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Abstract—In modern safety-related applications, software has
achieved an increasingly critical role. Their safety-critical nature,
however, requires special attention: industry-specific functional-
safety standards guide designers, developers, integrators, and
testers during all phases of the software life-cycle and the final
artifacts undergo a rigorous certification process.

In the field, it is not uncommon to find very resource-
constrained devices performing real-time sensing and actuating
tasks. Although these devices, typically microcontroller units,
offer a rich plethora of on-chip devices for communication,
sensing, and interaction with the physical world, they often have
quite reduced computational capabilities, and barely provide
memory protection functionalities, relying solely upon rudimen-
tary Memory Protection Units (MPUs). In this perspective,
guaranteeing fault-confinement through spatial isolation – i.e.,
the isolation between the memory used by each of the tasks, as
mandated by in force regulations – is quite challenging.

In this paper, we present an MPU-based memory management
and protection strategy that enables achieving spatial isolation in
multi-application real-time operating systems (RTOS) tailored for
safety-critical domains, while allowing a good degree of flexibility
and combinability. Furthermore, we discuss the implementation
of the proposed strategy as part of a RTOS from the industry
domain, in order to provide a case-study pertaining to its actual
implementation.

Index Terms—safety-critical systems, memory protection, real-
time systems, spatial isolation, fault isolation

I. INTRODUCTION

Critical systems – i.e., those for which a failure or malfunc-
tion can harm people, the environment, or even cause severe
economic losses – are increasingly common in many applica-
tion domains, including the heavy industry, the medicine field,
and public transportation, just to mention a few examples.

Developing safety-critical applications requires compliance
towards a number of regulations and standards, that although
different between the different domains, such as electromed-
ical, railway, aeronautics, and automotive, all resort to the
widely known Software Integrity Level (SIL) concept [6], [10].
The sector regulations are aimed at use in any area where there

are safety implications, and they consider that modern applica-
tion design often re-uses generic software that is suitable as a
basis for various applications, since it undoubtedly accelerate
the development cycle.

Concerning the (re-)use of Real-Time Operating Systems
(RTOSs) in safety-critical systems specifically, one particularly
relevant aspect to cope with is to guarantee that faults do not
propagate through the system. According to the mentioned
regulations, several measures and specific techniques must
be adopted to enhance reliability and safety. The Interna-
tional Electrotechnical Commission (IEC) 61508, for instance,
strongly encourages temporal and spatial isolation as means
to guarantee independence of execution and to avoid the
propagation of faults [10].

The RTOS itself must provide techniques, such as priority
and preemption schemes, and run-time deadline checks, that,
in conjunction with static analysis tools, allows achieving
temporal isolation. On the other hand, spatial isolation, i.e.,
the guarantee of isolation between the memory used by
each task, requires hardware support. The latter, in modern
computing systems, is provided by the Memory Management
Unit (MMU), that has all memory references passed through
itself to effectively perform virtual-memory management and
memory-protection.

Full-functionalities provided by the MMU, however, may
be unavailable in low-cost, low-power, and energy-efficient
microprocessors, such as the increasingly widespread ARM
Cortex-M family of microprocessors, that typically embed a
low-resource applicant Memory Protection Unit (MPU), rather
than a full-fledged MMU. Nevertheless, it is not uncommon
to find low-cost and very resource-constrained devices being
employed in safety-critical applications, since these units offer
a rich plethora of on-chip devices for communication, sensing,
and interaction with the physical world.

In this paper, we present a memory management and
protection strategy that enables to achieve spatial isolation in
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multi-application real-time systems tailored for safety-critical
domains, while allowing a good degree of flexibility and
combinability.

Briefly, our strategy leverages the MPU for implement-
ing memory-protection functionalities, and partitions real-
time tasks in multiple applications. The latter are compiled
and linked separately, and each has its isolated address
space. We allow shared-memory based cooperation between
tasks belonging to the same application. Conversely, the
use of message-passing is mandatory. Furthermore, access to
memory-mapped devices is also restricted. In order to define
memory-regions, applications undergo an analysis step which
purpose is to gather their memory-requirements. The latter are
collected in a binary configuration file that serves to the RTOS
kernel, at runtime, to properly configure the MPU each time
a task is scheduled for execution.

The remainder of the paper is organized as follows. Sec-
tion II reviews contributions from both the industry and the
scientific literature, while Section III provides preliminary
technical background. Our memory-protection strategy is dis-
cussed in full-details in Section IV, and Section V discusses
its implementation as part of relevant industrial application, as
a case-study. Finally, Section VI draws the conclusions.

