a
pre-systemic metabolism or by accumulating some of these drugs (e.g., duloxetine, mon-
telukast, rosiglitazone and roflumilast) in their cytoplasm and, therefore, preventing their
absorption and reducing their bioavailability and, possibly, clinical efficacy [16]. Therefore,
it has been suggested that microbiota composition should be included among the factors to
be evaluated in precision medicine [17] also considering that the composition of human
microbiota varies interindividually in healthy subjects, and it may be severely modified
in specific diseases [18]. These considerations suggest that part of the interindividual
variability in the clinical response to cIMDS could be dependent on patient microbiota.
Therefore, in the present paper we performed a systematic review of the published studies
on the impact of intestinal microbiota on orally given cIMDs with the aim of evaluating the
strength of evidence in support of this hypothesis.

2. Materials and Methods

The protocol of this systematic review has been registered in the International Platform of
Registered Systematic Review and Meta-analysis Protocols (INPLASY, Middletown, DE, USA)
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with registration number is INPLASY202380129 and is freely available at the address: https:
//inplasy.com/?s=INPLASY202380129 (accessed on 31 August 2023).

2.1. Purpose

The present systematic review addressed the following two research questions:

1. Does the intestinal microbiota affect cIMD pharmacology (pharmacokinetics, efficacy
or tolerability)?

2. Do cIMDs modify the composition of intestinal microbiota?

The following Sections 2.2–2.5 report the PICO (Population–Intervention–Comparison–
Outcome) framework of our systematic review.

2.2. Population

Preclinical studies performed in healthy animals or in animals with experimental
organ transplantation or with autoimmune diseases receiving cIMDs, and clinical studies
conducted in humans treated with these drugs because recipients of organ transplantation
or because affected with autoimmune diseases were considered for the review. Studies with
one or more of the following features were evaluated for being included in the revision:

1. Metagenomic characterization of fecal or ileal microbiota,
2. Pharmacokinetics analysis of the administered immunosuppressant drugs,
3. Analysis of cIMD efficacy and/or toxicity, and
4. Analysis of the effect of wide-spectrum antibiotics on points from 1 to 3.

We also considered studies using reconstituted systems in vitro that examined the
effect of fecal extracts/bacterial cultures/bacterial enzymes on cIMDs.

2.3. Intervention

The present systematic review only included studies in which the following cIMDs
were given orally in various combinations: CyA, EVERO, GCs, MMF, MPA, SIR or TAC.

2.4. Comparison

We considered for inclusion in the review both studies in which a control group
(vehicle treated animals in preclinical experimentations or age-matched healthy controls
in clinical studies) was compared with a group receiving cIMDs, and pre-, post-studies in
which the same animals/individuals were compared before and after the treatment with
these drugs.

2.5. Outcome

The outcomes of the studies considered in the present review were changes in the
efficacy/tolerability of cIMDs and/or in their pharmacokinetic parameters.

2.6. Information Sources and Search Strategy

A systematic literature search was performed through 3 December 2022 using the
PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Scopus (https://www.scopus.com/)
databases and the following keywords in various combinations: cyclosporine, tacrolimus,
sirolimus, everolimus, mycophenolic acid, mycophenolate mofetil, prednisone, methyl-
prednisone, pharmacomicrobiomics, gastrointestinal microbiome, metabolism, microbes,
and bioaccumulation. No specific limit was posed on the year of publication. Only original
English language studies were considered for review; narrative reviews, systematic reviews,
metanalyses, guidelines, consensus papers, case reports, editorials and commentaries were
all excluded.

2.7. Data Extraction

The database search was performed independently by A.M. and L.D. A first screening
of the papers retrieved was performed by A.M. and M.C. after reading and examining their

https://inplasy.com/?s=INPLASY202380129
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Biomedicines 2023, 11, 2562 4 of 32

titles and abstracts. Selected papers underwent further selection by A.M. and M.C. upon
reading and examining the full text of the articles.

2.8. Risk of Bias in Individual Studies

The risk of bias of animal studies was evaluated using the SYRCLE’s risk of bias tool
for animal studies, which is and adaption to animal studies of the RoB2 tool [19].

The risk of bias of observational studies in humans was evaluated using the Grade
Criteria which consider five different categories of bias: (1) Inappropriate eligibility criteria;
(2) Inappropriate methods for exposure and outcome variables; (3) Not controlled for
confounding; (4) Incomplete or inadequate follow-up; (5) Other limitations [20]. For all
the observational human studies the risk related to the aforementioned risk categories was
conjunctly rated by A.M. and M.C. as either “no risk”, “unclear risk” or “high risk” and
the results obtained were reported in a tabular format both as average percentage for the
whole group of papers and as individual data for the single studies.

The risk of bias of randomized trials was assessed using the five categories of the
Grade Criteria (lack of allocation concealment, lack of blinding, incomplete accounting of
patients and outcome events, selective outcome reporting, and other limitations). As for
observational studies, the risk for each of these categories was conjunctly rated by A.M.
and M.C. as either “no risk”, “unclear risk” or “high risk”.

2.9. Data Synthesis

The main findings of the selected studies were summarized in a narrative form in
the text of the article and in two tables, the first (Table 1) concerning the papers on the
effect of the intestinal microbiota on cIMDs [21–40], and the second (Table 2) concerning
the papers on effect of cIMDs on intestinal microbiota [41–70]. The following variables
were extracted and included in Table 1: 1—lead author and year of publication, 2—the
experimental model used, 3—the drugs tested, 4—the presence/absence of changes in the
pharmacokinetic properties of the tested drugs, and 5—a detailed description of the effect of
intestinal microbiota on cIMD pharmacokinetics. The variables extracted to prepare Table 2
were: 1—lead author and year of publication, 2—the species (human, mice, rats) object of
the experimentation, 3—the condition/disease either spontaneous or experimental that
was treated with cIMDs, 4—the specific cIMDs that were used with doses, administration
modalities and duration of treatment, 5—the presence or absence of intestinal microbiota
modifications upon treatment with cIMDs, and 6—a detailed description of the changes
occurring in intestinal microbiota including, when available, data on α- and β-diversity
and taxonomic information at the level of phylum, class, order, family, genus, and species.
No metanalysis of the data was considered feasible considering the heterogeneity in the
research questions addressed, in the species and in the experimental models used in the
experimentations and in the drugs administered.

Table 1. Studies investigating the effect of intestinal microbiota on cIMD pharmacokinetics, efficacy
and tolerability.

First Author/
Year/Ref. Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Braghieri et al.,
2022 [21] Humans, HT MMF ± TAC YES

1. No difference in α-diversity between
neutropenic and non-neutropenic
patients.

2. Higher abundance in neutropenic
patients of: Acidaminococcus intestini,
Agathobacter spp., Bifidobacterium dentium,
Bacteroides dorei, Collinsella aerofaciens,
Coprococcus comes, Lactobacillus fermentum
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Table 1. Cont.

First Author/
Year/Ref. Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Doki et al., 2017
[22] Humans, aHSCT CyA or TAC + MTX YES

Higher Firmicutes abundance in the
pre-transplant fecal microbiota of patients
developing aGvHD

Enright et al.,
2018 [23]

Humans, Cultured
intestinal cell lines CyA YES Increased CyA cytotoxicity by DCA and CDCA

through the impairment of ABCB1 activity

Gu et al., 2018
[24] Humans, KT TAC + PRED ± MMF ±

Mizoribine NO

No change in CsA or TAC plasma
concentrations
after fecal transplantation in patients with
diarrhea

Guo et al., 2019
[25]

Intestinal bacteria
cultured in vitro
Stools from KTR

and normal donors

TAC YES

1. TAC metabolism to the less active
metabolites M1/M2 by Faecalibacterium
prausnitzii. Bacteroides cellulosilyticus,
Bacteroides finegoldii, Bacteroides ovatus,
Parabacteroides merdae, Parabacteroides
johnsonii, Parabacteroides goldsteinii,
Ruminococcaceae sp., Clostridium
innocuum, Anaerostipes sp., Dorea
formicigenerans, Clostridium clostridioforme,
Clostridium hathewayi, Blautia sp.,
Clostridium aldenense, Clostridium
symbiosum, Clostridium citroniae,
Coprococcus sp., Clostridium bolteae,
Clostridium cadaveris, Ruminococcus
gnavus and Erysipelotrichales

2. TAC metabolism to M1/M2 upon
culturing in vitro with fecal samples
from KTR but not from controls

Javdan et al.,
2020 [26]

Bacteria from
human stool,

cultured in vitro

BMET, CORTa, CyA, DEX,
HCORT, HCORTa; MFA,
MMF, mPREDN PRED,

PREDN

YES

1. Drugs metabolized in vitro: BMET,
CORTa, DEX, HCORT, HCORTa,
mPREDN, PREDN, PRED, MMF

2. Drugs not metabolized in vitro: CsA,
MFA

Jennings et al.,
2020 [27] Humans, HT

Induction: mPREDN
Maintenance: TAC + MMF

+ PRED
YES

1. Higher α-diversity in patients requiring
high-TAC doses as compared with those
on low-dose TAC.

2. No difference in Firmicutes/Bacteroidetes
ratio between high TAC and low TAC

3. Higher abundance of 37 taxa in high
TAC including Anaesrostipes, Blautia,
Lachnospiraceae (uncharacterized),
Romboutsia, Roseburia, Subdoligranulum
and Tyzzerella_4

4. Higher abundance one taxon of the
genus Bacteroides in low TAC

Lee et al., 2015
[28] Humans, KT TAC + MMF ± PRED YES

1. Higher abundance of Faecalibacterium
prausnitzii in patients requiring TAC dose
escalation

2. Linear correlation between
Faecalibacterium prausnitzii abundance
and TAC dosing 1 week after
transplantation
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Table 1. Cont.

