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TOPOLOGY OPTIMIZATION FOR QUASISTATIC

ELASTOPLASTICITY

Stefano Almi1 and Ulisse Stefanelli2,3,4,*

Abstract. Topology optimization is concerned with the identification of optimal shapes of deformable
bodies with respect to given target functionals. The focus of this paper is on a topology optimization
problem for a time-evolving elastoplastic medium under kinematic hardening. We adopt a phase-field
approach and argue by subsequent approximations, first by discretizing time and then by regularizing
the flow rule. Existence of optimal shapes is proved both at the time-discrete and time-continuous
level, independently of the regularization. First order optimality conditions are firstly obtained in the
regularized time-discrete setting and then proved to pass to the nonregularized time-continuous limit.
The phase-field approximation is shown to pass to its sharp-interface limit via an evolutive variational
convergence argument.
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1. Introduction

The design of a mechanical piece is often driven by an optimization process. The mechanical response of
a given shape is tested against a number of criteria, possibly including weight, material and manufacturing
costs, topological, and geometrical features. The tenet of Topology Optimization (TO in the following) is that
of identifying the optimal shape of a body E ⊂ Ω within a given design region Ω ⊂ Rn with respect to a given
target functional. This optimality depends on the mechanical response of the body with respect to the imposed
actions (boundary displacements, forces, tractions) and is hence a function of E itself. As such, the target
functional is minimized with respect to the shape E. This general setting is common to most TO problems and
arises ubiquitously, from mechanical engineering, to aerospace and automotive, to architectural engineering, to
biomechanics [3].

In this paper, we investigate a TO problem for a linearized elastoplastic medium showing kinematic hardening.
The mechanical state of the the system is described by its time-dependent displacement u(x, t) ∈ Rn and its
plastic strain p(x, t) ∈ Rn×ndev (symmetric deviatoric tensors). We assume that the total strain Eu = (∇u+∇uT )/2
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of the body can be additively decomposed into an elastic part ε ∈ Rn×nsym (symmetric tensors) related to the
stress state of the material and the plastic part p, namely,

Eu = ε+ p. (1.1)

In the so-called sharp-interface setting, the actual position of the body within the design domain Ω is identified
by means of the scalar function z : Ω→ {0, 1}. In particular, the level set {z = 1} indicates the position of the
body to be determined via TO. In the following, we shall interpret z as a phase indicator and assume the region
not occupied by the body to be filled by a very compliant medium, again of elastoplastic type. This approach
is rather classical [1] and allows for a sound mathematical treatment. In particular, by taking the material
parameters to be suitably dependent on z, all state quantities will be assumed to be defined in the whole design
region Ω. The mechanical problem will be hence addressed in the fixed domain Ω and the actual position of the
body to be determined via TO is identified via z.

In the following, we will mostly leave the classical sharp-interface setting by considering a phase-field approach
instead. Here, the scalar function z is allowed to take intermediate values z ∈ (0, 1), as well. We refer to z as
phase field or phase, alluding to the interpretation of the material in Ω as a two-phase system. Following this
interpretation, the set {0 < z < 1} could be seen as the region where the two materials mix.

We assume linear material response, namely, the stress σ of the medium is obtained as σ = C(z)ε where
C(z) is the positive-definite symmetric elasticity tensor. Note that the tensor C(z) depends on the value of z.
All materials parameters are indeed assumed to depend on z, in order to distinguish the different mechanical
response of the body to be determined via TO and the compliant medium. These dependencies are kept abstract
in the paper, in order to possibly accommodate the different phenomenological choices which are in use.

The time-evolution of p is driven by the normality flow rule

d(z)∂|ṗ| 3 σ −H(z)p . (1.2)

Here, d(z) > 0 represents the yield stress which activates plasticization and the symbol ∂ stands for the set-valued
subdifferential in the sense of Convex Analysis, namely ∂|ṗ| = ṗ/|ṗ| for ṗ 6= 0 and ∂|0| = {q ∈ Rn×ndev : |q| ≤ 1}.
Eventually, H(z)p represents the backstress due to kinematic hardening, here modulated by the positive-definite
symmetric kinematic hardening tensor H(z) [12]. The flow rule (1.2) is of course to be complemented by an
initial condition for p which we will take as p(0) = 0 for simplicity.

The body is assumed to be clamped on the portion ΓD of the boundary ∂Ω and to evolve quasistatically
under the combined effect of the time-dependent body force `(z)f and of the time-dependent boundary traction
g on the portion ΓN of ∂Ω. The quasistatic equilibrium system hence reads

∇ · σ + `(z)f(t) = 0 in Ω, u = 0 on ΓD, σn = g(t) on ΓN (1.3)

where n indicates the outward pointing normal to ∂Ω and the term `(z) corresponds to the density of the
medium at phase z. Under suitable assumptions on data, see Section 2 below, for each z ∈ L∞(Ω) one can
uniquely identify a trajectory t ∈ [0, T ] 7→ (u(t),p(t)) solving the quasistatic elastoplastic evolution system
(1.1)–(1.3) in a suitable weak sense, see Definition 3.1 and the comments thereafter.

Our aim is to identify phases z which, together with their associated quasistatic elastoplastic evolutions
t ∈ [0, T ] 7→ (u(t),p(t)), minimize the compliance-type functional Jδ(z, u) given by

Jδ(z, u) :=

∫
Ω

`(z) f(T ) ·u(T ) dx+

∫
ΓN

g(T ) ·u(T ) dHn−1 (1.4)

−
∫ T

0

∫
Ω

`(z) ḟ(τ) ·u(τ) dxdτ −
∫ T

0

∫
ΓN

ġ(τ) ·u(τ) dHn−1dτ

+

∫
Ω

δ

2
|∇z|2 +

z2(1− z)2

2δ
dx .
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The first four terms in Jδ measure the compliance of the medium, integrated over the time interval (0, T ).
The last two terms in Jδ are the classical Modica-Mortola functional [27]. Under the modulation of the user-
defined small parameter δ > 0, the gradient term penalizes changes in z whereas the double-well term favours
the values 0 and 1. The combination of the two last terms in Jδ expresses the competition between phase
separation and minimization of transitions between phases. In the limit δ → 0 one recovers a sharp-interface
situation, where minimizing phases z take exclusively values 0 or 1 and the length of the interface separating
the two regions {z = 0} and {z = 1} is penalized, see Section 4.

Our main TO problem reads

min
{
Jδ(z, u) : (u,p) solve (1.1)–(1.3) given z

}
. (1.5)

The main contribution of this paper is in proving that this TO problem admits solutions, in investigating its
discretization and regularization, and in providing first-order optimality conditions.

More precisely, in order to tackle the TO problem (1.5) we proceed by subsequent approximations. At first,
we investigate a time-discrete version of (1.5), where continuous-in-time states are replaced by the time-discrete
solutions of the incremental elastoplastic problem, see Definition 3.3. The time-discrete TO problem is proved
to admit solutions (Prop. 3.4) which converge to solutions of the time-continuous (1.5) as the fineness of the
time partition goes to 0 (Cor. 3.6).

The time-discrete TO problem is then regularized by replacing the nonsmooth term |ṗ| in the flow rule (1.2)
by the smooth function hγ(ṗ) = (|ṗ|2 +γ−2)1/2−1/γ depending on γ > 0. The corresponding approximate time-
discrete TO problem admits solutions (Prop. 3.8) which converge to solutions of the time-discrete TO problem
as γ → +∞ (Cor. 3.10). Introducing the regularization via hγ is instrumental to obtain the differentiability of
the control-to-state map z 7→ (u,p) which is in turn needed in order to derive first-order optimality conditions,
see also [2, 10, 16, 34]. This differentiability is tackled in Section 5 in the frame of the approximate time-discrete
TO problem (Theorem 5.1) and allows to prove corresponding first-order optimality conditions (Cor. 5.4). The
passage to the limit as γ → +∞ first and then as the fineness of the time partition goes to 0 provide the
first-order optimality conditions for the time-discrete TO problem (Thm. 6.1) and the time-continuous TO
problem (1.5) (Thm. 6.4), which are the main results of the paper.

All the above mentioned results are obtained in the setting of the phase-field approximation δ > 0. Still, the
existence and the convergence results are valid in the sharp-interface case δ = 0, where the phase z takes the
values 0 or 1 only, and the limit δ → 0 can be rigorously ascertained. We give some detail in this direction in
Section 4 for the time-continuous TO problem (1.5). In particular, we prove that solutions to (1.5) for δ > 0
converge to solutions to (1.5) for δ = 0 as δ → 0 by means of an evolutive Γ-convergence argument (Prop. 4.2).
Let us remark however that, due to the limited regularity of solutions to (1.5) for δ = 0, first-order optimality
conditions are available for the case δ > 0 only.

Before moving on, let us comment on the literature and put our work in perspective. The mathematical TO
literature in the static elastic setting is abundant, see [7, 8, 29] and [4, 5, 9] for a selection of existence results
and first-order optimality conditions in different linear and nonlinear settings. Results in the elastoplastic setting
are available in the two-dimensional case, both in the static [13, 14, 17, 19] and in the evolutive regime [18], but
exclusively under the a priori assumption that the unknown optimal shape {z = 1} is Lipschitz regular. The
beam structure and frame optimization was investigated in [20, 21, 28] from the point of view of the existence
of minimizers. First-order optimality conditions in terms of shape derivatives appeared in Chapters 4.8 and 4.9
of [32] for an elastic torsion problem and for the viscoplastic model of Perzyna, see also [6, 23]. To the best of
our knowledge, the existence analysis and the study of optimality conditions in the corresponding regularity
setting are unprecedented for quasistatic evolution TO problems for elasto-plasticity.

On the other hand, control problem for quasistatic elastoplasticity have already been studied and the reader
is referred to the analysis in [33–35], see also the general theory in [30, 31]. Compared with these contributions,
where controls usually are modeled as imposed forces, in the frame of TO the action of controls is more involved,
for they modify the elastic response via material parameters. Correspondingly, our analysis is at specific places
more involved than that in the above papers, albeit being inspired by the same general principles.
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In our recent paper [2], we have tackled the three-dimensional static kinematic-hardening case and analyzed
the existence of solutions, the first-order optimality conditions, and the sharp-interface limit. This indeed sets the
basis for the current contribution, which however focuses on the quasistatic evolutive case. Moving from static
state-problem formulations, based on the minimization of one single functional, to evolutive formulations, based
on the time-continuous limits of sequences of time-discretizations in the frame of rate-independent processes
[25] is analytically challenging. Remarkably, in order to tackle the various limiting procedures one has to resort
to evolutive Γ-convergence techniques [26], which are more involved than their static counterparts.

Let us now present the structure of the paper and of our results:

Section 2 is devoted to discussion of the model, notation, and assumptions on data. These assumptions
are then assumed to hold throughout the paper, without further mention.

Section 3 brings to statement of the time-continuous TO problem, as well as of its time-discrete and
approximate time-discrete versions. Here, we also check existence of optimal solutions and convergence of
time-discrete to time-continuous and approximate time-discrete to time-discrete solutions.

Section 4 focuses on the sharp interface limit δ → 0. In particular, we prove that solutions of time-
continuous TO problem (1.5) converge to solutions of the corresponding sharp-interface limiting TO
problem for δ = 0. This is based on an evolutive Modica-Mortola argument.

Section 5 contains the investigation of the differentiability of the control-to-state map for the approximate
time-discrete TO problem, where γ < +∞. Correspondingly, a detailed analysis of first-order optimality
conditions in the approximate time-discrete case is presented.

Section 6 eventually leads to first-order optimality conditions for both time-continuous and the time-
discrete TO problems. These ensue by passing to the limit in the corresponding ones for the approximate
time-discrete TO problem from Section 5.

The Appendix features a technical convergence argument which is used in the study of discrete-to-
continuous limits for quasistatic evolutions.

2. Assumptions on data

We devote this section to fixing notation and assumptions on data. In the following, Mn indicates the space
of 2-tensors in n dimensions, indicated in bold face in the following, and Mn

S is the subspace of symmetric
2-tensors. The symbol Mn

D indicates symmetric and deviatoric 2-tensors, namely those with vanishing trace.
The symbol · indicates contraction with respect to all indices. In particular A ·B = AijBij and u · v = uivi
(summation convention on repeated indices) for all A,B ∈Mn, u, v ∈ R.

The elasticity tensor C and the kinematic-hardening tensor H are asked to be isotropic for all z. In particular,
we ask for

C(z) := 2µ(z)I + λ(z)(I⊗ I), H(z) := h(z)I (2.1)

where λ(z) and µ(z) are the Lamé coefficients, h(z) is the hardening modulus, and I and I denote the identity
4 and 2-tensor, respectively. Isotropy in particular guarantees that C and H map Mn

D to Mn
D.

We assume the material coefficients to be differentiable with respect to z and to be defined in all of R. In
particular, we ask

µ, λ, h, d ∈ C1(R) . (2.2)

We moreover define them as constant on {z ≤ 0} and {z ≥ 1}. This last provision allows us to recover the
property z ∈ [0, 1] a posteriori, without the need of enforcing it a-priori as a constraint. The reader is referred
to (3.3), (3.10), and (3.17) for additional details.
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All material coefficients are asked to be positive and bounded, uniformly with respect to z, namely, we assume
that

∃0 < α < β < +∞ ∀z ∈ [0, 1] : α ≤ µ(z) , λ(z), h(z), d(z) ≤ β . (2.3)

This in particular implies that C and H are uniformly positive definite and bounded, independently of z. Indeed,
one can find 0 < αC < βC < +∞ and 0 < αH < βH < +∞ such that

αC|E|2 ≤ C(z)E ·E ≤ βC|E|2 for every E ∈Mn
S , (2.4)

αH|Q|2 ≤ H(z)Q ·Q ≤ βH|Q|2 for every Q ∈Mn
D . (2.5)

The design domain Ω ⊂ Rn is taken to be open, connected, and with Lipschitz boundary ∂Ω. We also fix two
subsets ΓN ,ΓD of ∂Ω, which from now on will be referred to as Neumann and Dirichlet part of ∂Ω, respectively.
We assume ΓD, ΓN ⊂ ∂Ω to be open in the topology of ∂Ω with ΓN ∩ ΓD = ∅, ΓN ∪ ΓD = ∂Ω, and where ΓN
and ΓD are closures in ∂Ω. We moreover assume that ΓD has positive surface measure, namely Hn−1(ΓD) > 0,
where the latter is the (n−1)-Hausdorff surface measure in Rn. Furthermore, we suppose that Ω∪ΓN is regular
in the sense of Gröger ([11], Def. 2), that is, for every x ∈ ∂Ω there exists an open neighborhood Ux ⊆ Rn of x
and a bi-Lipschitz map Ψx : Ux → Ψ(Ux) such that Ψx(Ux ∩ (Ω∪ ΓN )) coincides with one of the following sets:

V1 := {y ∈ Rn : |y| ≤ 1, yn < 0} ,

V2 := {y ∈ Rn : |y| ≤ 1, yn ≤ 0} ,

V3 := {y ∈ V2; yn < 0 or y1 > 0} ,

where yi is the ith component of y ∈ Rn. This last assumption is crucially used in the proof of Theorem 5.1.
For every w ∈ H1(Ω;Rn), we define the set of admissible displacements

A(w) := {(u, ε,p) ∈ H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D) : Eu = ε+ p, u = w on ΓD} ,

where Eu denotes the symmetric part of the gradient of u, namely Eu = (∇u+∇u)>/2.
As concerns data, we assume the volume-force density per unit mass f , the surface-traction density g, and

the Dirichlet boundary displacement w, to satisfy

f ∈ H1(0, T ;Lp(Ω;Rn)), g ∈ H1(0, T ;Lp(ΓN ;Rn)), w ∈ H1(0, T ;W 1,p(Ω;Rn)) (2.6)

for some given p ∈ (2,+∞). Additionally, we assume that

f(0) = g(0) = w(0) = 0 . (2.7)

This last requirement ensures the compatibility of the initial datum

(u(0), ε(0),p(0)) = (0, 0, 0) . (2.8)

The assumptions (2.1)–(2.8) of this Section are assumed throughout the paper, without further explicit mention.

3. The topology optimization problem and its approximations

This section is devoted to make the topology optimization problem precise and present its time-discretization
and regularization. In particular, we prove the existence of optimal phase-fields z in the various settings, which
are then connected via variational convergence arguments.
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Let us start by defining quasistatic evolutions of the elastoplastic system given the phase-field z. We follow
here the energetic formulation of quasistatic evolutions [25], in which the elastoplastic system is driven by energy-
storage and energy-dissipation mechanism, calling for the definition of the energy E and the dissipation D. We
define

E(t, z, u, ε,p) :=
1

2

∫
Ω

C(z)ε · ε dx+
1

2

∫
Ω

H(z)p ·pdx−
∫

Ω

`(z)f(t) ·udx−
∫

ΓN

g(t) ·udHn−1

D(z, q) :=

∫
Ω

d(z)|q|dx

for every z ∈ L∞(Ω), every (u, ε,p) ∈ A(w(t)), and every q ∈ L1(Ω;Mn
D). For given p : [0, T ] → L2(Ω;Mn

D)
and z ∈ L∞(Ω), we further define the total dissipation functional

V([0, t]; z,p(·)) := sup

{ ∑
tj∈P

D
(
z,p(tj)− p(tj−1)

)
: P is a partition of [0, t]

}
.