II. RELATED WORK

While still considered somehow a niche feature, memory
protection is becoming more popular in modern RTOSs.

FreeRTOS [1] – one of the most famous open-source and
adopted RTOSs – provides only a limited support to memory-
protection through using the MPU. For both the ARMv7-M
and ARMv8-M architectures, in facts, unprivileged tasks can
access just their stack, and up to tree additional protected
memory regions can be configured for it [2]. Such regions
can be parameterized individually, they are assigned to tasks
when the task is created, and they can be reconfigured at run
time if required.

A similar approach is adopted by the eChronos RTOS [4].
By default, tasks have permission to access only to their stack,
yet they can be associated to protection domains, i.e., memory
regions, defined in a way that is congruent with the underlying
architectural constraints. Protection domains are configured
at boot in the MPU, and selectively enabled based on the
currently running task. This, however, poses a limit on the
number of the concurrently active regions, since the number
of definable regions.

The scientific literature also provides plenty of contributions
concerning memory protection strategies. In [15], for instance,
the concept of arena is introduced to represent memory ranges
and permission sets which are associated to components; it
then uses a greedy heuristic to find a memory layout that
satisfies the constraints and to produce a linker script.

SAFER SLOTH [8] is a member of the SLOTH family of
operating system which provides enhanced memory protection
capabilities; it provides multiple execution models, one of
which uses traps and the MPU support to obtain an execution
model similar to that of the other industrial RTOSs; however,

variables shared between tasks need to be explicitly associated
to multiple memory domains.

Another possible approach is to avoid entirely the need
of special-purpose hardware; the Amulet [11] platform for
mHealth research provides a compiler for an ANSI C dialect
that disallows pointers and recursion, and inserts bound checks
at runtime. As shown in [9], the Amulet approach can be
enhanced by using the MSP430 MPU to reduce the number
of compile-time and run-time checks needed; however, as this
MPU is not capable of protecting from accesses below the area
range, some support from the tool is needed nonetheless. The
concept of combining hardware support and language feature
is also explored in the Tock OS [12], [13] operating system;
while in Amulet the memory safety is obtained by restricting
a potentially unsafe language, Tock OS is written in Rust
and exploits a combination of hardware support and language
features such as built-in bound checking to achieve memory
safety.

The approach we present in this paper is mostly supported
by the hardware; while the C language is deemed potentially
unsafe and a strong push to consider safer alternatives for
safety-critical systems permeates the literature [7], in practice
it is still largely used because of the vast availability of tooling
and libraries, and is still considered suitable by industry
regulations [5].

Our work is therefore focused on obtaining spatial isolation
without the need for additional syntax and language usage
restrictions.

Another important point is to minimize the need for user
intervention; for some applications, all the relevant memory
regions to be protected, and the sharing patterns can be
identified by simply inspecting the executables; when more
complex memory access patterns are needed, as shown in
Section V, there is no need to write additional code but some
additional configuration in XML format is needed.

III. TECHNICAL BACKGROUND

In this section, we briefly provide some preliminary techni-
cal background for the rest of the paper.

We introduce the basic concepts of memory protection
hardware in the context of Microcontroller Units (MCUs), with
particular attention to the MPUs used in resource-constrained
devices.

We also introduce two simple execution models for RTOSs,
namely the “library RTOSs” and the “separated-executable
RTOSs”.

A. Memory Protection Hardware

While often underestimated in embedded settings, memory
protection is an important feature for functional safety and, to
a lesser degree, for system security.

The typical memory model for embedded devices does
not include any memory protection hardware: the Central
Processing Unit (CPU) can load and store from/to any memory
address without restrictions.
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Modern microcontroller units often provide simple memory-
protection hardware, namely MPUs, while more complex
protection hardware, e.g., MMUs, are rarely found. This is
due to several reasons, including the low-power requirements
and the execution models of typical applications. The latter,
indeed, makes virtualizing the address-space less relevant.

From the memory-protection perspective, MPUs mediates
memory accesses and regulates read/write operations lever-
aging memory-regions and attributes, as shown in Figure 1.
The complexity of such attributes varies greatly with that
of the underlying hardware, encompassing cache behavior, if
applicable.