First Author/
Year/Ref. Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Lee et al., 2019
[29] Humans, KT TAC ± MMF ± PRED

MMF ± TAC ± PRED YES

1. Lower α-diversity in patients with
post-transplant diarrhea

2. Genus with higher abundance in patients
with post-transplant diarrhea:
Eubacterium, Anaerostipes, Coprococcus,
Romboutsia, Ruminococcus, Dorea,
Faecalibacterium, Fusicatenibacter,
Oscillibacter, Ruminiclostridium, Blautia,
Bifidobacterium, and Bacteroides

3. Genus with higher abundance in patients
with post-transplant diarrhea: Escherichia,
Enterococcus and Lachnoclostridium

Ly et al., 2020
[30]

Bioinformatic
analysis.

Incubation in vitro
of GCs with bacteria

or recombinant
enzymes

aTCORT, CORT, CORTN,
DEX, FLUD, PRED,

PREDN
YES

1. Identification by bioinformatic analysis
of DesA/B in Clostridium cadaveris,
Intestinibacillus, Clostridium scindens, and
Butyricicoccus desmolans

2. Degradation of aTCORT, CORT, CORTN,
DEX, FLUD, PRED and PREDN by
Clostridium scindens cultured in vitro and
purified DesA and DesB

Qian et al., 2022
[31]

Enzymes cloned
from bacterial

strains
HCORT, TAC YES

Identification in Enterocloster bolteae of three
drug-degrading enzymes: DesE for
nabumetone and hydrocortisone and TacA and
TacB for TAC. Similar enzymes cloned from
Firmicutes, Proteobacteria and Bacteroidetes

Saqr et al., 2022
[32] Humans, HSCT MMF + TAC YES

1. No difference in α-diversity between
high and low EHR (the ratio between
MPA-AUC4–8 and MPA-AUC0–8)

2. Higher abundance in patients with high
EHR of Bacteroides vulgatus, Bacteroides
stercoris, and Bacteroides thetaiotaomicron

3. Blautia hydrogenotrophica abundance
inversely correlated with EHR, the
MPAG AUC4–8/AUC0–8 ratio,
acylMPAG AUC4–8/AUC0–8 ratio, and
MPA Css

Simpson et al.,
2022 [33] Humans, KT TAC + MMF YES

No difference in fecal microbiota between
patients with or without MMF-induced
diarrhea
Higher rate of MMF reactivation from MPAG
by fecal extracts of KTR as compared with
control. Reactivation rate related to GUS and
with the Streptococcus parasanguinis abundance

Taylor et al.,
2019 [34]

Mice
Humans, HT

Mice: MMF- ±
Vancomycin

Humans: MMF
YES

1. Mice: MMF increases GUS and MPAG
conversion to MMF, Vancomycin
reverses these effects

2. Humans: stool GUS correlates with MMF
exposure

Turner et al.,
2021 [35] Humans, aHSCT PRED YES

1. Higher abundance in patients with
aGvHD who are PRED-non-responders,
of Bacteroides stercoris, Lactobacillus gasseri,
Akkermansia muciniphila, Paraprevotella
clara, and Sellimonas intestinalis

2. Higher abundance in patients with
aGvHD who are PRED-responders of
Dorea longicatena

3. PRED refractoriness in patients with
aGvHD predicted by the decrease in the
Dorea/Akkermansia ratio
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Table 1. Cont.

First Author/
Year/Ref. Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Vertzoni et al.,
2018 [36]

Human fecal
material, in vitro Budesonide NO No significant budesonide degradation with

either ileal or colonic simulated microbiota

Wang et al.,
2015 [37]

Human fecal
material, in vitro CyA NO No significant CyA degradation in vitro

Zhang et al.,
2021 [38] Humans, KT MMF ± PRED YES

1. Lower gut microbial diversity and higher
GUS in patients with diarrhea

2. Lower abundance in patients with
diarrhea of 12 bacterial genera:
Ruminococcus, Anaerostipes,
Bifidobacterium, Eubacterium,
Fusicatenibacter, Dorea, Ruminiclostridium,
Oscillibacter, Gemmiger, Romboutsia,
Streptococcus, and Coprobacillus

Zhou et al., 2022
[39] Rat CyA ± ABX ± FT YES

1. ABX increases CyA bioavailability and
AUC; FT partially restores normal CyA
bioavailability

2. CyA AUC positively correlates with the
abundance of Akkermansia, Morganella,
Parasutterella, Parabacteroides, Enterobacter,
Escherichia, Shigella, Klebsiella, and Proteus

3. CyA AUC negatively correlates with the
abundance of Eubacterium Xylanophilum
group, Desulfovibrio, Alloprevotella,
Alistipes, Phascolarctobacterium, UCG 005,
NK4A214 group, and Christensenellaceae
R-7 group

Zhu et al., 2020
[40] Humans, UC PRED YES

1. In GC responders: higher abundance of
Enterobacteriaceae and Streptococcaceae

2. In GC-resistant patients: higher
abundance at the family level of
Bacteroidaceae and at the species level of
Clostridium perfringens, Corynebacterium
durum, Roseburia unclassified and
Ruminococcus sp_5_1_39BFAA

3. In GC-dependent patients: Higher
abundance at the family level of
Clostridiaceae and, at the species level of
Bacteroides vulgatus, Clostridium
clostridioforme, Clostridium nexile,
Coprococcus catus, Lachnospiraceae
bacterium_1_4_56FAA, Parabacteroides
merdae and Streptococcus gordonii

Abbreviations: ABX: antibiotics; aGvHD: acute graft vs. host disease; aHSCT: allogenic hemopoietic stem cell
transplantation; aTCORT: allotetrhydrocortisol; BMET: betamethasone; CORT: cortisol; CORTa: cortisone acetate;
CORTN: cortisone; CyA: cyclosporin A; Des: 17,20-desmolase; DEX: dexamethasone; FT: fecal transplantation; GUS: β-
Glucuronidase; HT: heart transplantation; FLUD: fludrocortisone; HCORT: hydrocortisone; HCORTa: hydrocortisone
acetate; KT: kidney transplantation; KTR: kidney transplantation recipients; MMF: mycophenolate mofetil; mPREDN:
methyl-prednisolone; MTX: methotrexate; PRED: prednisone; TAC: tacrolimus; UC: ulcerative colitis.

Table 2. Studies investigating the effect of cIMDs on the intestinal microbiota.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Bajaj
et al.,

2018 [41]
Humans, LT

Peri-operative:
GC + MMF.