With these ingredients at hand, we are able to pose the following definition.

Definition 3.1 (Quasistatic evolution given z). Let z ∈ L∞(Ω) be given. We say that a triple (u, ε,p) : [0, T ]→
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D) is a quasistatic evolution given z if (u(0), ε(0),p(0)) = (0, 0, 0) and the

following conditions hold:

(i) for every t ∈ [0, T ] and every (û, ε̂, p̂) ∈ A(w(t))

E(t, z, u(t), ε(t),p(t)) ≤ E(t, z, û, ε̂, p̂) +D(z, p̂− p(t)) ; (3.1)

(ii) for every t ∈ [0, T ]:

E(t,z, u(t), ε(t),p(t)) + V([0, t]; z,p(·)) (3.2)

=

∫ t

0

∫
Ω

C(z)ε(τ) ·Eẇ(τ) dx dτ −
∫ t

0

∫
Ω

`(z)ḟ(τ) ·u(τ) dxdτ

−
∫ t

0

∫
Ω

`(z)f(τ) · ẇ(τ) dxdτ −
∫ t

0

∫
ΓN

ġ(τ) ·u(τ) dHn−1 dτ

−
∫ t

0

∫
ΓN

g(τ) · ẇ(τ) dHn−1 dτ .

As mentioned, Definition 3.1 falls within the class of energetic formulations for rate independent systems [25].
In particular, relation (3.1) is usually referred to as global stability and consists in a time dependent variational
inequality. The scalar condition (3.2) is the energy balance: for all times t ∈ [0, T ] the sum of energy at time t
and dissipated energy on [0, t] (left-hand side of (3.2)) equals the initial energy (which is actualy 0 as we ask for
(u(0), ε(0),p(0)) = (0, 0, 0)) plus the work supplied to the system by external actions (right-hand side in (3.2)).

Formulation (3.1)–(3.2) is particularly convenient when investigating asymptotics and is equivalent to
the classical weak formulation of the quasistatic elastoplastic problem (1.1)–(1.3), as the general theory in
Section 1.3.3 of [25] ensures. In particular, a trajectory (u(·), ε(·),p(·)) fulfilling the initial condition is a qua-
sistatic evolution in the sense of Definition 3.1 if and only if the following evolutionary variational equality
holds ∫

Ω

C(z)(Eu(t)− p(t)) ·Ev dx =

∫
Ω

`(z)f(t) · v dx+

∫
ΓN

g(t) · v dHn−1
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for all v ∈ H1(Ω;Rn) with v = 0 on ΓD and all t ∈ [0, T ] and the flow rule (1.2) holds almost everywhere.
This is nothing but the classical weak formulation of quasistatic elastoplasticity evolution, which is well-posed
([12], Thm. 7.3, p. 166). This in particular implies that, for every z ∈ L∞(Ω) there exists unique a quasistatic
evolution (u(·), ε(·),p(·)) in the sense of Definition 3.1. In fact, for such trajectory one can also check that
(u(·), ε(·),p(·)) ∈ H1(0, T ;H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)), so that the dissipative term in the first line

of (3.2) can be rewritten as

V([0, T ]; z,p(·)) =

∫ T

0

∫
Ω

d(z) |ṗ(t)|dxdt .

We further note that the initial condition (u(0), ε(0),p(0)) = (0, 0, 0) has been fixed in such a way that the
elastoplastic body Ω is at equilibrium at time t = 0.

The TO problem consists in minimizing the compliance-type target functional Jδ(z, u(·)) from (1.4) under the
constraint that u(·) is the first component of the quasistatic evolution given z. In particular, we are interested
in the following

min
{
Jδ(z, u(·)) : z ∈ H1(Ω) and (u(·), ε(·),p(·)) is a quasistatic evolution given z

}
. (3.3)

The existence of an optimal phase-field z solving (3.3) can be proved by applying the Direct Method as we
show in the next proposition.

Proposition 3.2 (Existence). The TO problem (3.3) admits a solution. In particular, every solution z satisfies
0 ≤ z ≤ 1 almost everywhere in Ω.

Proof. Note that Jδ(z, u(·)) > −∞ for all z ∈ H1(Ω) and for the corresponding quasistatic evolution
(u(·), ε(·),p(·)). Let zj ∈ H1(Ω) be a minimizing sequence for (3.3). By the assumptions on C, H, d, and `, we may
assume without loss of generality that zj ∈ [0, 1] almost everywhere, so that, up to a not relabeled subsequence,
zj ⇀ z weakly in H1(Ω) and 0 ≤ z ≤ 1 almost everywhere. Let us denote by (uj(·), εj(·),pj(·)) the quasistatic
evolution given zj . In view of the energy balance (3.2) and of the hypotheses (2.3)–(2.5), (uj(·), εj(·),pj(·))
is bounded in L∞(0, T ;H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)) and ṗj is bounded in L1(0, T ;L1(Ω;Mn

D)).
Therefore, by Helly’s Selection Principle, pj(t) ⇀ p(t) weakly in L2(Ω;Mn

D) for every t ∈ [0, T ] for some
p ∈ L∞(0, T ;L2(Ω;Mn

D)).
Let us fix t ∈ [0, T ]. By the boundedness of uj(t) and of εj(t), we may assume that, up to a not relabeled

subsequence, uj(t) ⇀ u(t) weakly in H1(Ω;Rn) and εj(t) ⇀ ε(t) weakly in L2(Ω;Mn
S). For every (û, ε̂, p̂) ∈

A(w(t)), we test the equilibrium condition (3.1) for (uj(t), εj(t),pj(t)) by the triple

(ûj(t), ε̂j(t), p̂j(t)) := (û+ uj(t)− u(t), ε̂+ εj(t)− ε(t), p̂+ pj(t)− p(t)) ∈ A(w(t)).

We now exploit the quadratic character of E in order to pass to the limit as j →∞. In particular, we have that

0 ≤ lim inf
j→∞

(
E(t, zj , ûj(t), ε̂j(t), p̂j(t))− E(t, zj , uj(t), εj(t),pj(t)) +D(zj , p̂j(t)− pj(t))

)
= lim inf

j→∞

(
E(t, zj , ûj(t), ε̂j(t), p̂j(t))− E(t, zj , uj(t), εj(t),pj(t)) +D(zj , p̂− p(t))

)
= lim inf

j→∞

(
E(t, zj , û+ uj(t)− u(t), ε̂+ εj(t)− ε(t), p̂+ pj(t)− p(t))

− E(t, zj , uj(t), εj(t),pj(t)) +D(zj , p̂− p(t))
)

= E(t, z, û, ε̂, p̂)− E(t, z, u(t), ε(t),p(t)) +D(z, p̂− p(t)).

This proves that (u(t), ε(t),p(t)) is the unique solution of (3.1). In particular, the whole sequence
(uj(t), εj(t),pj(t)) converges to (u(t), ε(t),p(t)) weakly in H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D). Moreover,
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(uj , εj ,pj) converges weakly∗ in L∞(0, T ;H1(Ω;Rn) × L2(Ω;Mn
S) × L2(Ω;Mn

D)) to (u, ε,p). This last conver-
gence implies that for every t ∈ [0, T ]

E(t, z, u(t), ε(t),p(t)) + V([0, t]; z,p(·))

≤
∫ t

0

∫
Ω

C(z)ε(τ) ·Eẇ(τ) dx dτ −
∫ t

0

∫
Ω

`(z)ḟ(τ) ·u(τ) dxdτ

−
∫ t

0

∫
Ω

`(z)f(τ) · ẇ(τ) dxdτ −
∫ t

0

∫
ΓN

ġ(τ) ·u(τ) dHn−1 dτ

−
∫ t

0

∫
ΓN

g(τ) · ẇ(τ) dHn−1 dτ .

The opposite inequality can be recovered by exploiting the equilibrium condition (3.1) by applying ([24], Prop.
5.7). Hence, the triple (u(·), ε(·),p(·)) is the unique quasistatic evolution given z ∈ H1(Ω; [0, 1]). As the target
functional Jδ is lower semicontinuous, we deduce that z is a solution of (3.3).

Let us now prove the second part of the statement. Let z ∈ H1(Ω) solve (3.3) and define ẑ :=
min{1; max{z; 0}}. As the material-parameter functions on C, H, d, and ` are assumed to be constant on
(−∞, 0] and [1,∞), we have that (u, ε,p) solves (1.1)–(1.3) given both z and ẑ. On the other hand if z 6= ẑ one
has that ∫

Ω

δ

2
|∇ẑ|2 +

ẑ2(1− ẑ)2

2δ
dx <

∫
Ω

δ

2
|∇z|2 +

z2(1− z)2

2δ
dx,

contradicting the fact that z solves (3.3).

The existence of solutions to (3.3) being proved, in the remainder of this section we focus on their approx-
imation. At first, we discretize the quasistatic evolution constraint in time. Subsequenly, we regularize the
flow rule. This will be instrumental to obtaining first-order optimality conditions, which we then tackle in
Sections 5–6.

Let us hence start by a time discretization of the quasistatic evolution problem (see also [30, 31, 33]). Precisely,
fixed k ∈ N and τk := T/k, we define for i = 0, . . . , k the time nodes tki := iτk and the functions

fki := f(tki ) , gki := g(tki ) , wki := w(tki ) . (3.4)

For later use, we further set for t ∈ [tki−1, t
k
i )

fk(t) := fki−1 +
t− tki−1

τk
(fki − fki−1) , gk(t) := gki−1 +

t− tki−1

τk
(gki − gki−1) ,

wk(t) := wki−1 +
t− tki−1

τk
(wki − wki−1) .

(3.5)

Notice that (fk, gk, wk) converges to (f, g, w) in H1(0, T ;L2(Ω;Rn) × L2(ΓN ) × H1(Ω;Rn)). We define the
time-discrete energy functional

Ek(tki , z, u, ε,p) :=
1

2

∫
Ω

C(z)ε · ε dx+
1

2

∫
Ω

H(z)p ·pdx−
∫

Ω

`(z)fki ·udx−
∫

ΓN

gki ·udHn−1
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and the discrete target functional

Jk,δ(z, (ui)ki=0) :=

∫
Ω

`(z) fkk ·uk dx+

∫
ΓN

gkk ·uk dHn−1 (3.6)

−
k−1∑
i=0

(∫
Ω

`(z)
(
fki+1 − fki

)
·ui dx+

∫
ΓN

(
gki+1 − gki

)
·ui dHn−1

)
+

∫
Ω

δ

2
|∇z|2 +

z2(1− z)2

2δ
dx ,

for z ∈ H1(Ω)∩L∞(Ω) and (ui)
k
i=0 ∈

(
H1(Ω;Rn)

)k+1
. In the sequel, we will use a similar notation for (εi)

k
i=0 ∈(

L2(Ω;Mn
S)
)k+1

and (pi)
k
i=0 ∈

(
L2(Ω;Mn

D)
)k+1

In the minimization of the time-discrete target functional Jk,δ we ask the triple (ui, εi,pi)
k
i=0 ∈

(
H1(Ω;Rn)×

L2(Ω;Mn
S)× L2(Ω;Mn

D)
)k+1

to be a time-discrete quasistatic evolution given z, whose definition is given here
below.

Definition 3.3 (Time-discrete quasistatic evolution given z). Let z ∈ L∞(Ω) be given and fki , g
k
i , w

k
i be defined

as in (3.4). We say that (ui, εi,pi)
k
i=0 ∈

(
H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D)
)k+1

is a time-discrete quasistatic
evolution given z if (u0, ε0,p0) = (0, 0, 0) and the following holds: for every i = 1, . . . , k, (ui, εi,pi) ∈ A(wki ) and

Ek(tki , z, ui, εi,pi) +D(z,pi − pi−1) ≤ Ek(tki , z, û, ε̂, p̂) +D(z, p̂− pi−1) (3.7)

for every (û, ε̂, p̂) ∈ A(wki ).

As a consequence of (3.7) we have that every time-discrete quasistatic evolution (ui, εi,pi)
k
i=0 satisfies the

following energy inequality: for every i = 1, . . . , k

Ek(tki ,z, ui, εi,pi) +

i∑
j=1

D(z,pj − pj−1) (3.8)

≤
i∑

j=1

∫
Ω

C(z)εj−1 ·E(wkj − wkj−1) dx−
∫

Ω

`(z)(fkj − fkj−1) ·uj−1 dx

−
∫

Ω

`(z)fj · (wkj − wkj−1) dx+

∫
ΓN

(gkj − gkj−1) ·uj−1 dHn−1

+

∫
ΓN

gkj · (wkj − wkj−1) dHn−1 +

∫
Ω

C(z)E(wkj − wkj−1) ·E(wkj − wkj−1) dx .

Furthermore, we note that a time-discrete quasistatic evolution can always be constructed by iteratively
solving the minimum problems

min {Ek(tki , z, u, ε,p) +D(z,p− pi−1) : (u, ε,p) ∈ A(wki )} , (3.9)

for i ≥ 1, where we have set (u0, ε0,p0) = (0, 0, 0). In particular, given the data f , g, and w, the time-discrete
quasistatic evolution is unique, as the solution of the minimum problem (3.9) is unique.

The time-discrete TO problem reads as

min {Jk,δ(z, (ui)ki=0) : z ∈ H1(Ω) and (ui, εi,pi)
k
i=0 (3.10)

is a time-discrete quasistatic evolution given z} .
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Proposition 3.4 (Existence, time-discrete). The time-discrete TO problem (3.10) admits a solution. In
particular, every solution z satisfies 0 ≤ z ≤ 1 almost everywhere in Ω.

A proof of this proposition can be obtained by the Direct Method, by following the argument of
Proposition 3.2. In the interest of shortness, we omit the details.

In the following proposition, we state an auxiliary result regarding the convergence of a sequence of time-
discrete quasistatic evolutions to a quasistatic evolution. The proof is provided in Appendix A. Such a result
will be used to show that a sequence of minimizers of (3.10) converges to a minimizer of the time-continuous
problem (3.3) as the time-step τk tends to 0, as well as to obtain suitable first-order optimality conditions
for (3.3), starting from those of (3.10) (see Cor. 3.6 and Thms. 6.1 and 6.4, respectively).

Proposition 3.5 (Convergence of time-discrete quasistatic evolutions). Let zk, z ∈ H1(Ω; [0, 1]) be such that
zk ⇀ z weakly in H1(Ω). For every k, let (uki , ε

k
i ,p

k
i )ki=0 be the time-discrete quasistatic evolution associated

with zk and let (u(·), ε(·),p(·)) be the quasistatic evolution associated with z according to Definition 3.1. Let us
further set

uk(t) := uki +
t− tki
τk

(uki+1 − uki ) , εk(t) := εki +
t− tki
τk

(εki+1 − εki ) ,

pk(t) := pki +
t− tki
τk

(pki+1 − pki ) .

(3.11)

Then, (uk, εk,pk) converges to (u, ε,p) in H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)).

Proof. See Appendix A.

As a corollary of Proposition 3.5 we infer the convergence of time-discrete TO minimizers of (3.10) to
time-continuous TO minimizers of (3.3).

Corollary 3.6 (Convergence of time-discrete TO minimizers). Under the assumptions of Proposition 3.5, let
zk ∈ H1(Ω; [0, 1]) be a sequence of minimizers of (3.10). Then, there exists z ∈ H1(Ω; [0, 1]) solution of (3.3)
such that, up to a subsequence, zk ⇀ z weakly in H1(Ω) as the corresponding time step τk converges to 0.

Proof. By inequality (3.8), by the assumptions (2.4)–(2.5), and by the regularity of f , g, and w, the time-
discrete evolutions are bounded uniformly with respect to k ∈ N. Hence, we deduce from minimality (3.9)
of zk that zk is bounded in H1(Ω). Up to a subsequence, zk ⇀ z weakly in H1(Ω) and z ∈ H1(Ω; [0, 1]).
In view of Proposition 3.5, the time-discrete quasistatic evolution associated with zk converges to (u, ε,p) in
H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)), where (u, ε,p) is the quasistatic evolution associated with z.