MPU

0x0

0xf....fff

Memory

CPU

Regions

R1: 0x10,0x40

R7:0x100, 0x180

Fig. 1: Access to memory in devices with a MPU.

It’s interesting to note that MPUs can be used to implement
even more sophisticated schemes, as in some versions of Em-
bedded Linux; in many systems, access to a memory region not
covered by a MPU region will trigger an exception, similarly
to page faults in MMU based one. In practice, this allows
to overcome the limitation imposed by the small number of
regions (usually between four and sixteen) in commercially
available MPUs; the cost, however, is an unpredictable over-
head due to the memory faults that undermines the time
determinism needed in real-time systems.

B. Real-Time Operating Systems Execution Model

The foremost objective of a RTOS is to meet the individ-
ual timing-requirements of each task. From an architectural
standpoint, however, the organization of such tasks may vary
greatly from system to system.

Most of the commonly used RTOSs are based on the
so called “library RTOSs” architectural paradigm: the user
defines the tasks with specific system calls, and assigns them
a user-defined function as entry-point. The RTOS code is
either compiled together with the user one, or provided as
a static library and linked to the latter, providing a single
binary that can then be loaded and executed on the target, as
shown in Figure 2a. An important downside of this paradigm
is that adding a task requires a full system recompilation;
often, even a simple modification to the system configuration,
such as changing the period of a task or its phase, needs
a modification to some specific system call parameter and,
therefore, a recompilation.

Complier

CCC

CCC

CCC

RTOS

CCC

App. A 
Source

App. B 
Source

App. C 
Source

Complier

Linker

 
 

ELF
MCU

RTOS 
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Binary

(a) Example of library RTOS
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Linker  
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Executable 

Binary
Complier & 

Linker  
 

ELF
Executable 

Binary

(b) Example of separated-executable RTOS

Fig. 2: Examples of RTOS execution models

A different architectural paradigm we may call “separated
executables RTOS” is shown in Figure 2b. In this model, the
RTOS is provided as a full, standalone binary executable,
that can even be loaded and ran by itself on the target.
The tasks are organized in multiple applications, based on
architectural/conceptual needs, and eventually shared memory
between them. Each application defines an entry point, that can
be denoted as main – as in C programming conventions – and
a number of conceptually correlated tasks, that are executed
continuously, in order to perform application logic. For what
pertains to the main function of each application, it can either
define a task on its own, or be executed only once at system
startup, in order to perform initialization and configuration
procedures.

This model is slightly more complex than the library-
RTOS one. Nevertheless, it provides benefits not limited to
the conceptual and organizational perspective. Indeed, it allows
adding functionalities to a system by simply adding a new ap-
plication executable, and modifying the system configuration
accordingly. This point is particularly important in a safety-
critical context because some parts of the system may be com-
posed of pre-existing and already certified applications, such
as middlewares for communication or replication management,
and being able to add them unmodified can significantly speed
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up the certification process.
Using a separated executable model also lends elegantly to

the definition of a memory protection scheme; while not neces-
sarily encouraged in some programming styles, the sharing of
global variables between tasks can be managed in a controlled
way by only allowing it between tasks belonging to the same
application.

To the best of our knowledge, RTOSs designed for resource-
constrained devices such as those presented in Section II are
invariably based on the library RTOS execution model. The
emergence of powerful MCUs, such as the ARMv7-M and
ARMv8-M families, may however motivate an interest on
alternative paradigms when safety is of concern.

IV. MEMORY PROTECTION IN RESOURCE CONSTRAINED
DEVICES FOR SAFETY CRITICAL APPLICATIONS

Besides guaranteeing spatial and temporal isolation, further
requirements have been taken into consideration during the
development of our proposed memory-protection technique.
These include managing statically allocated resources while
supporting configurability w.r.t. running applications, and as-
suring compatibility towards position-dependent code, relying
solely on hardware available in low-power, low-resource pro-
cessors, e.g., ARMv7-M and ARMv8-M CPUs. In facts, the
particular application domain mandates, among other things,
no dynamic memory allocation after the system startup phase
(at least not in user code). Furthermore, compatibility towards
position-dependent code must be guaranteed, since many li-
braries targeting embedded systems, e.g., are distributed under
this particular format. Last, the memory-virtualization mecha-
nism usually provided by MMUs is not available, as an MPU
is adopted in place of the latter in the above-mentioned low-
power, low-resources processors, providing only the memory-
protection functionality.