Manteinance: TAC +
MMF

CyA + MMF

YES

1. Increase in α-diversity after LT
2. Decreased abundance after LT of Enterobacteriaceae

(Escherichia, Shigella, Salmonella)
3. Increased abundance after LT of Ruminococcaceae and

Lachnospiraceae
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Table 2. Cont.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Bhat et al.,
2017 [42] Rats, normal TAC or SIR YES

1. No difference in α-diversity
2. No difference in the Firmicutes/Bacteroidetes ratio
3. Higher abundance in the SIR and TAC groups of

Akkermansia muciniphila, Roseburia, Oscillospira,
Mollicutes, Rothia, Micrococcaceae, Actinomycetales and
Staphylococcus

Bitto
et al.,

2016 [43]
Mice, normal aging SIR YES Higher abundance of segmented filamentous bacteria

(Candidatus Arthromitus sp.) in the SIR group

de Lima
et al.,

2022 [44]
Rats, PTZ-kindling PREDN YES

1. No change in α-diversity
2. No difference in the abundance of Firmicutes or

Bacteirodetes
3. Higher abundance in the PREDN 1 mg/kg group (but

not in the 5 mg/kg group) of Verrucomicrobia,
Saccharibacteria and Actinobacteria

4. Higher abundance, at the family level, of
Porphyromonadaceae, Verrucomicrobiaceae and
Clostridiaceae_1 in the PREDN 1 mg/kg and 5 mg/kg
groups, and of Erysipelotrichaceae only in the PREDN 1
mg/kg group and of Eubacteriaceae in the PREDN 5
mg/group

5. Higher abundance, at the genus level, of Lactobacillus,
Barnesiella, and Akkermansia in PREDN 5 mg/kg and 1
mg/kg groups and of Ruminococcus only in the 1
mg/kg group

6. Higher abundance, at the species level, of
Muribaculum intestinale and Akkermansia muciniphila in
the PREDN 5 mg/kg and 1 mg/kg groups and of
Saccharibacteria_genera_incertae_sedis TM7_phylum
only in the 5 mg/kg group

Flannigan
et al.,

2018 [45]
Mice, normal MMF YES

1. Lower α-diversity in the MMF group
2. Lower abundance in the MMF group at the phylum

level of Bacteroidetes and Verrucomicrobia and at genus
level of Akkermansia, Parabacteroides and Clostridium

3. Higher abundance in the MMF group, at the phylum
level, of Proteobacteria and at the genus level of
Escherichia/Shigella

Han et al.,
2019 [46] Mice, normal TAC

TAC ± ABX YES

1. Increase in α-diversity in the TAC group partially
reverted by ABX

2. Decrease in α-diversity with TAC + ABX
3. Lower abundance of Verrucomicrobia in the TAC

group
4. Higher abundance in the TAC + ABX group of

Verrucomicrobia, family Verrucomicrobiaceae, genus
Akkermansia

5. Lower abundance in the TAC + ABX group of
Firmicutes, family Lachnospiraceae, genus Coprococcus

6. Lower Firmicutes/Bacteroidetes ratio in the TAC + ABX
group

Han et al.,
2021 [47] Mice, normal SIR YES

1. Lower abundance in the SIR group at the phylum
level of Cyanobacteria, Firmicutes, and Verrucomicrobia,
at the family level of Verrucomicrobiaceae and, at the
genus level, of Akkermansia

2. Higher abundance in the SIR group at the phylum
level of Proteobacteria, at the family level of
Helicobacteriaceae, Desufovibrionaceae and Alcaligenaceae,
and, at the genus level, of Sutterella, Desulfovibrio and
Helicobacter
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Table 2. Cont.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

He et al.,
2019 [48]

Mice, SLE (MRL/lpr
mice) PRED YES

1. No difference in α-diversity.
2. Lower abundance in the PRED group at the phylum

level of Proteobacteria and Deferribacteres, and, at
genus level, of Rikenella, Mucispirillum, Oscillospira
and Bilophila

3. Higher abundance in the PRED group at the genus
level of Prevotella and Anaerostipes

Hurez
et al.,

2015 [49]
Mice, normal SIR YES

1. Minor differences in the composition of fecal
microbiota

2. Higher abundance in the SIR group of four taxa:
Lactobacillus Intestinalis spp., and unclassified
Acidobacteriaceae and Rikenellaceae (two taxa)

Jia et al.,
2019 [50] Rats, LT CyA YES

1. Higher α-diversity in the CyA group
2. Higher abundance in the CyA group, in comparison

with controls, of Enterococcus spp.
3. Lower abundance in the CyA group, in comparison

with controls, of Faecalibacterium prausnitzii,
Clostridium cluster XI, and Clostridium cluster XIV

4. Lower abundance in the CyA group, in comparison
with the allograft group, of Faecalibacterium prausnitzii,
Enterobacteriaceae spp., Clostridium cluster I and
Clostridium cluster XIV

Jiang
et al.,

2018 [51]
Rat, LT TAC YES

1. Higher α-diversity in the TAC group
2. Higher abundance of Bacteroides-Prevotella,

Enterococcus faecalis and Enterobacteriaceae in the TAC
group

3. Lower abundance Faecalibacterium prausnitzii and
Bifidobacterium spp. in the TAC group

Jiao et al.
2019 [52] Mice, normal TAC YES

1. No difference in α-diversity
2. Higher abundance in the TAC group of Alistipes,

Allobaculum, and Bacteroides
3. Lower abundance in the TAC group of NK4A136,

UCG-014, and Akkermansia

Jung
et al.,

2016 [53]
Mice, DIO SIR YES

1. No difference in the Firmicutes/Bacteroidetes ratio
2. Lower abundance in the non-obese SIR group as

compared with non-obese control mice, at the genus
level, of Alloprevotella, Ruminococcus, Bifidobacterium,
Marvinbryantia, Helicobacter, and Coprobacillus

3. Lower abundance in the obese SIR group as
compared with non-obese control mice, at the genus
level, of Turicibacter, unclassified Marinilabiliaceae,
Alloprevotella, unclassified Porphyromonadaceae,
Ruminococcus, Bifidobacterium, Marvinbryantia,
Helicobacter, and Coprobacillus

Kamata
et al.,

2020 [54]
Humans, AIP PREDN YES

1. No PREDN-induced change in α-diversity
2. PREDN-induced disappearance of Enterobacteriales (at

the order level) and of Klebsiellae at the genus level
3. PREDN-induced increase in the abundance of

Ruminococcus



Biomedicines 2023, 11, 2562 10 of 32

Table 2. Cont.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Kang
et al.,

2019 [55]

Humans, children
with NS PRED YES

1. No change in α-diversity induced by PRED
2. PRED-induced increase in the abundance of

Deinococcus Thermus and Acidobacteria (at the phylum
level), and at the genus level of Romboutsia,
Stomatobaculum, Cloacibacillus, Howardella, Mobilitalea,
Deinococcus, Paracoccus, Stenotrophomonas, Gp1,
Kocuria, Pseudomonas, Acinetobacter, Brevundimonas
and Lactobacillus bacteria

3. PRED-induced decrease in the abundance of
Finegoldia and Corynebacterium

Lähteenmäki
et al.,

2017 [56]

Humans, children
with HSCT

CyA+ (MTX and
MMF only in 1

patient)
YES

1. Higher abundance in HSCT, at phylum level, of
Proteobacteria, and, at the genus level, of Enterococcus,
Staphylococcus, Enterobacter, Bacteroides and
unclassified genera of Lachnospriracea

2. Lower abundance in HSCT, at phylum level, of
Firmicutes, Actinobacteria and Bacterodeites and, at the
genus level, of Bifidobacterium, Bacteroides, Blautia and
Faecalibacterium (especially F. prausnitzii)

Llorenç
et al.,

2022 [57]
Mice, EAU MMF YES

1. Higher α-diversity in the MMF group
2. Higher Firmicutes/Bacteroidetes ratio in the MMF

group
3. Higher abundance, at the genus level, of Muribaculum,

Bifidobacterium, Anaerostipes and Firmicutes UGC-005
in the MMF group compared with control mice

4. Lower abundance, at the genus level, of Bacteroides,
Monoglobus, Eisenbergiella and Lachnospiraceae
UCG-001 in the MMF group compared with control
mice

5. Higher abundance of Lachnospiraceae NK4A136 in the
EAU-MMF group compared with control EAU mice

6. Lower abundance of Lachnospiraceae UCG-001 in the
EAU-MMF group compared with control EAU mice

Lyons
et al.,

2018 [58]

Mice, experimental
colitis SIR NO No change in fecal microbiota induced by SIR

Pigneur
et al.,

2019 [59]

Humans, children
with CD PRED YES

1. PRED-induced a marginal increase in a-diversity
2. PRED increased the abundance at genus level, of

Ruminococcus and Bifidobacterium, and at species level,
of bacterium M62, A186, Faecalibacterium prausnitzii
Roseburia intestinalis, Eubacterium and Bifidobacterium
bifidum

3. PRED-decreased, at the genus level, the abundance of
Blautia

Qiu et al.,
2019 [60] Humans, TM PRED YES

1. PRED decreased α-diversity
2. At the phylum level, GC increased Actinobacteria and

the Firmicutes/Bacteroidetes ratio
3. At the genus level, GC decreased Bacteroides,