To show the minimality of z, let us fix a competitor ẑ ∈ H1(Ω; [0, 1]) and consider the quasistatic evolu-
tion (û, ε̂, p̂) associated with ẑ. For every k, we can construct the time-discrete quasistatic evolution associated
with ẑ according to Definition 3.3. Let us denote by (ûk, ε̂k, p̂k) the piecewise affine functions

ûk(t) := ûki−1 +
(t− tki−1)

τk
(ûki − ûki−1) , ε̂k(t) := ε̂ki−1 +

(t− tki−1)

τk
(ε̂ki − ε̂

k
i−1) ,

p̂k(t) := p̂ki−1 +
(t− tki−1)

τk
(p̂ki − p̂

k
i−1) ,

for t ∈ [tki−1, t
k
i ). In view of Proposition 3.5, we have that (ûk, ε̂k, p̂k) converges to (û, ε̂, p̂) in

H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)). By the minimality of zk we have that

Jk,δ(zk, (uki )ki=0) ≤ Jk,δ(ẑ, (ûki )ki=0) . (3.12)
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Hence, passing to the liminf in (3.12) as k →∞ we deduce that

Jδ(z, u) ≤ lim inf
k→∞

Jk,δ(zk, (uki )ki=0) ≤ lim inf
k→∞

Jk,δ(ẑ, (ûki )ki=0) = Jδ(ẑ, û) .

Note that the last equality follows from the above mentioned strong convergence ûk → û in H1(0, T ;H1(Ω;Rn)).
We conclude by the arbitrariness of ẑ ∈ H1(Ω; [0, 1]).

For the computation of the first-order optimality conditions for (3.3), the time-discrete approximation
introduced in (3.6)–(3.10) is still insufficient, as the dissipation term D is not differentiable. As in [2] (see
also [10, 16, 34]), we define the regularized dissipation

Dγ(z, q) :=

∫
Ω

d(z)hγ(q) dx , for every q ∈ L2(Ω;Mn
D) ,

hγ(Q) :=

√
|Q|2 +

1

γ2
− 1

γ
for every Q ∈Mn

D .

In particular, hγ ∈ C∞(Mn
D) is convex and satisfies

|hγ(Q1)− hγ(Q2)| ≤ |Q1 −Q2| , (3.13)

|∇Qhγ(Q1)−∇Qhγ(Q2)| ≤ 2γ|Q1 −Q2| . (3.14)

Accordingly, we formulate the concept of approximate time-discrete quasistatic evolution as follows.

Definition 3.7 (Approximate time-discrete quasistatic evolution given z). Let z ∈ L∞(Ω) be given and let

fki , g
k
i , w

k
i be defined as in (3.4). We say that (ui, εi,pi)

k
i=0 ∈

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

is
an approximate time-discrete quasistatic evolution if (u0, ε0,p0) = (0, 0, 0) and the following holds: for every
i = 1, . . . , k, (ui, εi,pi) ∈ A(wki ) and

Ek(tki , z, ui, εi,pi) +Dγ(z,pi − pi−1) ≤ Ek(tki , z, u, ε,p) +Dγ(z,p− pi−1) (3.15)

for every (u, ε,p) ∈ A(wki ).

As for a time-discrete quasistatic evolutions, for every z ∈ L∞(Ω) and every k ∈ N an approximate time-
discrete evolution (ui, εi,pi)

k
i=0 is uniquely determined by iteratively solving the minimum problems

min {Ek(tki , z, u, ε,p) +Dγ(z,p− pi−1) : (u, ε,p) ∈ A(wki )} (3.16)

for i ≥ 1, where we have set (u0, ε0,p0) = (0, 0, 0). The approximate time-discrete TO problem reads as

min {Jk,δ(z, (ui)ki=0) : z ∈ H1(Ω) (3.17)

and (ui, εi,pi)
k
i=0 ∈

(
H1(Ω,Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)
)k+1

is an approximate time-discrete quasistatic evolution given z} .

Proposition 3.8 (Existence, approximate time-discrete). The approximate time-discrete TO
problem (3.17) admits a solution. In particular, every solution z satisfies 0 ≤ z ≤ 1 almost everywhere in Ω.

Proof. Repeat the steps of the proof of Proposition 3.4 taking into account minimality (3.16).

We aim now at showing the convergence of solutions to the approximate time-discrete TO problem 3.17
to solutions of the time-discrete TO problem (3.10). To this end, we first have to discuss the convergence of
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approximate time-discrete quasistatic evolutions to a time-discrete quasistatic evolution as the regularization
parameter γ tends to +∞. This is the subject of the following proposition.

Proposition 3.9 (Convergence of approximate time-discrete quasistatic evolutions). Let k ∈ N be fixed and
let zγ , z ∈ H1(Ω; [0, 1]) be such that zγ ⇀ z weakly in H1(Ω) as γ → +∞. Let us denote by (uγi , ε

γ
i ,p

γ
i )ki=0 ∈(

H1(Ω;Rn)×L2(Ω;Mn
S)×L2(Ω;Mn

D)
)k+1

the approximate time-discrete quasistatic evolution associated with zγ

and by (ui, εi,pi)
k
i=0 ∈

(
H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)
)k+1

the time-discrete quasistatic evolution asso-

ciated with z. Then, (uγi , ε
γ
i ,p

γ
i )ki=0 converges to (ui, εi,pi)

k
i=0 in

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

as γ → +∞.

Proof. By minimality of (uγi , ε
γ
i ,p

γ
i ) we have that

Ek(tki , zγ , u
γ
i , ε

γ
i ,p

γ
i ) +Dγ(zγ ,p

γ
i − p

γ
i−1) (3.18)

≤ Ek(tki , zγ , u
γ
i−1 + wki − wki−1, ε

γ
i−1 + Ewki − Ewki−1,p

γ
i−1)

= Ek(tki−1, zγ , u
γ
i−1, ε

γ
i−1,p

γ
i−1) +

∫
Ω

C(zγ)εγi−1 ·E(wki − wki−1) dx

+
1

2

∫
Ω

C(zγ)E(wki − wki−1) ·E(wki − wki−1) dx

−
∫

Ω

`(zγ)(fki − fki−1) ·uγi−1 dx−
∫

Ω

`(zγ)fki · (wki − wki−1) dx

−
∫

ΓN

(gki − gki−1) ·uγi−1 dHn−1 −
∫

ΓN

gki · (wki − wki−1) dHn−1

Adding the term Dγ(zγ ,p
γ
i−1 − p

γ
i−2) to both sides of (3.18) and repeating the previous argument for every i,

we deduce that

Ek(tki , zγ , u
γ
i , ε

γ
i ,p

γ
i ) +

i∑
j=1

Dγ(zγ ,p
γ
j − p

γ
j−1) (3.19)

≤
i∑

j=1

∫
Ω

C(zγ)εγj−1 ·E(wkj − wkj−1) dx+
1

2

∫
Ω

C(zγ)E(wkj − wkj−1) ·E(wkj − wkj−1) dx

−
∫

Ω

`(zγ)(fkj − fkj−1) ·uγj−1 dx−
∫

Ω

`(zγ)fkj · (wkj − wkj−1) dx

−
∫

ΓN

(gkj − gkj−1) ·uγj−1 dHn−1 −
∫

ΓN

gkj · (wkj − wkj−1) dHn−1 ,

which implies that (uγi , ε
γ
i ,p

γ
i ) is bounded in H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D) uniformly w.r.t. i and γ.

Arguing as in Proposition 3.4, we can prove recursively that (uγi , ε
γ
i ,p

γ
i ) converges to (ui, εi,pi) in H1(Ω;Rn)×

L2(Ω;Mn
S)× L2(Ω;Mn

D) as γ → +∞, and (ui, εi,pi) satisfies (3.7) for i = 1, . . . , k. This concludes the proof of
the proposition.

As a corollary of Proposition 3.9 we obtain the convergence of solutions of the approximate time-discrete TO
problem (3.17) to solutions of the time-discrete TO problem (3.10).

Corollary 3.10 (Convergence of approximate time-discrete TO minimizers). Let k ∈ N and let zγ ∈
H1(Ω; [0, 1]) be a sequence of solutions of (3.17). Then, there exists z ∈ H1(Ω; [0, 1]) solution of (3.10) such
that, up to a subsequence, zγ ⇀ z weakly in H1(Ω).
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Proof. Repeating the argument of (3.19), we infer that the approximate time-discrete quasistatic evolution

(uγi , ε
γ
i ,p

γ
i )ki=0 corresponding to zγ is bounded in

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

. By minimality,
also zγ is bounded in H1(Ω) and weakly converges to some z in H1(Ω), with 0 ≤ z ≤ 1 almost everywhere. By
Proposition 3.9, we have that (uγi , ε

γ
i ,p

γ
i )ki=0 → (ui, εi,pi) in H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D) as γ → +∞,

where (ui, εi,pi)
k
i=0 is the time-discrete quasistatic evolution corresponding to z. From the lower semicontinuity

of Jk,δ and from Proposition 3.9 we also deduce that z solves (3.10).

4. Sharp-interface limit δ → 0

We prove in this section that the sharp-interface limit δ → 0 can be rigorously ascertained. This check
is performed below in the time-continuous case of quasistatic evolutions. An analogous argument could be
developed in the case of time-discrete and approximate time-discrete quasistatic evolutions.

Let us start by recording that the set of quasistatic evolution is closed with respect to the convergence of the
phase field.

Proposition 4.1 (Convergence of quasistatic evolutions). Let zm, z ∈ L∞(Ω; [0, 1]) be such that zm → z
strongly in L1(Ω). For every m, let (um(·), εm(·),pm(·)) be the quasistatic evolution associated with zm and
let (u(·), ε(·),p(·)) be the quasistatic evolution associated with z. Then, (um, εm,pm) converges to (u, ε,p) in
H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)).

Proof. The argument follows closely the general approximation tool from [26]. The coercivity of the energy,
which is independent of zm, and an application of the Helly Selection principle entails that, up to not relabeled
subsequences

(um(t), εm(t),pm(t)) ⇀ (u(t), ε(t),p(t)) in H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)

for all times t ∈ [0, T ]. This suffices to check that

E(t, z, u(t), ε(t),p(t)) ≤ lim inf
m→∞

E(t, zm, um(t), εm(t),pm(t)) , (4.1)

V([0, t]; z,p(·)) ≤ lim inf
m→∞

V([0, t]; zm,pm(·)) , (4.2)

which follow by lower semicontinuity. In particular, we have used the fact that C(zm)→ C(z) and H(zm)→ H(z)
strongly in Lq(Ω;Rn×n×n×n) for all q < +∞. As for the dissipation part, letting {0 = t0 < t1 < · · · < tM = t}
be an arbitrary partition of [0, t] we compute

M∑
j=1

D(z,p(tj)− p(tj−1)) ≤ lim inf
m→∞

M∑
j=1

D(zm,pm(tj)− pm(tj−1)) ≤ lim inf
m→∞

V([0, t]; zm,pm(·)).

We hence conclude for (4.2) by taking the supremum over all partitions of [0, t].
On the other hand, given any (û, ε̂, p̂) ∈ A(w(t)), by defining the mutual recovery sequence

(ûm, ε̂m, p̂m) = (û+ u(t)− um(t), ε̂+ ε(t)− εm(t), p̂+ p(t)− pm(t))

and exploiting the quadratic character of E one can check that

lim sup
m→∞

(
E(t, zm, ûm, ε̂m, p̂m)− E(t, zk, um(t), εm(t),pm(t)) +D(zm, p̂m − pm(t))

)
(4.3)

≤
(
E(t, z, û, ε̂, p̂)− E(t, z, u(t), ε(t),p(t)) +D(z, p̂− p(t))

)
.
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Properties (4.1)–(4.3) allow to apply ([26], Thm. 3.1) ensuring that (u(·), ε(·),p(·)) is the quasistatic evolution
associated with z, as well as

E(t, zm, um(t), εm(t),pm(t))→ E(t, z, u(t), ε(t),p(t))

for all times. The latter entails that the pointwise convergence in H1(Ω;Rn) × L2(Ω;Mn
S) × L2(Ω;Mn

D) is
strong. This can be further improved to a strong convergence in H1(0, T ;H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D))

by repeating the argument of Proposition 3.5, see Appendix A.

In order to discuss the sharp-interface limit δ → 0 we start by defining the sharp-interface target functional

J0(z, u) :=

∫
Ω

`(z) f(T ) ·u(T ) dx+

∫
ΓN

g(T ) ·u(T ) dHn−1

−
∫ T

0

∫
Ω

`(z) ḟ(τ) ·u(τ) dx dτ −
∫ T

0

∫
ΓN

ġ(τ) ·u(τ) dHn−1dτ +
1

6
Per({z = 1}; Ω)

where now the phase z is assumed to belong to BV(Ω) and take values in {0, 1} only. The term Per({z = 1}; Ω)
is the perimeter in Ω of the set {z = 1} and effectively penalizes phases with large boundaries. The constant
1/6 has no physical relevance and is just chosen to simplify notations. Indeed, setting a different constant here
will be possible. Correspondingly, the sharp-interface TO problem reads

min
{
J0(z, u(·)) : z ∈ BV (Ω; {0, 1}), (4.4)

and (u(·), ε(·),p(·)) is a quasistatic evolution given z
}
.

The main result of this section is the following convergence.

Proposition 4.2 (Sharp-interface limit of TO minimizers). Let zδ ∈ H1(Ω; [0, 1]) solve the TO problem (3.3).
Then, up to a not relabeled subsequence, zδ → z strongly in L1(Ω), where z solves the sharp-interface TO
problem (4.4).

Proof. The statement follows by combining the stability of Proposition 4.1 with the classical Modica-Mortola
construction [27].

Let (uδ, εδ,pδ) and (u0, ε0,p0) be the quasistatic evolutions associated to zδ and z = 0, respectively. From
minimality we deduce that

Jδ(zδ, uδ) ≤ Jδ(0, u0) =

∫
Ω

`(0) f(T ) ·u0(T ) dx+

∫
ΓN

g(T ) ·u0(T ) dHn−1

−
∫ T

0

∫
Ω

`(0) ḟ(τ) ·u0(τ) dxdτ −
∫ T

0

∫
ΓN

ġ(τ) ·u0(τ) dHn−1dτ < +∞ .

As supδ Jδ(zδ, uδ) < +∞ one can extract a not relabeled subsequence such that zδ ⇀ z weakly in BV (Ω) and
strongly in L1(Ω). Owing to Proposition 4.1 we hence have that (uδ, εδ,pδ) converges to (u, ε,p) strongly in
H1(0, T ;H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D)) where (u, ε,p) is the quasistatic evolution given z. We can hence

use the fact that [27]

1

6
Per({z = 1}; Ω) ≤ lim inf

δ→0

∫
Ω

δ

2
|∇zδ|2 +

z2
δ (1− zδ)2

2δ
dx
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in order to check that

J0(z, u) ≤ lim inf
δ→0

Jδ(zδ, uδ) . (4.5)

In order to prove that z actually solves the sharp-interface TO problem (4.4), let ẑ ∈ BV (Ω; {0, 1}) be given
and let ẑδ ∈ H1(Ω) be the corresponding Modica-Mortola recovery sequence from [27]. This fulfills

ẑδ → ẑ strongly in L1(Ω) and lim inf
δ→0

∫
Ω

δ

2
|∇ẑδ|2 +

ẑ2
δ (1− ẑδ)2

2δ
dx =

1

6
Per({ẑ = 1}; Ω) . (4.6)

Let now (ûδ, ε̂δ, p̂δ) be the quasistatic evolution given ẑδ and use again Proposition 4.1 in order to check
that ûδ → û in H1(0, T ;H1(Ω;Rn)) where (û, ε̂, p̂) is the quasistatic evolution given ẑ. We can hence use
convergence (4.6) in order to get that

lim
δ→0
Jδ(ẑδ, ûδ) = J0(ẑ, û) . (4.7)

By combining (4.5) and (4.7) we have that z solves the sharp-interface TO problem.

5. Differentiability of the state operator for γ < +∞
In preparation for obtaining first-order optimality conditions in Section 6, we develop here the analysis of

the control-to-state operator Sk,γ : L∞(Ω)→
(
H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω,Mn
D)
)k+1

. For fixed γ ∈ (0,+∞)
and k ∈ N, the operator Sk,γ maps a control z ∈ L∞(Ω) in the unique corresponding approximate time-discrete
quasistatic evolution (uki , ε

k
i ,p

k
i )ki=0. The differentiability result is stated in Theorem 5.1. For this statement,

an auxiliary functional has to be introduced. For every i = 1, . . . , k, every (v,η, q) ∈ H1(Ω;Rn)× L2(Ω;Mn
S)×

L2(Ω;Mn
D), every p ∈ L2(Ω;Mn

D), and every ϕ ∈ L∞(Ω), we define the functional

Fp
γ (tki , z, ϕ, v,η, q) :=

1

2

∫
Ω

C(z)η ·η dx+
1

2

∫
Ω

H(z)q · q dx (5.1)

+

∫
Ω

(C′(z)ϕ)εki ·η dx+

∫
Ω

(H′(z)ϕ)pki · q dx

+

∫
Ω

ϕd′(z)∇Qhγ(pki − pki−1) · q dx

+
1

2

∫
Ω

d(z)∇2
Qhγ(pki − pki−1)(q − p) · (q − p) dx

−
∫

Ω

ϕ `′(z)fki · v dx ,

where we recall that (u0, ε0,p0) = (0, 0, 0).