The programming model for our RTOS is based on appli-
cations and tasks: the latter are the basic unit for scheduling,
while the former are sets of tasks sharing the same virtual
address space. Applications, including the RTOS kernel, are
compiled and linked separately; hence they independently
manage their own address-space. Tasks are executed concur-
rently, and those belonging to the same application can co-
operate through the shared-memory communication paradigm.
Conversely, those belonging to different applications can com-
municate only using the message-passing mechanism offered
by the real-time kernel. With such a kind of architectural
organization, tasks can be partitioned into applications, and
faults of a task can propagate only to other tasks belonging
to the same application. This is true, as it is easy to foresee,
whether isolation is guaranteed to data, stack, heap and to each
memory-area of running applications. Furthermore, access to
memory-mapped devices has to be restricted to the only
applications being authorized.

A. Defining protected memory-regions

The memory-protection strategy we propose assumes (i) that
protected memory regions cannot be defined at runtime, rather

they have to be determined offline; (ii) that tasks execute at
user level, and (iii) that the RTOS kernel is the only one
managing the MPU, fulfilling its configuration each time a
task is scheduled.

C 
Source

C 
Source

C 
Source

ld 
script

Application A

Application B

Application C

 
 

ELF

 
 

ELF

 
 

ELF

Compilation 
&

Linking

Application A

Application B

Application C

Section Analysis
& 

Optimization

Memory 
Map

ld 
script

ld 
script

ld 
script .bin

Ld-script & Binary
Congigurtration 

Generation

Fig. 3: Workflow for defining protected memory-regions

As depicted in Figure 3, in order to define memory-regions,
applications part of the given system configuration (compiled
and linked separately) undergo a preliminary analysis step,
during which we inspect the following sections and their size:
(i) the text section, where code live; (ii) the data section,
where global tables, variables, etc. live; (iii) the rodata section,
for read-only data; (iv) the bss section, which is home for
uninitialized data; and, finally, for (v) the init and fini sections,
which hold entry-points of initialization and finalization func-
tions. All these sections, their size in particular, allows defining
requirements of a given application, which, in turns, are
needed to define protected memory-regions while optimizing
for efficiency of memory usage, i.e., while minimizing the
waste of memory space. In facts, when defining protected
memory-regions, additional hardware limitations may lead to
waste of memory space. MPUs of ARMv7-M and ARMv8-M
CPUs, for instance, require the base-address to be size-aligned
with the size of regions, i.e., if we consider 1KB large sections,
then the 10 least significant bits of their base-addresses must
be zero. Furthermore, none of the tasks should require more
memory regions than those physically made available by the
MPU.

This requires solving the optimization problem in which all
applications belonging to the given system configuration must
fit into the memory, while the waste of memory space due
to the definition of protected regions must be minimized. We
solve the above-mentioned optimization problem by resorting
to a greedy heuristic from [14], which, briefly, sorts protected
regions based on their size, and, from the largest to the
smallest, assigns them a memory address. Then, we exploit
the defined memory-map for the given system configuration
while performing a second linking phase of applications, in
order to reposition applications into memory. Furthermore, a
binary configuration file is generated to be written in memory
and read by the RTOS kernel at boot so that the latter can
fulfill to the MPU configuration each time a task is scheduled
for execution. Indeed, the RTOS kernel must be aware of the
memory address-space of each application, task, and software
library which are part of the given system configuration, along
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with information concerning data frames, stack and heap sizes,
memory-mapped devices, and so forth. Last, a loading script
is also generated, in order to support device flashing.

It’s important to note that, although the strategy is presented
in the context of a separated-executable RTOS, similar effort
is needed to implement it in a more traditional library RTOS.
The main motivation for our choice is to provide a strategy that
is appliable when altering existing executables is undesirable.
For a library RTOS similar analysis, linker script generation
and recompilation steps have to be undergone, but this time the
entire system executable has to be regenerated. This is rarely
a compilation time concern, as they are usually negligible for
resource constrained devices, and should only be of interest
in specific safety-critical scenarios.

V. AN INDUSTRIAL CASE STUDY

The strategy presented in the context of this paper has been
implemented in a custom hard RTOS for safety-critical appli-
cations, entirely developed from scratch. The target platform
for such RTOS is the ARMv7-M based STM32H7 family of
MCUs; however, the code can run with minimal modifications
on many MCUs based on the Cortex-M0+/M3/M4/M7 cores,
such as the STM32F/G/L families, the Tiva MCUs from Texas
Instruments, the NXP K32 series, and the Microchip SAM
series, as it only makes use of core facilities and no MCU-
specific peripheral, the only dependence being the specific
memory addressing layout.