Bifidobacterium, Eubacterium and increased
Streptococcus and Geobacillus

Robles-
Vera et al.,
2020 [61]

Rat, DOCA salt
hypertension MMF YES

1. Decrease in α-diversity (vs. DOCA-rats)
2. Lower abundance in the MMF group, at the phylum

level, of Firmicutes and, at genus level, of Lactobacillus
and Sutterella

3. Higher abundance in the MMF group, at the phylum
level, of Bacteroidetes
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Table 2. Cont.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Robles-
Vera et al.,
2021 [62]

Rats, SHR MMF YES

1. No effect on α-diversity
2. The Firmicutes/Bacteroidetes ratio was higher in SHR

than in control rats and it was normalized by MMF
3. Higher abundance in the MMF group in comparison

with SHR of the Sutterella genus
4. Lower abundance in the MMF group in comparison

with SHR of the Clostridium genus
5. Higher abundance, at the phylum level, of Firmicutes

and, at genus level, of Lactobacillus in the SHR group,
normalized by MMF

6. Higher abundance, at the phylum level, of
Actinobacteria and Bacteroidetes in the SHR group,
normalized by MMF

Schepper
et al.,

2020 [63]

Mice, GC-induced
osteoporosis PREDN YES

1. Lower abundance of Verrucomicobiales and
Bacteriodales in the PREDN group

2. Higher abundance of Clostridiales in the PREDN
group

Simpson
et al.,

2022 [33]
Humans, KT TAC + MMF YES

1. No difference in α-diversity between KTR and
controls.

2. Higher abundance in KTR, at class level, of
Gammaproteobacteria, Bacilli and Erysipelotrichia

3. Lower abundance in KTR, at class level, Actinobacteria
and Verrucomicrobiae

Sivaraj
et al.,

2022 [64]
Humans, LT TAC + SIR + PRED YES

1. Higher Firmicutes/Bacteroidetes ratio in LTR
2. Higher abundance in LTR at phylum level of

Firmicutes and Proteobacteria and, at family level, of
Enterobacteriaceae, Erysipelotrichaceae, Fusobacteriaceae,
Lactobacillaceae, and Veillonellaceae at 3 months post-LT
and of Lachnospiraceae, Ruminococcaceae,
Streptococcaceae, and Staphylococcaceae after 6 months

3. In comparison to pre-transplant samples, Firmicutes
(in particular Clostridiaceae) were increased 3 months
after LT and Lachnospiraceae and Ruminococcaceae 6
months post-LT

Swarte
et al.,

2020 [65]
Human, KT

CyA (18%)
TAC (57%)
AZT (9%)

MMF (72%)
PRED (96%)

YES

1. Lower α-diversity in KTR than in age-matched
controls. Changes in α-diversity positively correlated
with MMF use

2. Higher abundance in KTR, at the phylum level, of
Proteobacteria, and, at species level of Escherichia coli
sp.

3. Lower abundance in KTR, at the phylum level, of
Actinobacteria and, at species level of Bifidobacterium
sp., Streptococcus termophylus, Blautia wexlerae and
Streptococcus mitis

4. No difference in firmicutes

Taylor
et al.,

2019 [34]
Mice, normal MMF YES

1. Different fecal microbiota composition in the MMF
group wih dominant bacteria represented, at the class
level, by Clostridia, Bacteroidia, and Bacilli after 8 days
of treatment and further expansion with continued
MMF expansion of Gammaproteobacteria,
Erysipelotrichia, and, to a lesser extent,
Deltaproteobacteria classes

2. Higher abundance in the MMF group of Bacteroides
vulgatus, Bacteroides fragilis, Bacteroides caccae,
Bacteroides uniformis, Bacteroides ovatus, and Bacteroides
nordii
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Table 2. Cont.

First
Author/

Year/Ref.
Species Tested cIMDs Changes Observed

(Yes/No) Observed Effects

Tourret
et al.,

2017 [66]
Mice, normal

PRED
TAC
MMF

EVERO
PRED + TAC +

MMF

YES

(1) FECAL MICROBIOTA: Higher β-diversity in the
PRED group. Higher abundance, in the PRED group,
at the phylum level, of Firmicutes. Lower abundance
in the PRED group at the phylum level, of
Bacteroidetes, and, at the order level, of Bacteroidales.
Variable, unreproducble effects with other cIMDs

(2) ILEAL MICROBIOTA: depletion of the Clostridium
genus in the groups PRED andPRED + TAC + MMF

Wang
et al.,

2021 [67]

Mice, SLE (MRL/lpr
mice) PRED YES

1. Higher α-diversity with PRED
2. Higher abundance, in the PRED group, at phylum

level, of Proteobacteria, and, at genus level, of
Parasutterella and Enterorhabdus genus

3. Lower abundance, in the PRED group, of Rikenella,
Christensenella, Ruminococcus, and Intestinimonas

Xu et al.,
2020 [68] Mice, EAE SIR YES

(1) α-Diversity was decreased in EAE and normalized by
SIR

(2) Different composition of fecal microbiota with or
without SIR

(3) Most abundant bacteria in the control group:
Bacteroidia, Bacteroidetes, Burkholderiales, Sutterella,
Anaerolinaceae.T78, Turicibacteraceae, Turicibacterales,
Turicibacter and Bifidobacterium

(4) Most abundant bacteria in the EAE group: Bacteroides,
Bacteroidaceae, Rikenellaceae, Dorea, Mycoplasmataceae
and Mycoplasmatales

(5) Most abundant bacterial spp in the SIR group:
Firmicutes, Oscillospira, Bacteroidales, Allobaculum,
Anaerotruncus, Rikenellaceae.AF12, Odoribacteraceae,
Odoribacter, Rikenella and Streptococcus

Zhang
et al.,

2018 [69]
Mice, ST TAC YES

1. No difference in α-diversity
2. Higher abundance in the TAC group of Allobaculum,

Bacteroides, and Lactobacillus
3. Lower abundance in the TAC group of Clostridium,

Ruminococcus, Rikenella, Ruminococcaceae, and
Oscillospira

Zhang
et al.,

2021 [70]
Rat, normal PRED YES

1. No difference in α-diversity
2. Lower abundance in thePRED group, at the phylum

level, of Spirochaetes, at the family level, of
Lachnospiraceae, Spirochaetaceae, Desulfovibrionaceae,
and Rikenellaceae and at genus level, of Eisenbergiella,
Alistipes, and Clostridium XIVb

3. Higher abundance in the PRED group, at the family
level, of Porphyromonadaceae, and at the genus level of
Anaerobacterium

Abbreviations: ABX: antibiotics; AIP: autoimmune pancreatitis; HSCT: hemopoietic stem cell transplantation; CD:
Crohn’s disease; CyA: cyclosporin A; DIO: diet-induced obesity; EAE: experimental autoimmune encephalomyeli-
tis; EAU: experimental autoimmune uveitis; EVERO: everolimus; KT: kidney transplantation; LT: liver transplan-
tation; MMF, mycophenolate mofetil; PRED: prednisone; PREDN: prednisolone; SHR: spontaneous hypertensive
rats; SIR: sirolimus; ST: skin transplantation; TAC: tacrolimus; TM: transverse myelitis.

3. Results
3.1. Search Results

The results of the literature search that we performed are summarized in Figure 1
which shows the PRISMA flowchart of this study. A total of 1055 published papers were
retrieved at the initial database search: 225 were obtained by searching PubMed and
830 searching Scopus. Four hundred thirty-seven records were duplicated in the two
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databases and, therefore, after correcting for duplication, the total number of papers that
were considered for title and abstract analysis was 618. After excluding the publications not
complying with inclusion criteria, 86 records were considered suitable for full-text analysis.
After reading these papers and examining their content the two reviewers identified 50
papers [21–70] as suitable for inclusion in the systematic review, whereas the remaining
36 [71–106] were excluded since they were not compliant with one or more of the inclusion
or exclusion criteria.
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Figure 1. Flowchart of the systematic review. The figure shows the flowchart of this study prepared
according to Page et al., 2021 [107]. For more information, visit: http://www.prisma-statement.org/
(accessed on 15 January 2023).

Seven of the reviewed studies were entirely performed in vitro [23,25,26,30,31,36,37],
twenty-three reported the results of studies performed in vivo only in animal models, eight
in rats [39,42,44,50,51,61,62,70] and fifteen in mice [43,45–49,52,53,57,58,63,66–69], whereas
one paper included the results of experiments performed in both mice and humans [34].
Nineteen papers were investigations performed only in humans. Eighteen of them were
observational studies [21,22,24,27–29,32,33,35,38,40,41,54–56,60,64,65] and only one was a
randomized clinical trial [59].