Theorem 5.1 (Differentiability of the control-to-state operator Sk,γ). Let γ ∈ (0,+∞). Then, the control-

to-state operator Sk,γ : L∞(Ω)→
(
H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω,Mn
D)
)k+1

is Frechét differentiable. Denoting
by (uki , ε

k
i ,p

k
i )ki=1 the approximate time-discrete quasistatic evolution associated with z ∈ L∞(Ω), for every ϕ ∈

L∞(Ω) the derivative of Sk,γ in z in the direction ϕ is given by the vector (vk,ϕi ,ηk,ϕi , qk,ϕi )ki=0 ∈ A(0)k+1 defined
recursively as the unique solution of

min
{
Fqk,ϕi−1
γ (tki , z, ϕ, v,η, q) : (v,η, q) ∈ A(0)

}
, (5.2)

where we have set qk,ϕ−1 = 0.
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Remark 5.2. Since fk0 = gk0 = wk0 = 0 and qk,ϕ−1 = 0, it is easy to see that (vk,ϕ0 ,ηk,ϕ0 , qk,ϕ0 ) = (0, 0, 0) for every
ϕ ∈ L∞(Ω).

Remark 5.3. Notice that the incremental minimum problems (5.2) define a linear operator from L∞(Ω)

to
(
H1(Ω)× L2(Ω)× L2(Ω)

)k+1
.

As a corollary of Theorem 5.1 we get the first-order optimality conditions for the regularized optimization
problem (3.17). This will be the starting point of the analysis of Section 6.

Corollary 5.4 (Optimality conditions for the approximate time-discrete TO problem). Under
the assumptions of Theorem 5.1, if z ∈ H1(Ω; [0, 1]) is a solution of (3.17) with associated approxi-
mate time-discrete quasistatic evolution (uki , ε

k
i ,p

k
i )ki=0, then there exists (uki , ε

k
i ,p

k
i )k+1
i=1 ∈ A(0)k+1 such that

(ukk+1, ε
k
k+1,p

k
k+1) = (0, 0, 0) and for every i = k, . . . , 1, every ϕ ∈ L∞(Ω) ∩H1(Ω), and every (v,η, q) ∈ A(0)

∫
Ω

C(z)εki ·η dx+

∫
Ω

H(z)pki · q dx+

∫
Ω

d(z)∇2
Qhγ(pki − pki−1)(pki − pki+1) · q dx (5.3)

−
∫

Ω

`(z)fki · v dx−
∫

ΓN

gki · v dHn−1 = 0 ,

k∑
j=1

(∫
Ω

ϕ `′(z)(fkj − fkj−1) · (ukj + ukj ) dx (5.4)

−
∫

Ω

(
C′(z)ϕ

)
(εkj − εkj−1) · εkj dx−

∫
Ω

(
H′(z)ϕ

)
(pkj − pkj−1) ·pkj dx

)
−
∫

Ω

ϕd′(z)∇Q

(
hγ(pkj − pkj−1)−∇Qhγ(pkj−1 − pkj−2)

)
·pkj dx

)
+

∫
Ω

δ∇z · ∇ϕ+
ϕ

δ
(z(1− z)2 − z2(1− z)) dx = 0 ,

where pk−1 := 0.

Proof. Let z ∈ H1(Ω; [0, 1]) be a minimizer of Jk,δ with corresponding approximate time-discrete quasistatic
evolution (uki , ε

k
i ,p

k
i )ki=0. Let ϕ ∈ L∞(Ω) ∩ H1(Ω) and t ∈ R \ {0}. Setting zt := z + tϕ and denoting

by (uki,t, ε
k
i,t,p

k
i,t)

k
i=0 the approximate time-discrete quasistatic evolution corresponding to zt, we have that

Jk,δ(z, (uki )ki=0) ≤ Jk,δ(zt, (uki,t)). Differentiating Jk,δ(zt, (uki,t)) w.r.t. t, we deduce from the minimality of z and
from Theorem 5.1 that∫

Ω

ϕ `′(z) fkk ·uk dx+

∫
Ω

`(z) fkk · v
k,ϕ
k dx+

∫
ΓN

gkk · v
k,ϕ
k dHn−1 (5.5)

−
k∑
j=1

(∫
Ω

ϕ `′(z)(fkj − fkj−1) ·ukj−1 dx+

∫
Ω

`(z)(fkj − fkj−1) · vk,ϕj−1 dx

)

−
k∑
j=1

∫
Ω

(gkj − gkj−1) · vk,ϕj−1 dHn−1 +

∫
Ω

δ∇z · ∇ϕ+
ϕ

δ
(z(1− z)2 − z2(1− z)) dx = 0

for every ϕ ∈ H1(Ω)∩L∞(Ω), where (vk,ϕi ,ηk,ϕi , qk,ϕi )ki=0 ∈ A(0)k has been defined in Theorem 5.1. We further

set (vk,ϕ−1 ,η
k,ϕ
−1 , q

k,ϕ
−1 ) := (0, 0, 0).
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We now define (uki , ε
k
i ,p

k
i ) ∈ A(0) as the unique solution of the minimum problem

min

{
1

2

∫
Ω

C(z)η ·η dx+
1

2

∫
Ω

H(z)q · q dx

+
1

2

∫
Ω

d(z)∇2
Qhγ(pki − pki−1)(q − pki+1) · (q − pki+1) dx

−
∫

Ω

`(z)fki · v dx−
∫

ΓN

gki · v dHn−1 : (v,η, q) ∈ A(0)

}

for i = k, . . . , 1, where we have set (ukk+1, ε
k
k+1,p

k
k+1) := (0, 0, 0). In particular, (uki , ε

k
i ,p

k
i ) satisfies (5.3).

In order to deduce (5.4), we notice that by Theorem 5.1 and by (5.3) and using that fk0 = gk0 = ukk+1 = 0

and εkk+1 = pkk+1 = 0 we have that

∫
Ω

`(z) fkk · v
k,ϕ
k dx+

∫
ΓN

gkk · v
k,ϕ
k dHn−1

−
k∑
j=1

(∫
Ω

`(z)(fkj − fkj−1) · vk,ϕj−1 dx+

∫
Ω

(gkj − gkj−1) · vk,ϕj−1 dHn−1

)

=

∫
Ω

C(z)εkk ·Ev
k,ϕ
k dx−

k∑
j=1

∫
Ω

C(z)(εkj − εkj−1) ·Evk,ϕj−1 dx

=

∫
Ω

C(z)Eukk ·η
k,ϕ
k dx−

∫
Ω

C(z)pkk ·η
k,ϕ
k dx+

∫
Ω

C(z)εkk · q
k,ϕ
k dx

−
k∑
j=1

(∫
Ω

C(z)(Eukj − Eukj−1) ·ηk,ϕj−1 dx−
∫

Ω

C(z)(pkj − pkj−1) ·ηk,ϕj−1 dx

+

∫
Ω

C(z)(εkj − εkj−1) · qk,ϕj−1 dx

)
=

k∑
j=1

(∫
Ω

C(z)Eukj · (η
k,ϕ
j − ηk,ϕj−1) dx−

∫
Ω

C(z)pkj · (η
k,ϕ
j − ηk,ϕj−1) dx

+

∫
Ω

C(z)εkj · (q
k,ϕ
j − qk,ϕj−1) dx

)
=

k∑
j=1

(∫
Ω

ϕ `′(z)(fkj − fkj−1) ·ukj dx−
∫

Ω

(
C′(z)ϕ

)
(εkj − εkj−1) ·Eukj dx

)

−
k∑
j=1

(∫
Ω

H(z)(qk,ϕj − qk,ϕj−1) ·pkj dx−
∫

Ω

(
C′(z)ϕ

)
(εkj − εkj−1) ·pkj dx

+

∫
Ω

(
H′(z)ϕ

)
(pkj − pkj−1) ·pkj dx

+

∫
Ω

ϕd′(z)
(
∇Qhγ(pkj − pkj−1)−∇Qhγ(pkj−1 − pkj−2)

)
·pkj dx

+

∫
Ω

d(z)∇2
Qhγ(pkj − pkj−1)(qk,ϕj − qk,ϕj−1) ·pkj dx



18 S. ALMI AND U. STEFANELLI

−
∫

Ω

d(z)∇2
Qhγ(pkj−1 − pkj−2)(qk,ϕj−1 − q

k,ϕ
j−2) ·pkj dx

)
+

k∑
j=1

(∫
Ω

H(z)pkj · (q
k,ϕ
j − qk,ϕj−1) dx

+

∫
Ω

d(z)∇2
Qhγ(pkj − pkj−1)(pkj − pkj+1) · (qk,ϕj − qk,ϕj−1) dx

)
=

k∑
j=1

(∫
Ω

ϕ `′(z)(fkj − fkj−1) ·ukj dx−
∫

Ω

(
C′(z)ϕ

)
(εkj − εkj−1) · εkj dx

−
∫

Ω

(
H′(z)ϕ

)
(pkj − pkj−1) ·pkj dx

−
∫

Ω

ϕd′(z)
(
∇Qhγ(pkj − pkj−1)−∇Qhγ(pkj−1 − pkj−2)

)
·pkj dx

)
,

where, in the last equality, we have used the following

k∑
j=1

∫
Ω

d(z)∇2
Qhγ(pkj − pkj−1)(pkj − pkj+1) · (qk,ϕj − qk,ϕj−1) dx

=

k∑
j=1

∫
Ω

d(z)∇2
Qhγ(pkj − pkj−1)(qk,ϕj − qk,ϕj−1) ·pkj dx

−
k∑
j=1

∫
Ω

d(z)∇2
Qhγ(pkj−1 − pkj−2)(qk,ϕj−1 − q

k,ϕ
j−2) ·pkj dx .

All in all, we have proved that∫
Ω

`(z) fkk · v
k,ϕ
k dx+

∫
ΓN

gkk · v
k,ϕ
k dHn−1

−
k∑
j=1

(∫
Ω

`(z)(fkj − fkj−1) · vk,ϕj−1 dx−
∫

Ω

(gkj − gkj−1) · vk,ϕj−1 dHn−1

)

=

k∑
j=1

(∫
Ω

ϕ `′(z)(fkj − fkj−1) ·ukj dx−
∫

Ω

(
C′(z)ϕ

)
(εkj − εkj−1) · εkj dx

−
∫

Ω

(
H′(z)ϕ

)
(pkj − pkj−1) ·pkj dx

)
−
∫

Ω

ϕd′(z)∇Q

(
hγ(pkj − pkj−1)−∇Qhγ(pkj−1 − pkj−2)

)
·pkj dx

)
,

which, together with (5.5), implies (5.4).

The rest of the section is devoted to the proof of Theorem 5.1. The next two lemmas are a reformulation of
Lemmas 3.5 and 3.6 in [2], which is needed in order to take care of the term pki−1 appearing in the minimization
problem (3.15) at time tki and which is also varying with the phase field z. We recall that this was not the case
in [2], as the problem considered there is static.
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Lemma 5.5. For z ∈ [0, 1], γ ∈ (0,+∞), and P ∈Mn
D, let Fz,γ,P : Mn

D →Mn
D be the map defined by

Fz,γ,P (Q) := C(z)Q + H(z)Q + d(z)∇Qhγ(Q− P ) for every Q ∈Mn
D . (5.6)

Then, there exist three constants C1, C2, C3 > 0 independent of γ and of z and a constant Cγ > 0 (dependent
on γ but not on z) such that for every z, z1, z2 ∈ [0, 1] and every P ,P 1,P 2,Q1,Q2 ∈Mn

D the following holds:

|Fz,γ,P (Q1)− Fz,γ,P (Q2)| ≤ Cγ |Q1 −Q2| ; (5.7)(
Fz,γ,P (Q1)− Fz,γ,P (Q2)

)
·
(
Q1 −Q2

)
≥ C1|Q1 −Q2|2 ; (5.8)(

Fz1,γ,P 1
(Q1)− Fz2,γ,P 2

(Q2)
)
·
(
Q1 −Q2

)
≥ C1|Q1 −Q2|2 (5.9)

− C2(|Q2|+ 1)|z1 − z2||Q1 −Q2| − C3γ|Q1 −Q2||P 1 − P 2| .

In particular, Fz,γ,P is invertible and F−1
z,γ,P : Mn

D →Mn
D satisfies

|F−1
z,γ,P (Q1)− F−1

z,γ,P (Q2)| ≤ C̃|Q1 −Q2| . (5.10)

for a positive constant C̃ independent of z, γ, and P .

Proof. Inequalities (5.7), (5.8), and (5.10) can be proved repeating the arguments of Lemma 3.5 in [2]. Let us
prove (5.9). Let z1, z2 ∈ [0, 1] and P 1,P 2,Q1,Q2 ∈Mn

D. By a simple algebraic argument and by using (5.8) we
get (

Fz1,γ,P 1(Q1)− Fz2,γ,P 2(Q2)
)
·
(
Q1 −Q2

)
(5.11)

=
(
Fz1,γ,P 1(Q1)− Fz1,γ,P 1(Q2)

)
·
(
Q1 −Q2

)
+
(
Fz1,γ,P 1(Q2)− Fz2,γ,P 2(Q2)

)
·
(
Q1 −Q2

)
≥ C1|Q1 −Q2|2 +

(
Fz1,γ,P 1

(Q2)− Fz2,γ,P 2
(Q2)

)
·
(
Q1 −Q2

)
.

We now estimate the last term on the right-hand side of (5.11) rewritten as(
Fz1,γ,P 1

(Q2)− Fz2,γ,P 2
(Q2)

)
·
(
Q1 −Q2

)
(5.12)

=
(
C(z1)− C(z2)

)
Q2 ·

(
Q1 −Q2

)
+
(
H(z1)−H(z2)

)
Q2 ·

(
Q1 −Q2

)
+
(
d(z1)∇Qhγ(Q2 − P 1)− d(z2)∇Qhγ(Q2 − P 2)

)
·
(
Q1 −Q2

)
.

By the Lipschitz continuity of C, H, and d, and by (3.13)–(3.14), we hence have(
Fz1,γ,P 1

(Q2)− Fz2,γ,P 2
(Q2)

)
·
(
Q1 −Q2

)
(5.13)

≥ −C2

(
|Q2|+ 1

)
|z1 − z2||Q1 −Q2| − C3γ|P 1 − P 2||Q1 −Q2| ,

for some positive constant C2, C3 independent of z, γ, P 1, and P 2. Combining (5.11)–(5.13) we deduce (5.9).
Relation (5.8) entails that Fz,γ,P is invertible and (5.10) follows from (5.8) with C̃ = C−1

1 .

Lemma 5.6. For every γ ∈ (0,+∞), every z ∈ R, and every P ∈Mn
D, let the map bz,γ,P : Mn

S →Mn
S be defined

as

bz,γ,P (E) := C(z)
(
E− F−1

z,γ,P (ΠMnD (C(z)E))
)

for every E ∈Mn
S , (5.14)
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where ΠMnD : Mn → Mn
D denotes the projection operator on Mn

D. Then, there exist two positive constants c1, c2
such that for every γ ∈ (0,+∞), every z ∈ R, every P ∈Mn

D, and every E1,E2 ∈Mn
S

|bz,γ,P (E1)− bz,γ,P (E2)| ≤ c1|E1 −E2| , (5.15)

(bz,γ,P (E1)− bz,γ,P (E2)) · (E1 −E2) ≥ c2|E1 −E2|2 . (5.16)

Proof. The lemma can be proved as Lemma 3.6 of [2] by making use of the already established Lemma 5.5.

We are now in a position to prove an Lp-regularity estimate and a Lipschitz dependence on the phase-field
variable for an approximate time-discrete quasistatic evolution. Before stating these results, we introduce the
notation

‖(u, ε,p)‖H1×L2×L2 := ‖u‖H1 + ‖ε‖2 + ‖p‖2 (5.17)

for (u, ε,p) ∈ H1(Ω;Rn) × L2(Ω;Mn
S) × L2(Ω;Mn

D). The symbol ‖(u, ε,p)‖W 1,r×Lr×Lr is used for (u, ε,p) ∈
W 1,r(Ω;Rn)×Lr(Ω;Mn

S)×Lr(Ω;Mn
D). Finally, for (ui, εi,pi)

k
i=0 ∈

(
H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D)
)k+1

the norm ‖(ui, εi,pi)ki=0‖(H1×L2×L2)k+1 is defined by naturally extending (5.17). The same is done in(
W 1,r(Ω;Rn)× Lr(Ω;Mn

S)× Lr(Ω;Mn
D)
)k+1

.