The system has to be configured using a XML file that
specifies (i) applications, (ii) their tasks, and (iii) associated
resources such as inter-process communication facilities, at-
tached peripherals and memory regions.

As an example, in Listing 4 we configure a system with a
single application named IPERF and two tasks:

• task_iperf implements a simple network perfor-
mance server compatible with the IPERF utility [3],

• task_eth is an interrupt service routine that manages
incoming network data.

The configuration also contains information on specific
memory regions that need to be accessed by the tasks; while
global data, application heap and task stacks are automatically
found and configured via compiled executable analysis, other
buffers and peripherals need to be manually specified. For
each memory region, in addition to the address and size of
the region, a policy can be specified to ensure the appropriate
memory system behavior; e.g.:

• cache can be disabled for specific memory regions by
using the NON-CACHEABLE policy; this is particularly
useful when the region need to be accessed via DMA;

• if cache is to be used, WRITE-THROUGH or WRITE-
BACK behavior can be specified; DEVICE-ACCESS policy
disables write buffering and reordering, ensuring the
region is accessed in the same way as the parts of the
address space dedicated to peripherals.

The STM32H7 MCU we target is equipped with 2 MB of
flash and 1056 KB of RAM; however, the memory structure
is organized in non-contiguous blocks:

...
<application name="iperf" elf="iperf.elf" heap

-size="2048">
<task xsi:type="periodic" name="task_iperf"

stack-size="1024" priority="4" phase="
0" period="10" deadline="0"/>

<task xsi:type="isr" name="task_eth" stack-
size="1024" priority="5" deadline="5"/>

</application>
...
<resource xsi:type="region" policy="non-

cacheable" owner="iperf" name="
RxArraySection" address="0x30042000" size=
"8192"/>

<resource xsi:type="region" policy="write-back
" owner="iperf" name="lwip_heap" address="
0x30044000" size="2048"/>

<resource xsi:type="region" policy="device-
access" owner="iperf" name="
RxDecripSection" address="0x30040000" size
="128"/>

<resource xsi:type="region" policy="device-
access" owner="iperf" name="
TxDecripSection" address="0x30040080" size
="128"/>

<resource xsi:type="peripheral" name="eth"
address="0x40028000" size="8192" user="
task_iperf"/>

...

Fig. 4: Example kernel configuration

• two blocks of tightly-coupled memory, respectively 128
KB for data and 64 KB for instructions,

• three non-contiguous SRAM blocks of respectively 512
KB, 288 KB and 64 KB, that we conventionally call
RAM_D1, RAM_D2 and RAM_D3.

We reserved the tightly-coupled memory for the kernel heap
and stack, the RAM_D1 for application heaps and task stacks,
the RAM_D2 for application data and bss sections. The
RAM_D3 is not used by the automatic memory layout facilities,
but by configuring them opportunely, buffers can be placed
there.

At system boot, the kernel reads from the configuration
binary all the informations pertaining the memory regions
associated to the tasks, and stores them in their task control
blocks.

During the context switch, the memory regions associated
with the exiting task are removed from the MPU registers and
the ones associated with the task that is becoming active are
written.

VI. CONCLUSIONS

In this paper, we discussed an MPU-based memory man-
agement and protection strategy that enables achieving spa-
tial isolation in multi-application real-time operating systems
(RTOS) tailored for safety-critical domains. The strategy is
designed to be well suited for very resource-constrained de-
vices performing real-time sensing and actuating tasks, which
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are commonly adopted for in-field safety-critical applications.
Furthermore, we discussed the implementation of such strategy
as part of a RTOS from the industry domain, while considering
ARMv7-M CPUs as target devices.

Briefly, the strategy leverages the MPU for implement-
ing memory-protection functionalities, and partitions real-time
tasks in multiple applications, which are compiled and linked
separately, and have their own isolated address space. The
strategy allows shared-memory based cooperation between
tasks belonging to the same application, while message-
passing is mandatory for tasks belonging to different applica-
tions. Furthermore, our strategy also allows restricting access
to memory-mapped devices. Memory-regions for the MPU are
defined based on memory-requirements of applications, which
are collected in a binary configuration file exploited by the
RTOS kernel, at runtime, to properly configure the MPU each
time a task is scheduled for execution.
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