3.2. Quality Assessment

None of the reviewed animal studies fully complied with the SYRCLE’s requirement
for risk of bias assessment [19]. In particular, no information was reported on the methods
of randomization and of allocation concealment (selection bias), random housing and

http://www.prisma-statement.org/
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blinding of caregivers/investigators (performance bias), random selection of the animals
for assessment and blinding of the assessors (detection bias), and strategies used to handle
incomplete data (attrition bias). Therefore, for all these categories, we assigned the score
“uncertain risk of bias”. Conversely, no apparent risk of bias was found for group similarity
of at baseline (selection bias) and for selective outcome reporting (reporting bias).

The risk of bias of the eighteen observational studies in humans was assessed according
to the Grade Criteria for observational studies (see methods for more details). Figure 2
reports a summary of the results of our quality assessment shown as the percentage of
studies rated as “low”, “unclear” and “high” risk of bias for each of the five categories of
bias considered in the Grade Criteria.
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Figure 2. Risk of bias in the human observational studies examined. The chart reports the risk of
bias in the reviewed human observational studies estimated for each of the GRADE categories and
expressed as percentage of studies with “low”, “unclear” or “high” risk score.

We identified a high risk of bias in more than 60% of the studies for two of these
categories: Inappropriate eligibility criteria and Not controlled for confounding. In addition,
we rated the risk of bias for eligibility criteria as “unclear” in approximately 30% of the
studies (mostly retrospective investigations) since no clear inclusion and/or exclusion
criteria were reported besides identifying the disease under evaluation. Only 11% of the
studies included a correction for confounding factors and, therefore, were rated as “no risk
of bias”; in approximately 28% of the studies, the risk originated by the lack of correction
was unclear since no clear difference in covariates emerged from reported data, whereas in
the remaining 61% of the studies, we rated the bias risk as high because of major disparities
among groups in variables such as gender or pharmacological treatment with drugs other
than cIMDs that were not corrected for. Seven studies had a cross-sectional design and,
therefore, did not include any follow-up of the recruited patients. In six of the remaining
eleven prospective studies the follow-up was complete with no risk of bias, whereas in
five we identified some incompleteness in the follow-up with unclear consequences on the
risk of bias. We identified critical points for the category Methods for exposure and outcome,
whose implications for bias risk were major in two studies and unclear in six.

Figure 3 reports the detailed score for the various categories of risk of bias in each of
the eighteen reviewed human observational studies examined.
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Figure 3. Risk of bias of observational human studies [21,22,24,27–29,32,33,35,38,40,41,54–56,60,64,65].
The chart reports the risk of bias for each of the individually estimated GRADE categories in all the
reviewed human observational studies and classified as “low”, “unclear” or “high”. na: not applicable.

The study by Pigneur et al. [59] was the only randomized clinical trial among the
papers included in the present systematic review. At the bias risk assessment, we did not
find information about allocation concealment, which, therefore, we scored as “unclear”.
Blinding was reported for the assessors, whereas it was not declared but probably impossi-
ble (due to the type of intervention, exclusive enteral nutrition versus GCs) for patients.
We did not find any evidence of incomplete accounting of patients and outcome events, of
selective outcome reporting, or of other limitations and, therefore, we scored these three
categories as free of risk.
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3.3. Effect of Intestinal Microbiota on cIMDs

We reviewed 20 papers addressing our research question 1: Does the intestinal mi-
crobiota affect cIMD pharmacology (pharmacokinetics, efficacy or tolerability)? Table 1
summarizes the main findings of these studies. Eight studies were on MMF, ten on TAC,
four on CyA, and ten on GCs. We found no studies on the effect of the intestinal micro-
biota on EVERO or SIR. Seventeen studies showed significant effect of fecal microbiota, or
enzymes produced by intestinal bacteria on cIMDs [21–23,25–35,38–40], whereas no effect
was observed in the remaining three studies [24,36,37].

Seven papers reported results of studies performed in vitro either by using living cells (cell
lines or bacteria) or acellular systems with cell extracts or purified enzymes [23,25,26,30,31,36,37],
twelve papers were on studies performed in vivo [21,22,24,27–29,32,34,35,38–40] and one in-
cluded both in vitro ed in vivo experiments [33]. Seven of the in vitro studies evaluated cIMD
metabolism either by cultured fecal bacteria from human stool (two papers [25,26]), or by
human fecal material (three papers [33,36,37]) or by purified enzymes (two papers [30,31]). One
paper investigated the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA),
generated from bile salts by bacterial metabolism, on the activity of ABC-B1, a pump responsible
for CyA efflux from intestinal epithelial cells [23]. The main findings of the in vitro studies were
that: (1) GCs can be degraded by fecal bacteria through the action of desmolases (DesA and
DesB) [26,30,31], (2) TAC is converted to the less active metabolites M1/M2 by the bacterial
enzymes TacA and TacB [25]; (3) The main metabolite of MMF, mycophenolate glucuronide
(MPAG) is deglucuronated by bacterial β-Glucuronidase (GUS) to MPA [26]; (4) MFA is not
degraded by fecal microbiota [26]; (5) CyA is not significantly metabolized by intestinal bacte-
ria [26,37] but DCA and CDCA, generated from bile salts by bacterial metabolism, increase its
cytotoxicity impairing ABC-B1 activity [23]; (6) data are missing for EVERO and SIR.

Of the thirteen in vivo studies, eleven were performed in human patients who un-
derwent kidney [24,28,29,33,38], heart [21,27,34] or hemopoietic stem cell transplanta-
tion [22,32] or were affected with ulcerative colitis (UC) [40], one study in rats and one in
both mice and in humans [34]. Five of the ten studies performed in humans investigated the
effect of the intestinal microbiota on cIMD toxicity (four on diarrhea [24,29,33,38] and one
on neutropenia [21]). Of the remaining six studies, two were on cIMD pharmacokinetics
(one on MPA, performed in humans [32] and the other on CyA, performed in rats [39]),
and four on cIMD efficacy (two on the need for TAC dose escalation [27,28], one on GC
responsiveness [40], and two on the occurrence of graft vs. host disease (GvHD), as a conse-
quence of immunosuppressive therapy failure [22,35]). The main findings of these studies
were: (1) The intestinal microbiota is different in patients developing or not neutropenia
during the immunosuppressant therapy with MMF and TAC [21]; (2) the composition of the
intestinal microbiota is different in patients who develop or not acute GvHD after allogenic
hemopoietic stem cell transplantation [22] and in patients with acute GvHD responding or
not to PRED; (3) the conversion of MPAG back to MPA, and, consequently, MPA entero-
hepatic recirculation, depend on the composition of the intestinal microbiota [32]; (4) the
composition of the intestinal microbiota is different in patients who develop or not diarrhea
during treatment with MMF-containing regimens [29,38] and bacterial GUS activity corre-
lates with the risk of developing MMF-induced diarrhea [33,34,38]; (5) the composition of
the intestinal microbiota is different in patients requiring low or high TAC doses [27,28];
(6) the composition of the intestinal microbiota affects CyA bioavailability in rats [39]. The
previous points are just a list of the main findings of the studies detailed in Table 1. In
fact, we could not produce a real synthesis of the data since, for each of the cIMDs, we re-
trieved only very few papers, that, moreover, used, heterogeneous experimental techniques
therefore hindering any joint analysis.

3.4. Effect of cIMDs on Intestinal Microbiota

We reviewed 32 papers addressing our research question 2: Do cIMDs modify the com-
position of intestinal microbiota? Table 2 summarizes the main findings of these studies.
Twenty-three papers reported the results of studies performed in experimental animals, seven
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in rats [42,44,50,51,61,62,70] and sixteen in mice [34,43,45–49,52,53,57,58,63,66–69]. The re-
maining nine studies were conducted in humans who received cIMDs either because they
were recipients of organ transplantation (LT in two studies [41,64], KT in two [33,65] and
HSCT in one [56], or because affected with autoimmune diseases (autoimmune pancreati-
tis [54], nephrotic syndrome [55], Crohn disease [59], or transverse myelitis [60]). In most of
the studies performed in animals only one cIMD was used, even though in some of them
different groups of animals each receiving a different cIMD were studied. In six of these
studies TAC was investigated [42,46,51,52,66,69], in seven SIR [42,43,47,49,53,58,68], in six
MMF [34,45,57,61,62,66], in six GC (in four PRED [48,66,67,70] and in two PREDN [44,63]), in
one CyA [50] and in another one EVERO [66]. One study performed in normal mice evaluated
not only the effect of PRED, TAC, EVERO and MMF given alone but also of the combined
treatment with PRED, TAC, and MMF [66]. In four of the nine studies performed in humans
only a cIMD was used, and more specifically it was a GC (PRED in three papers [55,59,60]
and PREDN in one [54]). In the remaining five papers, patients were treated with multiple
cIMDs as part of multidrug combination immunosuppressive regimens: TAC was given in
four of these five studies [33,41,64,65], CyA in three [41,56,65], MMF in four [33,41,56,65], SIR
in one [64] and PRED in two [64,65].