Lemma 5.7. Let k ∈ N and γ ∈ (0,+∞). Then, there exists p̃ ∈ (2, p) such that the control-to-state oper-
ator Sk,γ : L∞(Ω) → (H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D))k+1 takes values in (W 1,p̃(Ω;Rn) × Lp̃(Ω;Mn

S) ×
Lp̃(Ω;Mn

D))k+1 and satisfies

‖Sk,γ(z)‖(W 1,p̃×Lp̃×Lp̃)k+1 (5.18)

≤ C
(
1 + ‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn)) + ‖w‖L∞([0,T ];W 1,p(Ω;Rn))

)
for some positive constant C independent of i, k, γ, and z.

Furthermore, there exists a positive constant Cγ,k depending only on γ and k such that for every z1, z2 ∈
L∞(Ω) and every q ∈ (2, p̃]

‖Sk,γ(z1)− Sk,γ(z2)‖(W 1,q×Lq×Lq)k+1 (5.19)

≤ Cγ,k
(
1 + ‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn))

+ ‖w‖L∞([0,T ];W 1,p(Ω;Rn))

)
‖z1 − z2‖∞ .

Proof. The proof of (5.18)–(5.19) follows from an application of Theorem 1.1 in [15]. To apply such result, we
first have to recast the Euler-Lagrange equations associated to the equilibrium condition (3.15) in terms of the
sole displacement variable u.

Let us fix γ > 0 and z ∈ L∞(Ω). For simplicity of notation, let (ui, εi,pi)
k
i=0 = Sk,γ(z) and (uji , ε

j
i ,p

j
i )
k
i=0 =

Sk,γ(zj), j = 1, 2. We further recall the definition of fki , gki , and wki given in (3.4) and that (u0, ε0,p0) =

(uj0, ε
j
0,p

j
0) = (0, 0, 0).

From the minimization problem (3.15) we deduce the following Euler-Lagrange equation: for every (v,η, q) ∈
A(0) and every i = 1, . . . , k∫

Ω

C(z)(Eui − pi) ·η dx+

∫
Ω

H(z)pi · q dx+

∫
Ω

d(z)∇Qhγ(pi − pi−1) · q dx (5.20)

−
∫

Ω

`(z)fki · v dx−
∫

ΓN

gki · v dHn−1 = 0 .
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By testing (5.20) with (0,η,−η) ∈ A(0) for η ∈ L2(Ω;Mn
D) we get that

C(z)pi + H(z)pi + d(z)∇Qhγ(pi − pi−1) = ΠMnD (C(z)Eui) a.e. in Ω . (5.21)

In view of the definition (5.6) of Fz,γ,P , we have Fz(x),γ,pi−1(x)(pi(x)) = ΠMnD
(
C(z(x))Eui(x)

)
and pi(x) =

F−1
z(x),γ,pi−1(x)

(
ΠMnD

(
C(z(x))Eui(x)

))
for a.e. x ∈ Ω.

Recalling definition (5.14), we define for x ∈ Ω, E ∈Mn
S , and i = 1, . . . , k,

bz,γ,pi−1
(x,E) := bz(x),γ,pi−1(x)(E) = C(z(x))

(
E− F−1

z(x),γ,pi−1(x)(ΠMnD (C(z(x))E)
)
.

From now on, when not explicitly needed, we drop the dependence on the spatial variable x ∈ Ω in the definition
of F−1

z,γ,pi−1
, since all the arguments discussed below are valid uniformly in Ω. We rewrite the Euler-Lagrange

equation (5.20) in terms of the sole displacement ui and for test functions of the form (ψ,Eψ, 0) ∈ A(0) for
ψ ∈ H1(Ω;Rn) with ψ = 0 on ΓD:∫

Ω

bz,γ,pi−1
(x,Eui) ·Eψ dx =

∫
Ω

`(z)fki ·ψ dx+

∫
ΓN

gki ·ψ dHn−1 . (5.22)

In view of Lemma 5.6, the nonlinear operator Bz,γ,pi−1
: W 1,p(Ω;Rn) → W−1,p(Ω;Rn) defined as

Bz,γ,pi−1
(u) := bz,γ,pi−1

(x,Eu) satisfies the hypotheses of Theorem 1.1 in [15]. Since Ω ∪ ΓN is Gröger reg-

ular, p ∈ (2,+∞), fki ∈ Lp(Ω;Rn), gki ∈ Lp(ΓN ;Rn), and wki ∈W 1,p(Ω;Rn), we infer from Theorem 1.1 of [15]
applied to equation (5.22) that there exist p̃ ∈ (2, p) and a constant C > 0 (both independent of i and k) such
that

‖ui‖W 1,q ≤ C(‖fki ‖p + ‖gki ‖p + ‖wki ‖W 1,p) (5.23)

for every q ∈ (2, p̃]. In particular, C is independent of z ∈ L∞(Ω), of γ ∈ (0,+∞), of k ∈ N, and of q ∈ (2, p̃].
Inequality (5.18) can be deduced by combining (5.10) and (5.23). Indeed, we have that

‖pi‖q = ‖F−1
z,γ,pi−1

(ΠMnD (C(z)Eui))‖q (5.24)

≤ ‖F−1
z,γ,pi−1

(ΠMnD (C(z)Eui))− F−1
z,γ,pi−1

(0)‖q + ‖F−1
z,γ,pi−1

(0)‖q

≤ C̃‖ΠMnD (C(z)Eui)‖q + ‖F−1
z,γ,pi−1

(0)‖q ≤ C‖ui‖W 1,q + ‖F−1
z,γ,pi−1

(0)‖q .

To conclude the estimate, we notice that if q := F−1
z,γ,pi−1

(0), we have that

C(z)q + H(z)q = −d(z)∇Qhγ(q − pi−1) = −d(z)
q − pi−1√

|q − pi−1|2 + 1
γ2

.

Multiplying the previous expression by q and using (2.4)–(2.5) we deduce that

(αC + αH)|q|2 ≤ d(z)|q|

a.e. in Ω. Hence, ‖F−1
z,γ,pi−1

(0)‖q is bounded uniformly w.r.t. i, k, γ, and z. Thus, combining (5.23)–(5.24) we

infer (5.18) by the triangle inequality.
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In order to prove (5.19), we first rewrite the Euler-Lagrange equation (5.22) satisfied by u2
i , i = 1, . . . , k.

Namely, for every ψ ∈W 1,p̃′(Ω;Rn) with ψ = 0 on ΓD we have, after a simple algebraic manipulation,∫
Ω

Bz1,γ,p1
i−1

(u2
i ) ·Eψ dx (5.25)

=

∫
Ω

(
C(z1)− C(z2)

)(
Eu2

i − F−1
z1,γ,p1

i−1
(ΠMnD (C(z1)Eu2

i ))
)
· Eψ dx

+

∫
Ω

C(z2)
(
F−1
z2,γ,p2

i−1
(ΠMnD (C(z2)Eu2

i ))− F−1
z1,γ,p1

i−1
(ΠMnD (C(z1)Eu2

i ))
)
· Eψ dx

+

∫
Ω

`(z2)fki ·ψ dx+

∫
ΓN

gki ·ψ dHn−1 .

Comparing (5.25) with (5.22) written for z1 and (u1
i , ε

1
i ,p

1
i ), we deduce that u1

i and u2
i solve the same kind

of equation, with a different right-hand side, which however always belongs to W−1,p̃(Ω;Rn). Thus, applying
once more ([15], Thm. 1.1), we infer that there exists C > 0 independent of z1, z2, of γ, of i, and of k, such that
for every q ∈ (2, p̃]

‖u1
i − u2

i ‖W 1,q ≤ C
(∥∥∥(C(z1)− C(z2)

)(
Eu2

i − F−1
z2,γ,p2

i−1
(ΠMnD (C(z2)Eu2

i ))
)∥∥∥
W−1,q

(5.26)

+
∥∥∥C(z1)

(
F−1
z2,γ,p2

i−1
(ΠMnD (C(z2)Eu2

i ))− F−1
z1,γ,p1

i−1
(ΠMnD (C(z1)Eu2

i ))
)∥∥∥
W−1,q

+
∥∥(`(z1)− `(z2)

)
fki
∥∥
W−1,q

)
=: C(I1 + I2 + I3) .

By the Lipschitz continuity of C, by the identification p2
i = F−1

z2,γ,p2
i−1

(ΠMnD (C(z2)Eu2
i )), by the Hölder inequality,

and by (5.18) we deduce that

I1 ≤ C‖z1 − z2‖∞
(
‖u2

i ‖W 1,p̃ + ‖p2
i ‖p̃
)

(5.27)

≤ C‖z1 − z2‖∞
(
1 + ‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn))

+ ‖w‖L∞([0,T ];W 1,p(Ω;Rn))

)
.

Rewriting (5.9) for P j = pji−1 and Qj = F−1

zj ,γ,p
j
i−1

(ΠMnD (C(zj)Eu
2
i )) we get that for a.e. x ∈ Ω

C1|F−1
z1,γ,p1

i−1
(ΠMnD (C(z1)Eu2

i ))− F−1
z2,γ,p2

i−1
(ΠMnD (C(z2)Eu2

i ))| (5.28)

≤ Lip(C)|Eu2
i ||z1 − z2|+ C2

(
|F−1
z2,γ,p2

i−1
(ΠMnD (C(z2)Eu2

i ))|+ 1
)
|z1 − z2|

+ C3γ|p1
i−1 − p2

i−1| .

The identification p2
i = F−1

z2,γ,p2
i−1

(ΠMnD (C(z2)Eu2
i )) and inequalities (5.18) and (5.28) imply that

I2 ≤ C(‖u2
i ‖W 1,p̃ + ‖p2

i ‖p̃ + 1)‖z1 − z2‖∞ + C3γ‖p1
i−1 − p2

i−1‖q (5.29)

≤ C(‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn))

+ ‖w‖L∞(0,T ;W 1,p(Ω;Rn)) + 1)‖z1 − z2‖∞ + C3γ‖p1
i−1 − p2

i−1‖q .

Finally, by the Lipschitz continuity of ` we conclude that

I3 ≤ C‖f‖L∞(0,T ;Lp(Ω;Rn))‖z1 − z2‖∞ . (5.30)
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Combining inequalities (5.26)–(5.30) we infer that

‖u1
i − u2

i ‖W 1,q ≤ C
(
‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn)) (5.31)

+ ‖w‖L∞(0,T ;W 1,p(Ω;Rn)) + 1
)
‖z1 − z2‖∞ + C3γ‖p1

i−1 − p2
i−1‖q .

We notice that inequality (5.9) tested with

Qj = F−1

zj(x),γ,pji−1(x)

(
ΠMnD (C(zj(x))Euji (x))

)
= pji (x) for a.e. x ∈ Ω

and integrated over Ω implies

‖p1
i − p2

i ‖q ≤ C
(
‖u1

i − u2
i ‖W 1,q + (‖u2

i ‖W 1,p̃ + ‖p2
i ‖Lp̃ + 1)‖z1 − z2‖∞

)
(5.32)

+ C3γ‖p1
i−1 − p2

i−1‖q
≤ C‖u1

i − u2
i ‖W 1,q + C3γ‖p1

i−1 − p2
i−1‖q

+ C(‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn))

+ ‖w‖L∞(0,T ;W 1,p(Ω;Rn)) + 1)‖z1 − z2‖∞
≤ C(‖f‖L∞(0,T ;Lp(Ω;Rn)) + ‖g‖L∞(0,T ;Lp(ΓN ;Rn))

+ ‖w‖L∞(0,T ;W 1,p(Ω;Rn)) + 1)‖z1 − z2‖∞ + Cγ‖p1
i−1 − p2

i−1‖q .

By the triangle inequality, an estimate similar to (5.32) holds for ε1
i − ε2

i , for every i = 1, . . . , k. Iterating the
inequalities (5.31)–(5.32) for l = 1, . . . , i and taking into account that (u1

0, ε
1
0,p

1
0) = (u2

0, ε
2
0,p

2
0) = (0, 0, 0), we

obtain (5.19). This concludes the proof of the lemma.

We are now ready to prove Theorem 5.1. The proof follows the lines of the proofs of Theorem 3.1 in [2] and
of Theorem 3.3 in [5]. The main difference is that, as in [34], the forward problem is now time dependent and
not static.

Proof of Theorem 5.1. Let us fix k ∈ N, γ ∈ (0,+∞), and z, ϕ ∈ L∞(Ω). For t ∈ R, let zt := z +
tϕ, (uki,t, ε

k
i,t,p

k
i,t)

k
i=1 := Sk,γ(zt). The solution for t = 0 will be simply denoted by (uki , ε

k
i ,p

k
i )ki=1. Moreover,

let (vk,ϕi ,ηk,ϕi , qk,ϕi ) be the solution of the recursive minimization problem (5.2) and set

vki,t := uki,t − uki − tv
k,ϕ
i , ηki,t := εki,t − εki − tη

k,ϕ
i , qki,t := pki,t − pki − tq

k,ϕ
i .

We want to show that

‖(vki,t,ηki,t, qki,t)‖H1×L2×L2 = o(t) , (5.33)

uniformly w.r.t. i = 1, . . . , k. In particular, (5.33) implies the Frechét differentiability of the control-to-state
map Sk,γ .

We prove (5.33) by induction on i. For i = 1, (5.33) follows from Theorem 3.1 in [2], as the initial
value is (uk0 , ε

k
0 ,p

k
0) = (0, 0, 0) by the assumptions on the data f(0) = g(0) = w(0) = 0. For i > 1, assume

that ‖(vki−1,t,η
k
i−1,t, q

k
i−1,t)‖H1×L2×L2 = o(t). Writing the Euler-Lagrange equations satisfied by (uki,t, ε

k
i,t,p

k
i,t),

(uki , ε
k
i ,p

k
i ), and (vk,ϕi ,ηk,ϕi , qk,ϕi ) and subtracting the second and the third from the first one, we obtain, for
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every (v,η, q) ∈ A(0),∫
Ω

C(zt)ε
k
i,t ·η dx−

∫
Ω

C(z)εki ·η dx− t
∫

Ω

C(z)ηk,ϕi ·η dx− t
∫

Ω

(C′(z)ϕ)εki ·η dx

+

∫
Ω

H(zt)p
k
i,t · q dx−

∫
Ω

H(z)pki · q dx− t
∫

Ω

H(z)qk,ϕi · q dx

− t
∫

Ω

(H′(z)ϕ)pki · q dx+

∫
Ω

d(zt)∇Qhγ(pki,t − pki−1,t) · q dx

−
∫

Ω

d(z)∇Qhγ(pki − pki−1) · q dx− t
∫

Ω

ϕd′(z)∇Qhγ(pki − pki−1) · q dx

− t
∫

Ω

d(z)∇2
Qhγ(pki − pki−1)(qk,ϕi − qk,ϕi−1) · q dx−

∫
Ω

`(zt)f
k
i · v dx

+

∫
Ω

`(z)fki · v dx+ t

∫
Ω

ϕ `′(z)fki · v dx = 0 .

By a simple algebraic manipulation, we rewrite the previous equality as

0 =

(∫
Ω

C(zt)ε
k
i,t ·η dx−

∫
Ω

C(z)εki ·η dx− t
∫

Ω

C(z)ηk,ϕi ·η dx (5.34)

− t
∫

Ω

(C′(z)ϕ)εki ·η dx

)
+

(∫
Ω

H(zt)p
k
i,t · q dx−

∫
Ω

H(z)pki · q dx− t
∫

Ω

H(z)qk,ϕi · q dx

− t
∫

Ω

(H′(z)ϕ)pki · q dx

)
+

(∫
Ω

(
d(zt)− d(z)− tϕ d′(z)

)
∇Qhγ(pki − pki−1) · q dx

+

∫
Ω

(
d(zt)− d(z)

)(
∇Qhγ(pki,t − pki−1,t)−∇Qhγ(pki − pki−1)

)
· q dx

)
+

(∫
Ω

d(z)
(
∇Qhγ(pki,t − pki−1,t)−∇Qhγ(pki − pki−1)

− t∇2
Qhγ(pki − pki−1)(qk,ϕi − qk,ϕi−1)

)
· q dx

)
−
(∫

Ω

(
`(zt)− `(z)− t`′(z)ϕ

)
fki · v dx

)
=: It,1 + It,2 + It,3 + It,4 + It,5 .

Let us now rewrite It,1, It,2, and It,4 from (5.34). For It,1 we have that

It,1 =

∫
Ω

C(z)ηki,t ·η dx+

∫
Ω

(C(zt)− C(z))(εki,t − εki ) ·η dx+

∫
Ω

(
C(zt)− C(z)− t(C′(z)ϕ)

)
εki ·η dx.

In a similar way, we have that

It,2 =

∫
Ω

H(z)qki,t · q dx+

∫
Ω

(H(zt)−H(z))(pki,t − pki ) · q dx+

∫
Ω

(
H(zt)−H(z)− t(H′(z)ϕ)

)
pki · q dx.
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As for It,4, since hγ ∈ C∞(Mn
D), for every t > 0 there exists ξt on the segment [pki − pki−1,p

k
i,t − pki−1,t] such

that

It,4 =

∫
Ω

d(z)
(
∇2

Qhγ(ξt)(p
k
i,t − pki−1,t − pki + pki−1)− t∇2

Qhγ(pki − pki−1)(qk,ϕi − qk,ϕi−1)
)
· q dx

=

∫
Ω

d(z)∇2
Qhγ(pki − pki−1)(qki,t − qki−1,t) · q dx

+

∫
Ω

d(z)
(
∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)

)
(pki,t − pki−1,t − pki + pki−1) · q dx .

Inserting the previous equalities in (5.34), choosing the test function (v,η, q) = (vki,t,η
k
i,t, q

k
i,t) ∈ A(0),

using (2.4)–(2.5), the Lipschitz continuity of C(·), H(·), d(·), and ∇Qhγ , the convexity of hγ , and Lemma 5.7,
we obtain the estimate

‖(vki,t,ηki,t, qki,t)‖2H1×L2×L2 ≤ Cγ,k t
2‖ϕ‖2∞‖(vki,t,ηki,t, qki,t)‖H1×L2×L2 (5.35)

−
∫

Ω

(
C(zt)− C(z)− t(C′(z)ϕ)

)
εki ·ηki,t dx

−
∫

Ω

(
H(zt)−H(z)− t(H′(z)ϕ)

)
pki · qki,t dx

−
∫

Ω

(
d(zt)− d(z)− tϕ d′(z)

)
∇Qhγ(pki − pki−1) · qki,t dx

+

∫
Ω

d(z)∇2
Qhγ(pki − pki−1)qki−1,t · qki,t dx

−
∫

Ω

d(z)
(
∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)

)
(pki,t − pki−1,t − pki + pki−1) · qki,t dx

+

∫
Ω

(
`(zt)− `(z)− tϕ `′(z)

)
fki · vki,t dx ,

for some positive constant Cγ,k dependent on γ ∈ (0,+∞) and k ∈ N. In view of the regularity of C(·), H(·), d(·),
and `(·), of the bounds |∇Qhγ(Q)| ≤ 1 and |∇2

Qhγ(Q)| ≤ 2γ, and of Lemma 5.7, we can continue in (5.35) with

‖(vki,t,ηki,t, qki,t)‖2H1×L2×L2 (5.36)

≤ C̃γ,k t2‖ϕ‖2∞
(
‖(uki , εki ,pki )‖H1×L2×L2 + ‖fki ‖2 + 1

)
‖(vki,t,ηki,t, qki,t)‖H1×L2×L2

+ C̃γ‖(vki−1,t,η
k
i−1,t, q

k
i−1,t)‖H1×L2×L2‖(vki,t,ηki,t, qki,t)‖H1×L2×L2

−
∫

Ω

d(z)
(
∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)

)
(pki,t − pki ) · qki,t dx

+

∫
Ω

d(z)
(
∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)

)
(pki−1,t − pki−1) · qki,t dx

≤ Cγ,k t‖ϕ‖∞
(
t‖ϕ‖∞

(
‖(uki , εki ,pki )‖H1×L2×L2 + ‖fki ‖2 + 1

)
+ ‖∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)‖ν

)
‖(vki,t,ηki,t, qki,t)‖H1×L2×L2

+ C̃γ‖(vki−1,t,η
k
i−1,t, q

k
i−1,t)‖H1×L2×L2‖(vki,t,ηki,t, qki,t)‖H1×L2×L2
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for some positive constants C̃γ,k, Cγ,k depending on γ and k, for C̃γ depending only on γ, and for some ν ∈
(1,+∞). In order to conclude for (5.33) we are left to show that

lim
t→0
‖∇2

Qhγ(ξt)−∇2
Qhγ(pki − pki−1)‖ν = 0 . (5.37)

Arguing as in Proposition 3.4 we get that pkj,t → pkj in L2(Ω;Mn
D) as t → 0 for every j = 1, . . . , k, Hence, up

to a subsequence we may assume that pkj,t → pkj a.e. in Ω for j = 1, . . . , k, which implies that ξt → pki − pki−1

and ∇2
Qhγ(ξt) → ∇2

Qhγ(pki − pki−1) a.e. in Ω. In view of the bound |∇2
Qhγ(ξt)| ≤ 2γ in Ω by the Dominated

Convergence Theorem we get (5.37). This, together with (5.36), concludes the proof of (5.33). In particular, esti-
mate (5.33) can be made uniform in i as we have to control a finite number of norms ‖(vki,t,ηki,t, qki,t)‖H1×L2×L2

for i = 1, . . . , k.

6. Optimality conditions

The aim of this section is to provide first-order optimality conditions for the TO problem (3.3), see
Theorem 6.4. This will be obtained by passing to the limit in the corresponding optimality conditions for
the time-discrete TO problem (3.10). Since we believe this to be of independent interest, also in view of a
possible numerical implementation of this TO perspective, we analyse the time-discrete problem in detail in
Section 6.1.

6.1. Optimality of the time-discrete problem

In the following we give the first-order optimality conditions for the time-discrete problem (3.10) by
passing to the limit as γ → +∞ in (5.3)–(5.4). We start by proving a uniform bound for the adjoint vari-

ables (uki,γ , ε
k
i,γ ,p

k
i,γ)k+1

i=0 ∈
(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

satisfying (5.3)–(5.4). From now on, we
will use the notation

‖ε‖2C(z) :=

∫
Ω

C(z)ε · ε dx ‖p‖2H(z) :=

∫
Ω

H(z)p ·pdx (6.1)

for every z ∈ L∞(Ω), every ε ∈ L2(Ω;Mn
S), and every p ∈ L2(Ω;Mn

D). In view of (2.4)–(2.5), ‖ · ‖C(z) and ‖ · ‖H(z)

are two norms in L2(Ω;Mn
S) and L2(Ω;Mn

D), respectively, and are both equivalent to the usual L2-norm,
uniformly w.r.t. z ∈ L∞(Ω).

We now state the main result of this section.

Theorem 6.1 (Optimality for the time-discrete TO problem). Let k ∈ N and fki , g
k
i , w

k
i be defined as

in (3.4). For γ ∈ (0,+∞), let zk,γ ∈ H1(Ω; [0, 1]) be a solution of the approximate time-discrete TO prob-
lem (3.17). Assume that zk,γ ⇀ zk weakly in H1(Ω) as γ → +∞. Then, zk ∈ H1(Ω; [0, 1]) solves (3.10) and,
denoted with (uki , ε

k
i ,p

k
i )ki=0 the corresponding time-discrete quasistatic evolution, there exist (ρki )ki=0, (π

k
i )k+1
i=1 ∈(

L2(Ω;Mn
D)
)k+1

, and (uki , ε
k
i ,p

k
i )k+1
i=1 ∈

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

such that for every every
i = 0, . . . , k, every (v,η, q) ∈ A(0), and ϕ ∈ H1(Ω) ∩ L∞(Ω):∫

Ω

C(zk)εki ·η dx+

∫
Ω

H(zk)pki · q dx (6.2)

+

∫
Ω

ρki · q dx−
∫

Ω

`(zk)fki · v dx−
∫

ΓN

gki · v dHn−1 = 0 ,

ρki · (pki − pki−1) = d(z)|pki − pki−1| in Ω , pki − pki−1 = 0 in {|ρki | < d(z)} , (6.3)
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Ω

C(zk)εki ·η dx+

∫
Ω

H(zk)pki · q dx (6.4)

+

∫
Ω

πki · q dx−
∫

Ω

`(zk)fki · v dx−
∫

ΓN

gki · v dHn−1 = 0 ,

k∑
j=1

(∫
Ω

ϕ `′(zk)(fkj − fkj−1) · (ukj + ukj ) dx−
∫

Ω

(
C′(zk)ϕ

)
(εkj − εkj−1) · εkj dx (6.5)

−
∫

Ω

(
H′(zk)ϕ

)
(pkj − pkj−1) ·pkj dx−

∫
Ω

ϕ
d′(zk)

d′(zk)
(ρkj − ρkj−1) ·pkj dx

)
,

+

∫
Ω

δ∇zk · ∇ϕ+
ϕ

δ
(zk(1− zk)2 − z2

k(1− zk)) dx = 0 .

πki · (pki − pki−1) = 0 in Ω , (6.6)

pki − pki+1 = 0 in {|ρki | < d(zk)} (6.7)

In order to prove Theorem 6.1, we need to establish some uniform bounds for the adjoint system (5.4) of
Corollary 5.4. This is the content of the following proposition.

Proposition 6.2 (Uniform bounds). For every γ ∈ (0,+∞) and k ∈ N, let zγk ∈ H1(Ω; [0, 1]) be a solution of
the approximate time-discrete TO problem (3.17) with corresponding approximate time-discrete quasistatic evo-

lution (uk,γi , εk,γi ,pk,γi )k+1
i=0 ∈

(
H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D)
)k+1

. Furthermore, let (uk,γi , εk,γi ,pk,γi )k+1
i=1 ∈(

H1(Ω;Rn) × L2(Ω;Mn
S) × L2(Ω;Mn

D)
)k+1

be the adjoint variables introduced in Corollary 5.4. Then,

(uk,γi , εk,γi ,pk,γi ) is bounded in H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D) uniformly w.r.t. i, k, and γ.

Proof. We test the equation (5.3) for i = k, . . . , 1 with the triple (uk,γi − uk,γi+1, ε
k,γ
i − εk,γi+1,p

k,γ
i − pk,γi+1) ∈ A(0).

Since the function hγ is convex, we have that∫
Ω

C(zγk )εk,γi · (ε
k,γ
i − εk,γi+1) dx+

∫
Ω

H(zγk )pk,γi · (p
k,γ
i − pk,γi+1) dx (6.8)

−
∫

Ω

`(zγk )fki · (u
k,γ
i − uk,γi+1) dx−

∫
ΓN

gki · (u
k,γ
i − uk,γi+1) dHn−1 ≤ 0 .

We rewrite the first term in (6.8) as∫
Ω

C(zγk )εk,γi · (ε
k,γ
i − εk,γi+1) dx =

1

2
‖εk,γi ‖

2
C(zγk ) −

1

2
‖εk,γi+1‖

2
C(zγk ) +

1

2
‖εk,γi − εk,γi+1‖

2
C(zγk ) .

In a similar way we can rewrite the second term in (6.8), obtaining

1

2
‖εk,γi ‖

2
C(zγk ) −

1

2
‖εk,γi+1‖

2
C(zγk ) +

1

2
‖εk,γi − εk,γi+1‖

2
C(zγk ) (6.9)

+
1

2
‖pk,γi ‖

2
H(zγk ),2 −

1

2
‖pk,γi+1‖

2
H(zγk ),2 +

1

2
‖pk,γi − pk,γi+1‖

2
H(zγk ),2

−
∫

Ω

`(zγk )fki · (u
k,γ
i − uk,γi+1) dx−

∫
ΓN

gki · (u
k,γ
i − uk,γi+1) dHn−1 ≤ 0 .
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For every j ∈ {1, . . . , k} we sum up (6.9) over i = k, . . . , j and use that ukk+1,γ = 0, so that

1

2
‖εk,γj ‖

2
C(zγk ) +

1

2
‖pk,γj ‖

2
H(zγk ) (6.10)

≤
j+1∑
i=k

(∫
Ω

`(zγk )(fki − fki−1) ·uk,γi dx+

∫
ΓN

(gki − gki−1) ·uk,γi dHn−1

)
+

∫
Ω

`(zγk )fkj ·u
k,γ
j dx+

∫
ΓN

gkj ·u
k,γ
j dHn−1 .

By Cauchy inequality and by the regularity of f and g we deduce that

sup
i=1,...,k

(
‖εk,γi ‖C(zγk ) + ‖pk,γi ‖H(zγk )

)2
≤ C sup

i=1,...,k

(
‖εk,γi ‖C(zγk ) + ‖pk,γi ‖H(zγk )

)(∫ T

0

(‖ḟk(t)‖2 + ‖ġk(t)‖2) dt+ sup
i=1,...,k

(‖fki ‖2 + ‖gki ‖2)

)
≤ C sup

i=1,...,k

(
‖εk,γi ‖C(zγk ) + ‖pk,γi ‖H(zγk )

)(
‖f‖H1(0,T ;H1(Ω;Rn)) + ‖g‖H1(0,T ;L2(ΓN ;Rn))

)
,

for some positive constant C independent of i, k, and γ. The above inequality implies the boundedness
of (uk,γi , εk,γi ,pk,γi ) in H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D) uniformly w.r.t. i, k, and γ.

We now prove Theorem 6.1.

Proof of Theorem 6.1. Let zγk , zk ∈ H1(Ω; [0, 1]) be as in the statement of the Theorem, and

let (uk,γi , εk,γi ,pk,γi )ki=0, (u
k
i , ε

k
i ,p

k
i )ki=0 ∈

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)
)k+1

be the corresponding
approximate time-discrete and time-discrete evolutions, respectively. By Proposition 3.9, we know that

(uk,γi , εk,γi ,pk,γi )ki=0 converges to (uki , ε
k
i ,p

k
i )ki=0 in

(
H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)
)k+1

as γ → +∞.
Equations (6.2)–(6.3) are equivalent to the equilibrium condition (3.7) of Definition 3.3. In particular, we

have that

ρki = ΠMnD
(
C(zk)εki

)
−H(zk)pki in L2(Ω;Mn

D) .

Furthermore, setting ρk,γi := d(zγk )∇Qhγ(pk,γi − pk,γi−1) we have that ρk,γi = ΠMnD
(
C(zγk )εk,γi

)
− H(zk)pk,γi and

ρk,γi → ρki in L2(Ω;Mn
D) as γ → +∞ for every i and k.

Denoting by (uk,γi , εk,γi ,pk,γi )k+1
i=1 ∈ A(0)k+1 the adjoint variables introduced in Corollary 5.4, we have by

Proposition 6.2 that (uk,γi , εk,γi ,pk,γi ) are bounded in H1(Ω;Rn)×L2(Ω;Mn
S)×L2(Ω;Mn

D) uniformly w.r.t. i, k,

and γ. Thus, we may assume that, up to a subsequence, (uk,γi , εk,γi ,pk,γi ) ⇀ (uki , ε
k
i ,p

k
i ) weakly in H1(Ω;Rn)×

L2(Ω;Mn
S)× L2(Ω;Mn

D) as γ → +∞ for every i and k.
In order to prove that (uki , ε

k
i ,p

k
i ) satisfies (6.4)–(6.5), we first rewrite the optimality conditions (5.3)–(5.4)

for γ ∈ (0,+∞) in a form similar to (6.4). To this aim, we define for i = 1, . . . , k

πk,γi := d(zγk )∇2
Qhγ(pk,γi − pk,γi−1)(pk,γi − pk,γi+1) in L2(Ω;Mn

D) .

Hence, we rewrite (5.3) as∫
Ω

C(zγk )εk,γi ·η dx+

∫
Ω

H(zγk )pk,γi · q dx+

∫
Ω

πk,γi · q dx (6.11)

−
∫

Ω

`(zγk )fki · v dx−
∫

ΓN

gki · v dHn−1 = 0 ,
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for (v,η, q) ∈ A(0). From (6.11) tested against (0,−q, q) with q ∈ L2(Ω;Mn
D) we deduce that

πk,γi = ΠMnD
(
C(zγk )εk,γi

)
−H(zγk )pk,γi .

Thus, setting

πki := ΠMnD
(
C(zk)εki

)
−H(zk)pki for i = 1, . . . , k + 1

we infer that πk,γi ⇀ πki weakly in L2(Ω;Mn
D) as γ → +∞, for every k and i. Passing to the limit as γ → +∞

in (6.11) we deduce (6.4).
As for (6.5), we rewrite (5.4) as

k∑
j=1

(∫
Ω

ϕ `′(zγk )(fkj − fkj−1) · (uk,γj + uk,γj ) dx−
∫

Ω

(
C′(zγk )ϕ

)
(εk,γj − εk,γj−1) · εk,γj dx (6.12)

−
∫

Ω

(
H′(zγk )ϕ

)
(pk,γj − pk,γj−1) ·pk,γj dx−

∫
Ω

ϕ
d′(zγk )

d(zγk )
(ρk,γj − ρk,γj−1) ·pk,γj dx

)
+

∫
Ω

δ∇zγk · ∇ϕ+
ϕ

δ
(zγk (1− zγk )2 − (zγk )2(1− zγk )) dx = 0 .

Owing to the convergences discussed above, we again infer (6.5) by passing to the limit in (6.12) as γ → +∞.
Finally, the proof of (6.6)–(6.7) can be obtained by repeating step by step the proof of formula (4.5),

Theorem 4.1 in [2].

Remark 6.3. We notice that (uki , ε
k
i ,p

k
i ) is bounded in H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω,Mn
D) uniformly w.r.t. i

and k as a consequence of Proposition 6.2.