All the studies that we reviewed showed that the treatment with cIMD was associated
with changes in the intestinal microbiota with the only exception of one study performed in
mice treated with SIR [58]. The effect on α-diversity was variable among studies with nine
papers reporting no effect [42,44,47,52,53,58,62,69,70], six an increase [46,50,51,57,67,68] and
two a decrease [45,61]; data on α-diversity were not available in six studies [34,43,48,49,63,66].
A decrease in the Firmicutes/Bacteroidetes ratio (either as directly reported or as evident from
data on the relative abundance of these two phyla) was observed in three of the animal
studies [46,48,62] (but in [48] TAC was given together with antibiotics), an increase in four
studies [45,57,66,68], whereas no change was evident in six studies [42,44,53,61,67,70]; no data
were reported in the remaining ten papers [43,47,49–52,58,63,67,70].

Figures 4 and 5 show a synthesis of the findings of the papers listed in Table 2 on the
changes in the microbiota, related to cIMDs administration, respectively, in animals and
humans. In both figures, we reported the main changes at the genus level (or, when these
data were missing, at the level of order or family) for each of the reviewed papers, and
the genera involved were grouped according to their phyla. As evident from both these
figures, not all the studies covered the whole repertoire of the main bacterial genera of gut
microbiota. Therefore, in measuring the prevalence of the change in the abundance of a
specific genus (or phylum) we only considered the number of papers reporting data on
this specific genus or phylum. Using this approach and looking at the studies performed
in animals (Figure 4), we observed that 7/9 (78%) of the reviewed studies reporting data
on the respective phyla showed an increase in Proteobacteria, 25/42 (59.5%) an increase in
Firmicutes, 10/19 (52.6%) a decrease in Bacteroidetes, 4/5 (80%) a decrease in Verrucomicrobia,
and 2/4 (50%) a decrease in Actinobacteria. At the genus level, we could not identify any
specific bacterial signature of cIMD-induced microbiota remodeling even though some
changes were observed more frequently than others. Specifically, Lactobacillus was increased
in 3 of 4 papers, and Bacteroides in 4 of 5, whereas Clostridium was decreased in 5 of 5, and
Akkermansia in 3 of 4.
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Figure 4. Comprehensive view of the effect of cIMDs on bacterial composition of the intestinal
microbiota in animal studies [34,42–53,57,61–63,66–70]. The chart shows the main alterations in the
composition of the intestinal microbiota at the genus level as identified in the text and/or tables of
the respective papers. The black upward and the red downward arrows indicate respectively an
increase or a decrease in the relative abundance of the respective bacterial genus. For reasons of
space and to make the chart readable, we could not include all the data reported in each paper or
in their supplementary information, but we have focused on those on which the authors of each
publication emphasized. The study by Lyons et al., 2018 [59] was not included since no change in the
composition of the intestinal microbiota was observed upon treatment of mice with SIR. * Whenever
available in the original publications, the data reported are related to changes observed at the genus
level. When this information was not available, we reported the data at the closest classification level
(order or family).
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Figure 5. Comprehensive view of the effect of cIMDs on bacterial composition of the intestinal microbiota
in human studies [33,41,54–56,59,60,64,65]. The chart shows the main alterations in the composition of
the intestinal microbiota at the genus level as identified in the text and/or tables of the respective papers.
The black upward and the red downward arrows indicate respectively an increase or a decrease in the
relative abundance of the respective bacterial genus. For reasons of space and to make the chart readable,
we could not include all the data reported in each paper or in their supplementary information, but we
have focused on those on which the authors of each publication emphasized.
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In the human studies, we observed, at phylum level, an increase in Proteobacteria in
5/10 studies (50%), and in Firmicutes in 19/23 (73%) studies, a decrease in Bacteroidetes in
6/7 (85%) studies, in Verrucomicrobia in 2/2 (100%) studies, and in Actinobacteria in 5/7 (71%)
studies (Figure 5). As for animal studies, also the papers performed in humans did not
disclose at the genus level an unique bacterial signature of cIMD effect on the microbiota.
Nonetheless, some genera were affected more often than others. Specifically, Streptococcus
was increased in 4 of 4 papers whereas Blautia and Bifidobacterium were decreased in 3 of 4,
and Akkermansia in 2 of 2 (Figure 5).

Several factors could account for the heterogeneity in these studies of the findings on
cIMD effects on microbiota and for the lack of a bacterial signature of cIMD effects on gut
microbiota. They include the different species used and/or the different spontaneous or
experimental disease statuses investigated. It is also to be considered that, as mentioned
before, not all the papers reviewed report comprehensive data on gut microbiota compo-
sition and that, in some cases, the only information directly available is on few bacterial
species on which the authors put their emphasis because of their potentially important
pathophysiological role. An additional factor that makes difficult to produce an effective
synthesis of the reviewed papers is that these studies used different cIMDs, sometimes in
different combinations. To pinpoint drug-dependent variability we performed a separated
analysis of the changes in the gut microbiota occurring when the various cIMDs were given
alone and not in combination. Figure 6 shows the results of this synthesis for GCs, MMF,
SIR and TAC, whereas CyA and EVERO could not be analyzed since they were studied
only in one single paper. Due to the limited number of papers on each of the single cIMDS,
we grouped the studies performed in humans and animals. When evaluating the results
at the phylum level, the changes induced by the different cIMDs were similar. In fact, an
increase in Firmicutes was observed in 66% of the studies with TAC that reported changes
in this phylum, in 73% with GCs, in 75% with SIR and in 58% with MMF. Likewise, 100%
of the studies with TAC that showed changes in Proteobacteria observed an increase in this
phylum, whereas the percentage was 75% for GCs, SIR and MMF. By contrast, a decrease in
Bacteroidetes was described in 67%, 86%, 50% and 60% of the studies, respectively, with TAC,
GCs, SIR and MMF which reported changes in this phylum. When the data were, instead,
at the level of genus no obvious drug-specific signature of drug-induced change in the
microbiota could be identified since there was a large variability across the different studies.
Nonetheless, some changes were recurrent in different papers. Specifically, in the case of
TAC the two papers reporting data on Allobaculum both showed an increase in its abun-
dance. Likewise, Bacteroides were increased in both the papers that measured its abundance,
whereas Akkermansia was decreased in both the papers examining this genus. The most
recurrent finding with MMF was a decrease in the abundance of Clostridium (observed in
three papers out of three), whereas, with GCs, an increased abundance of Ruminococcus (3
of 4 papers) and Lactobacillus (2 of 2 papers) was observed, whereas Bacteroidales decreased
in all the three papers measuring their abundance.
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Figure 6. Comprehensive view of the effect of TAC, SIR, GCs and MMF bacterial composition of the
intestinal microbiota [34,42–49,51–55,57,59–63,66–70]. The different panel show the main findings of
the studies performed with each of the indicated cIMDs given alone to either experiment animals or
human patients. The black upward and the red downward arrows indicate respectively an increase
or a decrease in the relative abundance of the respective bacterial genus. No data have been reported
for the other two cIMDs, CyA and EVERO since only one study was available for each of them.
* Whenever available in the original publications, the data reported are related to changes observed
at the genus level. When this information was not available, we reported the data at the closest
classification level (order or family).

4. Discussion

In the present manuscript we reported the results of our systematic review of the evi-
dence supporting the hypothesis that the intestinal microbiota affects cIMD pharmacology,
whereas cIMDs affect the composition of the intestinal microbiota. The main finding of
our study was that most of the published papers on these two issues corroborate the two
aforementioned hypotheses. While this is true for the general picture of the reciprocal
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interrelationship between cIMDs and intestinal microbiota, the evidence becomes weaker
for the subtopics that it covers.

Concerning the first point, 17/20 papers showed some effect of the intestinal micro-
biota on cIMD pharmacology, but only two papers were pharmacokinetics studies (more-
over on two different drugs), only five were on toxicity (four of which on diarrhea and one
on GvHD) and only six on cIMD efficacy (of which three on TAC and three on GCs). This
fragmentation of the available evidence implies that the conclusions that can be drawn have
to be considered preliminary and need further data to be confirmed. Moreover, evidence is
missing for some cIMDs, i.e., SIR and EVERO. The hypothesis that cIMD pharmacology is
affected by gut microorganisms should be placed in a more general context that assumes
that the composition of the intestinal microbiota represents one of the factors responsible
for the interindividual variability in patient response to drug therapy [108,109], together
with pharmacogenomics with which it possibly interacts in a clinically significant man-
ner [110]. As a matter of fact, one of the papers included in our systematic review showed
that 13% of the 438 drugs successfully tested with a new method for the high throughput
screening of drug metabolism by intestinal bacteria from human stools, were metabolized
by intestinal microorganisms [26]. These metabolized drugs belonged to different thera-
peutic categories, including antiepileptic (clonazepam), antihypertensive (nicardipine and
spironolactone), antipsychotic (risperidone), anticancer (capecitabine) and antiviral drugs
(famciclovir). Amongst the cIMDs, GCs and MMF were positive, whereas CyA and EVERO
were apparently not metabolized by human microbiota. The ability of the gut microbiota to
metabolize GCs has been observed also in others of the studies that we reviewed [30,31].
The microbial enzyme involved has been identified with 17,20 desmolase which catalyzes
the conversion of cortisol and its derivatives into 21-deoxysteroids, for instance, by convert-
ing hydrocortisone and hydrocortisone acetate in 20β-dihydrocortisone [26,111–114]. The
evidence linking intestinal bacteria and 17,20 desmolase to corticosteroid metabolism is
limited to in vitro testing. Two old papers, which were not retrieved in our search, showed
that the urinary concentrations of 17-ketosteroids sharply increased after the intrarectal
infusion of hydrocortisone and that this effect was abrogated by the oral administration of
neomycin, suggesting that intestinal bacteria were involved [115,116]. However, according
to our search, no formal pharmacokinetic study has been performed so far to assess the
impact of this bacterial enzyme on the exposure to GCs and, therefore, the relevance of this
pharmacomicrobiomic factor on the efficacy or tolerability of these immunosuppressive
drugs still remains to be proved. Nonetheless it is worth to mention that high levels of
(endogenous) 21-deoxysteroids have been found in patients with Cushing’s disease [117]
and hypertension [118] and in vitro studies showed that they act as weak agonist on gluco-
corticoid receptors (GR) [119] and may transactivate the mineralocorticoid receptor (MR)
although to a lesser extent than aldosterone and fludrocortisone [120]. These data suggest
that microbial degradation of corticosteroids in the gut could generate metabolites that
enhance their cardiovascular toxicity. The involvement of gut microflora in the pharma-
cokinetics of mycophenolic acid and of MMF has long been hypothesized to explain the
enterohepatic recirculation of MPA, which, after being glucuronated to MPAG in the liver
and released in the bile, is deglucuronated in the gut to generate MPA which is reabsorbed
in the portal circulation [121]. Two papers included in the present systematic review
demonstrated that the intestinal metabolism of MPAG is mediated by GUS producing
bacteria [33,34]. In addition, the in vitro screening study by Javadan et al. [26], that we
mentioned before, showed that bacteria from human stools may convert MMF into MPA.
Importantly, the impact of intestinal microbiota composition on MMF and MPA has been
demonstrated also in a pharmacokinetic study in humans, included in our systematic
review [32]. This paper by Saqr et al., clearly showed in vivo, in patients who underwent
HSCT that MPA enterohepatic recirculation and, consequently, MPA exposure were affected
by intestinal GUS-expressing bacteria. Importantly, Simpson et al. [33] showed that the
most important predictive factor for MPAG reactivation in the gut was the presence of
GUS producing bacteria. The effect of intestinal bacteria on MPA pharmacokinetics could
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be clinically relevant as suggested by a study published after we finished our literature
search, which showed a substantial decrease in MPA exposure in a very small case series
of patients with signs of immunosuppressive therapy failure after starting an antibiotic
treatment [122]. A paper by Guo et al. (2019) [25] examined the ability of intestinal bacteria
to metabolize TAC and showed that Faecalibacterium prausnitzii converts this cIMD into a
C-9 keto-reduction product, the M1 metabolite, which is approximately 15-fold less potent
than the parent drug. These experiments were performed in vitro by incubating TAC
with bacterial cultures; no formal pharmacokinetic study was performed even though M1
was measured in stool samples from healthy individuals and kidney transplant recipients.
Preliminary data confirming the presence of M1 in the blood of patients receiving TAC
were published as a letter by Guo et al. (2020) [123] but no pharmacokinetic investigation
was performed. As discussed below, Lee et al. (2019) [28] demonstrated a correlation
between the abundance of Faecalibacterium prausnitzii in the fecal microbiota and the dose
of TAC required to attain therapeutic plasma concentration in the blood of patients with
kidney transplantation, but, once again, no formal pharmacokinetic study was performed
and M1 concentrations were not assessed neither in plasma or in stools. Recently, after
we completed our literature search, a paper was published by Degraeve et al. (2023) [124]
assessing the impact of the gut microbiota on TAC pharmacokinetics in vivo in mice. Whilst
this study confirms that the gut microbiota profoundly affects TAC pharmacokinetics, the
mechanism highlighted is completely different and consists in the decrease by bacterial
released mediators in the activity of ABCB1 pumps, which extrude TAC form enterocytes
and prevent their systemic absorption. In fact, upon antibiotic treatment, TAC exposure
increased in a manner totally reversible with the ABC1B1 blocker zosuquidar. While the
study by Guo et al. [25] seem to suggest that fecal microbiota reduces TAC bioavailability,
the data reported by Degraeve et al. (2023) [124] seem to propend for the opposite scenario
of intestinal bacteria enhancing TAC absorption. The inconsistent findings of these two
studies (one performed in man and the other in mice) leave open the question of how the
intestinal microbiota affects TAC pharmacokinetics and whether species-specific factors
are involved. We retrieved only one paper by Zhou et al. that evaluated the effect of the
intestinal microbiota on CyA pharmacokinetics [39]. The results of this investigation, which
showed changes in CyA bioavailability depending on gut microbiota composition, contrast
with the results of in vitro studies showing that this cIMD is not degraded in vitro by
intestinal microorganisms [26,37]. A possible explanation for these apparently incongruent
findings is that, in a similar way to what described by Degraeve et al. (2023) [124] for
TAC, intestinal bacteria affect ABCB1. As a matter of fact, Zhou et al. [39] showed that
intestinal microbiota disruption with antibiotic caused an increase in CyA bioavailability in
rats that was accompanied by a decrease in protein levels of CYP3A1 and UGT1A1, which
are involved in CyA metabolism in the liver and in the intestinal epithelium and ABCB1,
the pump responsible for CyA efflux from hepatocytes and intestinal epithelial cells [39].
An additional factor (yet to be investigated) could be the ability (demonstrated in vitro in
cultured intestinal cells [23]) of DCA and CDCA, generated by certain intestinal bacteria,
to reduce the activity of ABCB1pumps, hence decreasing the efflux of CyA from the gut
epithelium and, potentially, increasing its bioavailability.

Intestinal bacteria of the human microbiota may not only metabolize but also accumu-
late drugs such as duloxetine, montelukast, rosiglitazone and roflumilast that, after being
internalized in their cytoplasm, become unavailable for systemic absorption with the final
result of a reduced bioavailability and, possibly, clinical efficacy [16]. However, we did not
find in our literature review any evidence that this also occurs with cIMDs.

Differences in the composition of intestinal microbiota were observed between GC-
responsive and GC-unresponsive patients [40] and in patients requiring high or low TAC
doses [28], suggesting that the efficacy of immunosuppressant therapy could depend on
gut microbes. The most obvious explanation for such a correlation between intestinal mi-
crobiota and cIMD responsiveness could be that patients with different gut microorganisms
had a different pre-systemic metabolism of these drugs. This hypothesis was not directly
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assessed for GCs in any of the papers that we reviewed. By contrast, a higher abundance
of Faecalibacterium prausnitzii, the microorganism responsible for TAC metabolism, was
observed in patients requiring TAC dose escalation [28].

Differences in the composition of gut microbiota were also observed between patients
experiencing or not some cIMD toxicities, specifically diarrhea [24,29,33,38] and neutrope-
nia [21]. The mechanism linking gut microbiota and diarrhea has been elucidated in the
case of MMF and it is represented by the ability of certain bacterial species to produce
GUS, deconjugate MPAG and, consequently, to increase the local concentrations of MPA
which damages the intestinal mucosa [34,38]. Likewise, an increased abundance of the
GUS-producing bacterium Bacteroides dorei has been observed, leading to a higher exposure
to MPA in patients developing neutropenia when treated with MMF [21].