6.2. Optimality of the time-continuous problem

We conclude with the first-order optimality conditions for the TO problem (3.3). Most of the conditions
follow directly from those computed in Theorem 6.1 by passing to the limit as the time step τk tends to 0. The
only difficulty is to find the time-continuous condition corresponding to (6.7), since the adjoint variable pki can
be bounded in L2(Ω;Mn

D) uniformly w.r.t. i and k (see Rem. 6.3), but no time regularity is expected.

Theorem 6.4 (Optimality for the TO problem). Let zk ∈ H1(Ω; [0, 1]) be the sequence of solutions of the time-
discrete TO problem (3.10) found in Theorem 6.1. Then, there exists z ∈ H1(Ω; [0, 1]) solving (3.3) such that, up
to a subsequence, zk ⇀ z weakly in H1(Ω). Denoting by (u(·), ε(·),p(·)) the quasistatic evolution corresponding
to z, there exists ρ ∈ H1(0, T ;L2(Ω;Mn

D)) such that for every (v,η, q) ∈ A(0) and every t ∈ [0, T ] the following
holds: ∫

Ω

C(z)ε(t) ·η dx+

∫
Ω

H(z)p(t) · q dx+

∫
Ω

ρ(t) · q dx (6.13)

−
∫

Ω

`(z)f(t) · v dx−
∫

ΓN

g(t) · v dx = 0 ,

ρ(t) · ṗ(t) = d(z)|ṗ(t)| in Ω , |ṗ(t)| = 0 in {|ρ(t)| < d(z)} . (6.14)

Furthermore, there exist the adjoint variables p0 ∈ L2(Ω;Mn
D), π ∈ L∞(0, T ;L2(Ω;Mn

D)), and (u, ε,p) ∈
L∞(0, T ;H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)), such that for every (v,η, q) ∈ A(0), for every ϕ ∈ H1(Ω) ∩
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L∞(Ω), and for a.e. t ∈ [0, T ] we have

∫
Ω

C(z)ε(t) ·η dx+

∫
Ω

H(z)p(t) · q,dx+

∫
Ω

π(t) · q dx (6.15)

−
∫

Ω

`(z)f(t) · v dx−
∫

ΓN

g(t) · v dHn−1 = 0 ,

∫ T

0

(∫
Ω

ϕ `′(z)ḟ(t) · (u(t) + u(t)) dx−
∫

Ω

(
C′(z)ϕ

)
ε̇(t) · ε(t) dx (6.16)

−
∫

Ω

(
H′(z)ϕ

)
ṗ(t) ·p(t) dx−

∫
Ω

ϕ
d′(z)

d(z)
ρ̇(t) ·p(t) dx

)
dt

+

∫
Ω

δ∇z · ∇ϕ+
ϕ

δ
(z(1− z)2 − z2(1− z)) dx = 0 .

π(t) · ṗ(t) = 0 in Ω , (6.17)

∫
Ω

d2(z)p0 dx− 2

∫ T

0

∫
Ω

(ρ(t) · ρ̇(t))p(t) dxdt = 0 . (6.18)

Proof. Conditions (6.13)–(6.14) are a direct consequence of Definition 3.1. In particular, ρ(t) =
ΠMnD

(
C(z)ε(t)

)
−H(z)p(t) and ρ(t) ∈ d(z)∂| · |(ṗ(t)) for a.e. t ∈ [0, T ].

Let us consider the time-discrete quasistatic evolution (uki , ε
k
i ,p

k
i )ki=0 ∈

(
H1(Ω;Rn) × L2(Ω;Mn

S) ×
L2(Ω,Mn

D)
)k+1

associated with zk and let (uki , ε
k
i ,p

k
i )k+1
i=1 ∈

(
H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω,Mn
D)
)k+1

,

(ρki )ki=0, (π
k
i )k+1
i=1 ∈

(
L2(Ω;Mn

D)
)k+1

be the corresponding adjoint variables introduced in Theorem 6.1. We
further define the interpolation functions

uk(t) := uki , εk(t) := εki , pk(t) := pki ,

ũk(t) := uki , ε̃k(t) := εki , p̃k(t) := pki ,

ρ̃k(t) := ρki , π̃k(t) := πki ,

f̃k(t) := fki , g̃k(t) := gki , w̃k(t) := wki ,

ρk(t) := ρki−1 +
(t− tki−1)

τk
(ρki − ρki−1)

for t ∈ (tki−1, t
k
i ]. We recall that the piecewise affine interpolation functions fk, gk, wk, uk, εk, and pk have been

introduced in (3.5) and (3.11). As a consequence of Proposition 3.5, we have that (ũk, ε̃k, p̃k) → (u, ε,p) in
L∞(0, T ;H1(Ω;Rn)×L2(Ω;Mn

S)×L2(Ω;Mn
D)) and ρk → ρ in H1(0, T ;L2(Ω;Mn

D)) (see also Lemma. A.1). By
the equilibrium conditions (6.2)–(6.3) we also infer that ρ̃k(t) ∈ d(zk)∂| · |(ṗk(t)), which implies that ρ̃k,ρk are
bounded in L∞(0, T ;L∞(Ω;Mn

D)). Moreover, by Proposition 6.2 we have that π̃k and (uk, εk,pk) are bounded
in L∞(0, T ;L2(Ω;Mn

D)) and in L∞(0, T ;H1(Ω;Rn)×L2(Ω;Mn
S)×L2(Ω;Mn

D)), respectively. Therefore, we may
assume that, up to a subsequence, π̃ ⇀∗ π weakly∗ in L∞(0, T ;L2(Ω;Mn

D)) and (uk, εk,pk) ⇀∗ (u, ε,p)
weakly∗ in L∞(0, T ;H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)).

Let us show that π and (u, ε,p) satisfy (6.15)–(6.18). We start with (6.15). Let us fix an at most countable
and dense subset D of A(0). For every (v,η, q) ∈ D, every ψ ∈ C∞c (0, T ), and every t ∈ [0, T ], we consider the
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test function (ψ(t)v, ψ(t)η, ψ(t)p) ∈ A(0) and rewrite the optimality condition (6.4) as∫
Ω

C(zk)εk(t) ·ψ(t)η dx+

∫
Ω

H(zk)pk(t) ·ψ(t)q dx+

∫
Ω

π̃k(t) ·ψ(t)q dx (6.19)

−
∫

Ω

`(zk)f̃k(t) ·ψ(t)v dx−
∫

ΓN

g̃k(t) ·ψ(t)v dHn−1 = 0 .

We integrate (6.19) over [0, T ] and pass to the limit as k →∞. In view of the above convergences, we infer that
for every ψ ∈ C∞c (0, T )∫ T

0

ψ(t)

(∫
Ω

C(z)ε(t) ·η dx+

∫
Ω

H(z)p(t) · q dx+

∫
Ω

π(t) · q dx (6.20)

−
∫

Ω

`(z)f(t) · v dx−
∫

ΓN

g(t) · v dHn−1

)
dt = 0 .

Since D is at most coutable, we deduce from (6.20) that (6.15) holds for a.e. t ∈ [0, T ] and for every (v,η, q) ∈ D.
By density we extend the equality to A(0).

Arguing in the same way, we can also prove that (6.17) holds for a.e. t ∈ [0, T ], as the corresponding time-
discrete condition (6.6) holds for every t ∈ [0, T ] and only the time derivative ṗk is involved, which converges
to ṗ in L2(0, T ;L2(Ω;Mn

D)).
As for (6.16), for every ϕ ∈ H1(Ω) ∩ L∞(Ω) we rewrite (6.5) as∫ T

0

(∫
Ω

ϕ `′(zk)ḟk(t) · (ũk(t) + uk(t)) dx−
∫

Ω

(
C′(zk)ϕ

)
ε̇k(t) · εk(t) dx (6.21)

−
∫

Ω

(
H′(zk)ϕ

)
ṗk(t) ·pk(t) dx−

∫
Ω

ϕ
d′(zk)

d(zk)
ρ̇k(t) ·pk(t) dx

)
dt

+

∫
Ω

δ∇zk · ∇ϕ+
ϕ

δ
(zk(1− zk)2 − z2

k(1− zk)) dx = 0 .

Thus, condition (6.16) is obtained by passing to the limit in (6.21) as k →∞ relying on the continuity of `′, d′,
C′, and H′, and on the convergences discussed above.

We conclude with (6.18). First we notice that, thanks to (6.3), (6.7) can be equivalently expressed as

k∑
i=1

∫
Ω

(d2(zk)− |ρki |2)|pki − pki+1|dx = 0 , (6.22)

which, owing to the fact that |ρki | ≤ d(zki ), implies

k∑
i=1

∫
Ω

(d2(zk)− |ρki |2)(pki − pki+1) dx = 0 . (6.23)

Recalling that pkk+1 = 0, we rewrite (6.23) as follows:

0 =

∫
Ω

(d2(zk)− |ρk1 |2)pk1 dx−
k∑
i=2

∫
Ω

(
(ρki−1 + ρki ) · (ρki − ρki−1)

)
pki dx (6.24)

=

∫
Ω

(d2(zk)− |ρk1 |2)pk1 dx−
∫ T

tk1

∫
Ω

(
(ρ̃k(t) + ρ̃k(t− τk)) · ρ̇k(t)

)
pk(t) dx dt .
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Since pk1 is bounded in L2(Ω;Mn
D), there exists p0 ∈ L2(Ω;Mn

D) such that, up to a subsequence, pk1 ⇀ p0 weakly
in L2(Ω;Mn

D). Since ρk → ρ inH1(0, T ;L2(Ω;Mn
D)), both interpolating functions ρ̃k and ρ̃k(·−τk) converge to ρ

in L2(0, T ;L2(Ω;Mn
D)) and ρk1 → ρ(0) = 0 in L2(Ω;Mn

D). Moreover, ρ̃k is bounded in L∞(0, T ;L∞(Ω;Mn
D)).

Thus, ρk1 → 0 also in Lr(Ω;Mn
D) for every r ∈ (1,+∞) and

lim
k→∞

∫
Ω

(d2(zk)− |ρk1 |2)pk1 dx =

∫
Ω

d2(z)p0 dx .

As ˙̃ρk converges to ˙̃ρ in L2(0, T ;L2(Ω;Mn
D)) and ρ̃k is bounded in L∞(0, T ;L∞(Ω;Mn

D)), we have that (ρ̃k +
ρ̃k(· − τk)) · ρ̇k converges to 2ρ · ρ̇ in L2(0, T ;L2(Ω)). Since pk ⇀

∗ p weakly∗ in L∞(0, T ;L2(Ω;Mn
D)), we obtain

that

lim
k→∞

∫ T

tk1

∫
Ω

(
(ρ̃k(t) + ρ̃k(t− τk)) · ρ̇k(t)

)
pk(t) dxdt = 2

∫ T

0

∫
Ω

(ρ(t) · ρ̇(t))p(t) dxdt .

Hence, passing to the limit in (6.24) and deduce (6.18)

Appendix A. Proof or Proposition 3.5

We start by recalling that by the definition of quasistatic evolution (see Def. 3.1), there exists ρ ∈ L∞((0, T )×
Ω;Mn

D)) such that ρ(t) ∈ d(z)∂| · |(ṗ(t)) almost everywhere (see, e.g., [12]), where the symbol ∂ denotes here
the subdifferential, and such that for t ∈ [0, T ] the equilibrium condition (3.1) is equivalent to∫

Ω

C(z)ε(t) ·η dx+

∫
Ω

H(z)p(t) · q dx+

∫
Ω

ρ(t) · q dx (A.1)

−
∫

Ω

`(z)f(t) · v dx−
∫

ΓN

g(t) · v dHn−1 = 0

for every (v,η, q) ∈ A(0).
In the next lemma we prove that the piecewise affine functions defined in (3.11) converge in

L∞(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)) to a quasistatic evolution.

Lemma A.1. Let zk, z ∈ H1(Ω; [0, 1]), (uk, εk,pk), and (u(·), ε(·),p(·)) be as in Proposition 3.5. Then,
(uk, εk,pk) converges to (u(·), ε(·),p(·)) in L∞(0, T ;H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)).

Proof. We first show that (uk, εk,pk) is bounded in H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)). We notice
that the L∞-boundedness is a consequence of the energy inequality (3.8).

By the uniform convexity of the functional Ek(zk, t
k
i , ·, ·, ·) + D(zk, · − pki−1) and by testing the minimality

of (uki , ε
k
i ,p

k
i ) at time tki with (uki−1 + wki − wki−1, ε

k
i−1 + Ewki − Ewki−1,p

k
i−1) ∈ A(wki ) and the minimality

of (uki−1, ε
k
i−1,p

k
i−1) at time tki−1 with (uki − wki + wki−1, ε

k
i − Ewki + Ewki−1,p

k
i ) ∈ A(wki−1), we have that

c
(
‖εki − (εki−1 − Ewki−1 + Ewki )‖22 + ‖pki − pki−1‖22

)
≤
∫

Ω

C(zk)(Ewki − Ewki−1) · (Ewki − Ewki−1) dx

−
∫

Ω

C(zk)(εki − εki−1) · (Ewki − Ewki−1) dx

+

∫
Ω

`(zk)(fki − fki−1) · (uki − (uki−1 − wki−1 + wki )) dx

+

∫
ΓN

(gki − gki−1) · (uki − (uki−1 − wki−1 + wki )) dHn−1
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+D(zk,p
k
i − pki−2)−D(zk,p

k
i−1 − pki−2)−D(zk,p

k
i − pki−1)

≤ C
(
‖εki − (εki−1 − Ewki−1 + Ewki )‖2 + ‖uki − (uki−1 − wki−1 + wki )‖H1

)(
‖fki − fki−1‖2

+ ‖gki − gki−1‖2 + ‖wki − wki−1‖H1

)
,

from which we deduce the bound in H1(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)). In particular, this implies
that (uk, εk,pk) converges to (u, ε,p) weakly in H1(0, T ;H1(Ω;Rn) × L2(Ω;Mn

S) × L2(Ω;Mn
D)), and the

derivatives exist a.e. in (0, T ).
Defining ρki := ΠMnD

(
C(zk)εki

)
−H(zk)pki , we have that the stability condition (6.2) holds. Setting

ρk(t) := ρki +
(t− tki )

τk
(ρki+1 − ρki ) for t ∈ [tki , t

k
i+1)

we have that ρk is bounded in H1(0, T ;L2(Ω;Mn
D)) as well.

We proceed now by proving the uniform convergence. To this end, we need to introduce the piecewise constant
interpolants

ũk(t) := uki , ε̃k(t) := εki , p̃k(t) := pki , ρ̃k(t) := ρki ,

f̃k(t) := fki , g̃k(t) := gki , w̃k(t) := wki

for t ∈ (tki−1, t
k
i ]. In particular, ‖ũk(t)− uk(t)‖H1 ≤ τk‖u̇k(t)‖H1 , and similar inequalities hold for ε̃k and p̃k for

the L2-norm.
For a.e. t ∈ (tki−1, t

k
i ], we test the equilibrium conditions (6.2) and (A.1) with the triple

(u̇(t)− u̇k(t) + ẇk(t)− ẇ(t), ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t), ṗ(t)− ṗk(t)) ∈ A(0)

and we subtract one from the other, obtaining∫
Ω

C(zk)ε̃k(t) · (ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t)) dx (A.2)

−
∫

Ω

C(z)ε(t) · (ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t)) dx

+

∫
Ω

H(zk)p̃k(t) · (ṗ(t)− ṗk(t)) dx−
∫

Ω

H(z)p(t) · (ṗ(t)− ṗk(t)) dx

+

∫
Ω

ρ̃k(t) · (ṗ(t)− ṗk(t)) dx−
∫

Ω

ρ(t) · (ṗ(t)− ṗk(t)) dx

−
∫

Ω

`(zk)f̃k(t) · (u̇(t)− u̇k(t) + ẇk(t)− ẇ(t)) dx

+

∫
Ω

`(z)f(t) · (u̇(t)− u̇k(t) + ẇk(t)− ẇ(t)) dx

−
∫

ΓN

(g̃k(t)− g(t)) · (u̇(t)− u̇k(t) + ẇk(t)− ẇ(t)) dHn−1 = 0 .

We notice that, being ρ(t) ∈ d(z)∂| · |(ṗ(t)) and ρ̃k(t) ∈ d(zk)∂| · |(ṗk(t)) almost everywhere in Ω, it holds∫
Ω

(
d(zk)

d(z)
ρ(t)− ρ̃k(t)

)
· (ṗ(t)− ṗk(t)) dx ≥ 0 . (A.3)
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Hence, adding and subtracting in (A.2) the terms∫
Ω

C(zk)(εk(t) + ε(t)) · (ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t)) dx ,∫
Ω

H(zk)(pk(t) + p(t)) · (ṗ(t)− ṗk(t)) dx ,∫
Ω

d(zk)

d(z)
ρ(t) · (ṗ(t)− ṗk(t)) dx ,

and using (A.3), we obtain, after a simple algebraic manipulation,∫
Ω

C(zk)(ε(t)− εk(t)) · (ε̇(t)− ε̇k(t)) dx+

∫
Ω

H(zk)(p(t)− pk(t)) · (ṗ(t)− ṗk(t)) dx (A.4)

≤
∫

Ω

C(zk)(εk(t)− ε(t)) · (Eẇk(t)− Eẇ(t)) dx

+

∫
Ω

C(zk)(ε̃k(t)− εk(t)) · (ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t)) dx

+

∫
Ω

(C(zk)− C(z))ε(t) · (ε̇(t)− ε̇k(t) + Eẇk(t)− Eẇ(t)) dx

+

∫
Ω

H(zk)(p̃k(t)− pk(t)) · (ṗ(t)− ṗk(t)) dx

+

∫
Ω

(H(zk)−H(z))p(t) · (ṗ(t)− ṗk(t)) dx

+

∫
Ω

d(zk)− d(z)

d(z)
ρ(t) · (ṗ(t)− ṗk(t)) dx

−
∫

Ω

(`(zk)f̃k(t)− `(z)f(t)) · (u̇(t)− u̇k(t) + ẇk(t)− ẇ(t)) dx

−
∫

ΓN

(g̃k(t)− g(t)) · (u̇(t)− u̇k(t) + ẇk(t)− ẇ(t)) dHn−1 .

Integrating (A.4) w.r.t. t on the interval [0, s], for s ∈ [0, T ], recalling (2.3)–(2.5) and that uk(0) = u(0) = 0 and
εk(0) = ε(0) = pk(0) = p(0) = 0, we further estimate

αC

2
‖ε(s)− εk(s)‖22 +

αH

2
‖p(s)− pk(s)‖22 (A.5)

≤ βC
(
‖ε− εk‖L2(0,T ;L2(Ω;MnS)) + τk‖ε̇k‖L2(0,T ;L2(Ω;MnS))

+ ‖(C(zk)− C(z))ε‖L2(0,T ;L2(Ω;MnS))

)
‖wk − w‖H1(0,T ;H1(Ω;Rn))

+
(
βCτk‖ε̇k‖L2([0,T ];L2(Ω;MnS))

+ ‖(C(zk)− C(z))ε‖L2(0,T ;L2(Ω;MnS))

)
‖ε̇− ε̇k‖L2(0,T ;L2(Ω;MnS))

+ βH

(
τk‖ṗk‖L2(0,T ;L2(Ω;MnD)) + ‖(H(zk)−H(z))p‖L2(0,T ;L2(Ω;MnD))

+
1

α
‖(d(zk)− d(z))ρ‖L2(0,T ;L2(Ω;MnD))

)
‖ṗ− ṗk‖L2(0,T ;L2(Ω;MnD))

+ C
(
‖`(zk)f̃k − `(z)f‖L2(0,T ;L2(Ω;Rn))

+ ‖g̃k − g‖L2(0,T ;L2(ΓN ;Rn))

)
‖u− uk + wk − w‖H1(0,T ;H1(Ω;Rn)) ,
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for some positive constant C independent of k. Since (uk, εk,pk) is bounded in H1(0, T ;H1(Ω;Rn) ×
L2(Ω;Mn

S)×L2(Ω;Mn
D)), f̃k → f in L2(0, T ;L2(Ω;Rn)), g̃k → g in L2(0, T ;L2(ΓN ;Rn)), and zk ⇀ z in H1(Ω)

with 0 ≤ zk, z ≤ 1 almost everywhere, we deduce from (A.5) that εk → ε in L∞(0, T ;L2(Ω;Mn
S)) and pk → p

in L∞(0, T ;L2(Ω;Mn
D)). By Korn’s inequality and by the convergence of wk to w in H1(0, T ;H1(Ω;Rn)), we

infer that uk → u in L∞(0, T ;H1(Ω;Rn)). This concludes the proof of the lemma.

We are now in a position to conclude the proof of Proposition 3.5. We follow here the lines of Theorem 3.3
in [33].

Proof of Proposition 3.5. In view of Lemma A.1, it remains to show that (u̇k, ε̇k, ṗk) converges to (u̇, ε̇, ṗ) in
L2(0, T ;H1(Ω;Rn)× L2(Ω;Mn

S)× L2(Ω;Mn
D)). To this end, we define the auxiliary triples

(ωki , ξ
k
i ,θ

k
i ) = argmin

{
1

2

∫
Ω

C(zk)
(
ε+

Ewki − Ewki−1

τk

)
·
(
ε+

Ewki − Ewki−1

τk

)
dx (A.6)

+
1

2

∫
ω

H(zk)p ·pdx−
∫

Ω

`(zk)
fki − fki−1

τk
·udx

−
∫

ΓN

gki − gki−1

τk
·udHn−1 : (u, ε,p) ∈ A(0)

}

(ω(t), ξ(t),θ(t)) = argmin

{
1

2

∫
Ω

C(z)(ε+ Eẇ(t)) · (ε+ Eẇ(t)) dx+
1

2

∫
ω

H(z)p ·pdx (A.7)

−
∫

Ω

`(z)ḟ(t) ·udx−
∫

ΓN

ġ(t) ·udHn−1 : (u, ε,p) ∈ A(0)

}
.

Since (fk, gk, wk) converges to (f, g, w) in H1(0, T ;H1(Ω;Rn)× L2(ΓN ;Rn)×H1(Ω;Rn)), we deduce that the
piecewise constant function

(ωk(t), ξk(t),θk(t)) := (ωki , ξ
k
i ,θ

k
i ) for t ∈ (tki−1, t

k
i ]

converges to (ω, ξ,θ) in L2(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D)).
By the minimality of (uki , ε

k
i ,p

k
i ) in (3.7), we have that∫

Ω

C(zk)εki ·η dx+

∫
Ω

H(zk)pki · q dx+

∫
Ω

d(zk)|q − (pki−1 − pki )|dx (A.8)

−
∫

Ω

d(zk)|pki − pki−1|dx−
∫

Ω

`(zk)fki · v dx−
∫

ΓN

gki · v dHn−1 ≥ 0

for every (v,η, q) ∈ A(0). Testing (A.8) with the triple

(uki−1 − uki − wki−1 + wki , ε
k
i−1 − εki − Ewki−1 + Ewki ,p

k
i−1 − pki ) ∈ A(0)

combined with the equilibrium condition (at time tki−1)

−
∫

Ω

d(zk)|pki − pki−1|dx ≤
∫

Ω

C(zk)εki−1 · (εki − εki−1 − Ewki + Ewki−1) dx

+

∫
Ω

H(zk)pki−1 · (pki − pki−1) dx

−
∫

Ω

`(zk)fki−1 · (uki − uki−1 − wki + wki−1) dx

−
∫

ΓN

gki−1 · (uki − uki−1 − wki + wki−1) dHn−1 ,
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we deduce that∫
Ω

C(zk)ε̇k(t) · (ε̇k(t)− Eẇk(t)) dx+

∫
Ω

H(zk)ṗk(t) · ṗk(t) dx (A.9)

−
∫

Ω

`(zk)ḟk(t) · (u̇k(t)− ẇk(t)) dx−
∫

ΓN

ġk(t) · (u̇k(t)− ẇk(t)) dHn−1 ≤ 0 .

Testing the Euler-Lagrange equation of (A.6) with the test (u̇k(t)− ẇk(t), ε̇k(t)−Eẇk(t), ṗk(t)) ∈ A(0) we also
get

∫
Ω

C(zk)(ξk(t) + Eẇk(t)) · (ε̇k(t)− Eẇk(t)) dx+

∫
Ω

H(zk)θk(t) · ṗk(t) dx (A.10)

−
∫

Ω

`(zk)ḟk(t) · (u̇k(t)− ẇk(t)) dx−
∫

ΓN

ġk(t) · (u̇k(t)− ẇk(t)) dHn−1 = 0 .

We subtract (A.10) from (A.9) and obtain the inequality

∫
Ω

C(zk)
(
(ε̇k(t)− Eẇk(t))− ξk(t)

)
· (ε̇k(t)− Eẇk(t)) dx

+

∫
Ω

H(zk)(ṗk(t)− θk(t)) · ṗk(t) dx ≤ 0 ,

which in turn implies

∫
Ω

C(zk)
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
dx (A.11)

+

∫
Ω

H(zk)(θk(t)− 2ṗk(t)) · (θk(t)− 2ṗk(t)) dx

≤
∫

Ω

C(zk)ξk(t) · ξk(t) dx+

∫
Ω

H(zk)θk(t) ·θk(t) dx .

By the equilibrium condition (3.1) of (u(t), ε(t),p(t)) and by the energy balance (3.2), we have that for
a.e. t ∈ [0, T ]

∫
Ω

C(z)ε(t) · (ε̇(t)− Eẇ(t)) dx+

∫
Ω

H(z)p(t) · ṗ(t) dx+

∫
Ω

d(z)ρ(t) · ṗ(t) dx (A.12)

−
∫

Ω

`(z)f(t) · (u̇(t)− ẇ(t)) dx−
∫

ΓN

g(t) · (u̇(t)− ẇ(t)) dx = 0 .

Since ρ(t) · ṗ(t) = d(z)|ṗ(t)| almost everywhere in Ω and, by the equilibrium (3.1) at time t+ h,

∫
Ω

d(z)|ṗ(t)|dx ≥
∫

Ω

C(z)ε(t+ h) · (Eẇ(t)− ε̇(t)) dx−
∫

Ω

H(z)p(t+ h) · ṗ(t) dx

+

∫
Ω

`(z)f(t+ h) · (u̇(t)− ẇ(t)) dx+

∫
ΓN

g(t+ h) · (u̇(t)− ẇ(t)) dx ,
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we infer from (A.12) that for h ∈ R \ {0},

∫
Ω

C(z)(ε(t+ h)− ε(t)) · (ε̇(t)− Eẇ(t)) dx+

∫
Ω

H(z)(p(t+ h)− p(t)) · ṗ(t) dx (A.13)

−
∫

Ω

`(z)(f(t+ h)− f(t)) · (u̇(t)− ẇ(t)) dx

−
∫

ΓN

(g(t+ h)− g(t)) · (u̇(t)− ẇ(t)) dx ≥ 0 .

Dividing (A.13) by h (positive or negative) and passing to the limit as h→ 0, we deduce that for a.e. t ∈ [0, T ]
there holds ∫

Ω

C(z)ε̇(t) · (ε̇(t)− Eẇ(t)) dx+

∫
Ω

H(z)ṗ(t) · ṗ(t) dx (A.14)

−
∫

Ω

`(z)ḟ(t) · (u̇(t)− ẇ(t)) dx−
∫

ΓN

ġ(t) · (u̇(t)− ẇ(t)) dx = 0 .

Testing the Euler-Lagrange equation relative to (A.7) with the triple (u̇(t)− ẇ(t), ε̇(t)−Eẇ(t), ṗ(t)) ∈ A(0) we
get ∫

Ω

C(z)(ξ(t) + Eẇ(t)) · (ε̇(t)− Eẇ(t)) dx+

∫
Ω

H(z)θ(t) · ṗ(t) dx (A.15)

=

∫
Ω

`(z)ḟ(t) · (u̇(t)− ẇ(t)) dx+

∫
ΓN

ġ(t) · (u̇(t)− ẇ(t)) dHn−1 .

Subtracting (A.15) from (A.14) and arguing as in (A.11) we finally obtain that

∫
Ω

C(z)
(
ξ(t)− 2(ε̇(t))− Eẇ(t))

)
· (ξ(t)− 2(ε̇(t))− Eẇ(t))

)
dx (A.16)

+

∫
Ω

H(z)(θ(t)− 2ṗ(t)) · (θ(t)− 2ṗ(t)) dx

=

∫
Ω

C(z)ξ(t) · ξ(t) dx+

∫
Ω

H(z)θ(t) ·θ(t) dx .

Let us now set

rk(t) :=

∫
Ω

C(zk)ξk(t) · ξk(t) dx+

∫
Ω

H(zk)θk(t) ·θk(t) dx ,

r(t) :=

∫
Ω

C(z)ξ(t) · ξ(t) dx+

∫
Ω

H(z)θ(t) ·θ(t) dx .

By the convergence of

(ωk, ξk,θk)→ (ω, ξ,θ) in L2(0, T ;H1(Ω;Rn)× L2(Ω;Mn
S)× L2(Ω;Mn

D))

we have that rk → r in L1(0, T ). In view of (A.11) and (A.16) we estimate
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lim sup
k→∞

(∫ T

0

∫
Ω

(
C(zk)

(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
− C(z)

(
ξ(t) (A.17)

− 2(ε̇(t)− Eẇ(t))
))
·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))− ξ(t) + 2(ε̇(t)− Eẇ(t))

)
dxdt

+

∫ T

0

∫
Ω

(
H(zk)(θk(t)− 2ṗk(t))−H(z)(θ(t)− 2ṗ(t))

)
·

(
θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)

)
dxdt

)
= lim sup

k→∞

(∫ T

0

∫
Ω

C(zk)
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
·

·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
dxdt+

∫ T

0

∫
Ω

H(zk)(θk(t)− 2ṗk(t)) · (θk(t)− 2ṗk(t)) dxdt

)
−
∫ T

0

∫
Ω

C(z)
(
ξ(t)− 2(ε̇(t)− Eẇ(t))

)
·
(
ξ(t)− 2(ε̇(t)− Eẇ(t))

)
dxdt

−
∫ T

0

∫
Ω

H(z)(θ(t)− 2ṗ(t)) · (θ(t)− 2ṗ(t)) dxdt

≤ lim sup
k→∞

∫ T

0

(rk(t)− r(t)) dt = 0 .

Using (A.17), we further estimate

lim sup
k→∞

(∫ T

0

∫
Ω

C(zk)
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))− ξ(t) + 2(ε̇(t)− Eẇ(t))

)
· (A.18)

·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))− ξ(t) + 2(ε̇(t)− Eẇ(t))

)
dxdt

+

∫ T

0

∫
Ω

H(zk)(θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)) · (θk(t)− 2ṗk(t)

− θ(t) + 2ṗ(t)) dxdt

)
= lim sup

k→∞

(∫ T

0

∫
Ω

C(zk)
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

)
·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

− ξ(t) + 2(ε̇(t)− Eẇ(t))
)

dxdt

−
∫ T

0

∫
Ω

C(z)
(
ξ(t)− 2(ε̇(t)− Eẇ(t))

)
·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

− ξ(t) + 2(ε̇(t)− Eẇ(t))
)

dxdt

+

∫ T

0

∫
Ω

(
C(z)− C(zk)

)(
ξ(t)− 2(ε̇(t)− Eẇ(t))

)
·
(
ξk(t)− 2(ε̇k(t)− Eẇk(t))

− ξ(t) + 2(ε̇(t)− Eẇ(t))
)

dxdt

+

∫ T

0

∫
Ω

H(zk)(θk(t)− 2ṗk(t)) · (θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)) dx

−
∫ T

0

∫
Ω

H(z)(θ(t)− 2ṗ(t)) · (θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)) dxdt
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+

∫ T

0

∫
Ω

(
H(z)−H(zk)

)
(θ(t)− 2ṗ(t)) · (θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)) dxdt

)
≤ lim sup

k→∞

(∫ T

0

∫
Ω

(
C(z)− C(zk)

)(
ξ(t)− 2(ε̇(t)− Eẇ(t))

)
·
(
ξk(t)

− 2(ε̇k(t)− Eẇk(t))
)

dxdt

+

∫ T

0

∫
Ω

(
H(z)−H(zk)

)
(θ(t)− 2ṗ(t)) · (θk(t)− 2ṗk(t)− θ(t) + 2ṗ(t)) dxdt

)
= 0 .

From (2.4)–(2.5) and (A.18) we infer that

ξk − 2(ε̇k − Eẇk)→ ξ − 2(ε̇− Eẇ) and θk − 2ṗk → θ − 2ṗ

in L2(0, T ;L2(Ω;Mn)). Since ξk → ξ and θk → θ in L2(0, T ;L2(Ω;Mn)), we immediately deduce that ε̇k → ε̇
and ṗk → ṗ in L2(0, T ;L2(Ω;Mn)). Finally, the convergence of u̇k to u̇ in L2(0, T ;H1(Ω;Rn)) is a consequence
of the convergences of ε̇k, ṗk, and ẇk, and of Korn’s inequality. This concludes the proof of Proposition 3.5.
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[22] P. Krejč́ı, Evolution variational inequalities and multidimensional hysteresis operators. Technical Report 432, Weierstrass
Institute for Applied Analysis and Stochastics (WIAS) (1998).

[23] A. Maury, G. Allaire and F. Jouve, Elasto-plastic shape optimization using the level set method. SIAM J. Control Optim. 56
(2018) 556–581.

[24] A. Mielke, Evolution in rate-independent systems. In Vol. 2 of Handbook of Differential Equations, Evolutionary Equations.
Edited by C. Dafermos and E. Feireisl. Elsevier (2005) 461–559.
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