Concerning the second point under investigation, only one of the 32 papers investigat-
ing the effect of cIMDs on the intestinal microbiota had negative results. Therefore, as for
the first point, i.e., the effect of the microbiota on cIMDs, the big picture of a bidirectional
interrelationship between cIMDs and intestinal microbiota seems to be confirmed. At
the phylum level, the most commonly observed finding, in both animal and in human
studies, was a decrease in Bacteroidetes and Verrucomicrobia. The decrease in Firmicutes
was more prevalent in human (85%) than in animal (53%) studies. At the genus level,
however, we were unable to identify, an unique pattern of changes in the gut microbiota
composition. Several factors may have contributed to the marked variability across studies
including major differences in the species used, the disease conditions investigated and
the administered cIMDs. The latter point would be of major relevance in the perspective
of the present systematic review. However, based on our literature search, the evidence
accumulated so far does not permit to identify drug-specific fingerprints of gut microbiota
modifications. In fact, we identified only a limited number of papers investing the effects
of single cIMDs. Most of them were animal studies, whereas, more cIMDs were generally
used in humans, with the only exception of four studies in which a corticosteroid with
no other drug was given to study participants without other cIMDs. Nonetheless, when
we stratified the findings of reviewed studies without species constraints, we observed,
for the different cIMDs, quite similar patterns at the phylum level, with an increase in the
abundance of Firmicutes and Proteobacteria and a decrease in Bacteroidetes, Proteobacteria and
Verrucomicrobia, but major differences in the genera involved. As described in Section 3
no microbiological signature of cIMD-induced alterations in gut microbiota emerged from
our analysis even though some findings were in line with previous analyses, such as the
increase in Allobaculum with TAC, the decrease in Clostridium with MMF or the increase in
Lactobacillus with GCs [125].

Mechanistically, different factors could account for the ability of cIMDs to modify the
composition of intestinal microbiota (see Gabarre et al., 2022 [125] for review). First, a
wealth of experimental data show that non-antibiotic drugs may exert antibacterial effects
in vitro and in vivo as clearly demonstrated, for instance for calcium channel blockers
or antipsychotic drugs [126,127]. Such a mechanism could be relevant in the case of
MPA, which, as a matter of fact, was originally identified as an antibiotic and not as an
immunosuppressive drug [128,129], but does not seem to be relevant for the other cIMDs
considered in the present systematic review. In fact, whereas a decrease in the severity of
experimental mycobacterial infection was observed with the mTOR inhibitors, SIR and
EVERO, this effect was due to the promotion of autophagy by this two cIMDs with no direct
antibacterial toxicity [130,131]. Likewise, CyA and TACRO do not seem to have direct
antibacterial effects even though they may exert an antifungal and antiviral activity, possibly
by interfering with intracellular signaling cascades [132]. However, additional mechanisms
may account for cIMD-induced changes in the intestinal microbiota, independently from
a direct antibacterial effect. Specifically, the immunosuppressive activity of these drugs
may interfere with the immune surveillance mechanisms that limit the proliferation of
potentially pathogenetic bacteria whilst maintaining a condition of immune tolerance for
commensal bacteria [133]. For instance, TACRO, GCs and the mTOR inhibitors decrease



Biomedicines 2023, 11, 2562 25 of 32

synthesis and release of the lectins RegIIIb and RegIIIg, two lectins with antibacterial
properties [66]. The integrity of the mucosal barrier is another crucial factor in maintaining
the normal composition of the intestinal microbiota, which may be altered by cIMDs. In
fact, GCs decrease the synthesis and secretion of mucin and IgA [134,135], whereas MPA
may directly damage gut epithelium loosening its tight junctions [136].

Another major point still to be clarified, since we did not find any paper directly ad-
dressing it, is how cIMD effects on the gut microbiota could impact on cIMD pharmacology.
In other words, it remains to be established whether and to what extent the remodelling of
gut microbiota occurring upon treatment with a given cIMD could promote the overgrowth
(or, conversely, reduce the abundance) of bacterial species that metabolize or accumulate this
specific cIMD. Such a phenomenon could be relevant in explaining changes in the efficacy of
the immunosuppressant therapy occurring during treatment. In addition, considering that, as
mentioned before, drugs belonging to multiple therapeutic classes besides immunosuppres-
sants, the response to other, concomitant therapies could be affected as well.

The present systematic review has several important limitations. First, we considered
both studies performed in humans and in rodents. Whilst this was largely a forced choice
due to the limited number of papers published on cIMD pharmacomicrobiomics, it also
implies potential problems in the interpretation of the results obtained. In fact, important
differences exist in the composition of human and mice microbiota despite a 90% similarity
at the phylum level and a 89% similarity at the genus level [137,138]. Another major
limitation is the high heterogeneity of the experimental models that were used in the
reviewed study. If we start considering the studies on cIMD pharmacology, a large fraction
of them were just “pharmaceutical” investigations totally performed in vitro and exploring
moiety degradation, only a few papers were performed in vivo and most of them were not
specifically designed as “pharmacological studies” but, instead, they were clinical studies
recording the occurrence of unwanted drug effect or therapy failure. Additionally, when we
move to the studies aiming to investigate the effect of cIMDs on the intestinal microbiota,
one of the major factor complicating and possibly biasing the interpretation of their results
is the heterogeneity of the species and of the experimental models considered. As a matter
of fact, only few studies, all performed in animals, tested the effect of selected cIMDs in
healthy probands. On the contrary, in most of the animal studies and in all the studies
performed in humans either diseases requiring cIMDS, such as organ transplantation or
autoimmune diseases, or disease conditions induced by cIMDs such as obesity or diabetes
were evaluated. Considering that the underlying disease may itself cause alterations in the
intestinal microbiota as shown, for instance in chronic kidney disease (reviewed in [139,140]
or in inflammatory bowel disease [141]), it is very hard to understand to what extent the
modifications observed in its composition upon treatment with cIMDs are due to a direct
effect of these drugs or to the improvement of the clinical condition requiring their use.
Obviously, this conundrum is even harder to solve in the case of organ transplantation.
For instance, in the case of liver transplantation, the important impact of the liver on the
gut microbiota in the so-called gut–liver axis must be considered [142]. While animal
studies adopted, in general, a controlled parallel group randomized design, most of the
human studies were observational investigations and this raises further concerns about the
reliability of the controls used in these studies.

5. Conclusions

The systematic literature review that we performed confirms and extends the findings
of previous reviews and metanalyses showing that the gut microbiota is bidirectionally in-
terrelated with cIMDs in a potentially clinically relevant manner [81,143–145]. The general
conclusion emerging from all the evidence that we examined is that although pharmacomi-
crobiomics is a promising new tool to optimize the treatment with cIMDs, it is still in its
infancy. Prospectively, one can imagine that, in the future, the dosage of cIMDs to be given
to every single patient will be adjusted according to the composition of his/her intestinal
microbiota and that further adjustment will be done during the treatment on the basis



Biomedicines 2023, 11, 2562 26 of 32

of changes occurring in gut microorganisms (even including those caused by the use of
the same immunosuppressive drugs). However, a lot of experimental work remains to be
done before this scenario can become clinical reality. In fact, most of the available evidence
is limited to a small number of papers/patients and needs to be extended. In addition,
data are still missing for some of the cIMDs considered such as SIR and EVERO. Even
more importantly, the evidence that the composition microbiota has a causative role in
determining the fate of transplanted organs or the prognosis of autoimmune disease is still
limited and mostly related to animal models [146–150]. Likewise, it is still to be definitely
demonstrated that interventions on the microbiota by the means either of probiotics sup-
plementation or of genetic modification of resident gut bacteria may improve the prognosis
in patients recipients of organ transplantation or affected with autoimmune diseases. With
all these points still to be deeply explored we are hopefully at the beginning of a new
exciting season of research advancement in the field of cIMD pharmacomicrobiomics. A
final note concerning the data that have been reviewed in the present paper is that all the
pharmacomicrobiomics interferences with cIMD pharmacology took place in the gut lumen
and were strictly dependent on the oral administration of these drugs. This implies that,
potentially, part of the pharmacomicrobiomic-related variability could be abated by using
alternative administration routes and, in this perspective the use of new, emerging methods
such as subcutaneous microneedles appears very intriguing [151,152].
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