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Abstract: Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration
have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of
ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS
production in spermatozoa regulates essential functional characteristics such as motility, capacitation,
acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on
sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which
can eventually affect the fertility of an individual. Substantial evidence in the literature indicates
that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-
assisted reproduction are increasingly associated with iatrogenic ROS production and eventual
impairment of sperm function. Although a direct association between sperm OS and human assisted
reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic
sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence
on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This
review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo
development, and the approaches that have been proposed to reduce iatrogenic sperm damage and
altered embryonic development.

Keywords: spermatozoa; male infertility; oxidative stress; assisted reproductive technologies; em-
bryo development

1. Introduction

Infertility, defined by the World Health Organization (WHO), as the inability to
achieve pregnancy within 12 months of regular unprotected sexual intercourse, affects
approximately 15% of couples, out of which a male factor is responsible for approximately
half of the cases [1,2]. The causes of male infertility are numerous, and includes genetic
causes such as Y-chromosome deletions in severe oligozoospermic and non-obstructive
azoospermic men, varicocele, infections of the male reproductive tract, presence of anti-
sperm antibodies, non-obstructive and obstructive azoospermia, and hypogonadism [3].
About 15% of infertile men have unexplained infertility as no defects are observed after
routine semen analysis [4]. Moreover, 30–50% of male infertility cases are idiopathic
as routine semen analysis has no identifiable etiology, and a female factor seems to be
absent [5–7]. Indeed, the incidence of male infertility oscillates in a wide range (5–35%)
due to multifactorial differences among the patient’s populations [8,9].
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Although it is widely accepted that a semen profile based on sperm number, motility,
and morphology according to the WHO is fundamental in the evaluation and treatment of
the infertile couple, its predictive value on the fertilizing ability, either in vivo or in vitro,
is limited. Oxidative stress (OS) and sperm DNA damage have shown a strong associ-
ation with several forms of male infertility. In fact, about 30–80% of infertile men have
elevated levels of reactive oxygen species (ROS) and lower antioxidant capacity in their
ejaculate [10–12]. Hence, the term Male Oxidative Stress Infertility (MOSI) has been re-
cently introduced to describe infertile men with abnormal semen characteristics and OS,
including many patients previously classified as infertile idiopathic males [13]. Indeed,
controlled production of ROS in spermatozoa has a physiological role in redox signaling
and drives fundamental events in spermatozoa such as the activation of motility, transient
sperm-oviduct adhesion, capacitation, hyperactivation, acrosome reaction, and sperm
oocyte fusion [14–18]. On the other hand, when semen ROS levels exceed the antioxidant’s
defense, a status of oxidative stress is generated. OS plays a crucial role in a wide range of
diseases, including infertility, and is also clearly influenced by environmental and lifestyle
factors. It may impair not only female and male reproductive health but also exert epi-
genetic effects on the offspring [19]. Spermatozoa are vulnerable to OS due to their high
content of polyunsaturated fatty acids (PUFA), deficiencies in intracellular antioxidant
enzymes, and limited DNA repair ability. ROS cause impairment in male fertility by
damaging the sperm membrane via lipid peroxidation with consequent reduction of sperm
motility, sperm-oocyte fusion [20,21], and the sperm DNA integrity, thus compromising the
paternal genomic contribution to the embryo [22–25]. Sperm DNA damage, in most cases is
believed to be oxidative in nature and associated with reduced fertilization rates, impaired
preimplantation development, increased incidence of miscarriage, and fetal loss [11,26–31].
Although several mechanisms are known to induce DNA damage during spermatogenesis
and epididymal maturation, sperm DNA can also be damaged post-ejaculation.

ART outcome, including fertilization and clinical pregnancy rates, are influenced by
multiple factors, among which sperm OS plays a significant role. Sperm oxidative DNA
damage, if left unrepaired after fertilization, can compromise embryo development or
transmit genetic mutations to the offspring [9]. During in vitro handling, spermatozoa
experience altered microenvironments, shearing forces, and a wide spectrum of exogenous
factors which are different from the specific physicochemical microenvironments they
sequentially encounter during their journey within the female reproductive tract. The
regulation of ROS levels within physiological concentrations during sperm handling in ART
represents a crucial factor in optimizing its clinical efficiency. The laboratory interventions
such as sperm handling, washing techniques, and cryopreservation could generate or
increase the status of OS in spermatozoa, and this could be a concern, especially when ROS
levels and/or DNA damage in the basal semen are elevated.

This manuscript aims to review the literature on sperm OS during in vitro handling in
ART, its effects on sperm function and embryo development, and the remedies that have been
proposed to reduce iatrogenic sperm damage and impairment of embryo development.

2. Sources of ROS in Spermatozoa

Various sources in spermatozoa produce ROS such as superoxide (O2
•−) [22,32],

hydrogen peroxide (H2O2) [22], nitric oxide [33], and peroxynitrite [34]. Mitochondria
represent one of the main ROS sources in spermatozoa [18]. Production of mitochondrial
ROS is due to the leakage of electrons from the electron transport chain (ETC), which
are then accepted by molecular oxygen (O2) producing O2

•− [35,36]. ROS also results
from the mitochondrial apoptotic pathway, which has been reported to be activated by
the dysfunction of the phosphoinositide signaling pathway [37]. Moreover, mitochondrial
membranes are rich in PUFA that represent preferential substrates for ROS, triggering lipid
peroxidation and the generation of highly reactive lipid aldehydes. These covalently bind to
ETC proteins, reinforcing the production of mitochondrial ROS in a self-perpetuating cycle,
and compromise both the competence and the DNA integrity of the spermatozoa [38–40].
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The fact that unesterified unsaturated fatty acids are powerful ROS inducers in human
spermatozoa also indicates a role for lipoxygenase in this process [41].

Several lines of evidence in different species support the role of the hexose monophos-
phate shunt pathway in ROS generation by spermatozoa [42,43]. In human spermatozoa,
ROS production has been highly correlated with the presence of glucose-6-phosphate-
dehydrogenase, a key enzyme in the control of hexose monophosphate shunt activity [44].
Among NADPH oxidases involved in ROS production in phagocytes [45], a novel isoform
of NADPH oxidase 5 (NOX5) localized in the membrane, activated by binding of calcium
ions (Ca2+) and involved in the production of O2

•− and H2O2, has been detected in the
acrosome, neck, and tail of human spermatozoa [46,47]. Nitric oxide synthase and other
non-enzymatic mechanisms have also been proposed to participate in the production of
nitric oxide [48,49].

3. Roles of ROS in Sperm Physiology

Ejaculated spermatozoa move along the female reproductive tract until they reach
the oviductal ampulla to fertilize the oocyte. Redox signaling through the production
of low levels of ROS is involved in several sperm physiological processes such as tran-
sient sperm-oviduct adhesion, capacitation, hyperactivation, acrosome reaction, and the
membrane fusion with the oocyte. The two main events that orchestrate the physiological
changes associated with sperm capacitation are the activation of Src family kinases with
the consequent inhibition of serine/threonine (Ser/Thr) phosphatases and the activation of
the cAMP pathways by bicarbonate and Ca2+. Downstream changes such as the increase
in intracellular pH and membrane hyperpolarization have been hypothesized to increase
intracellular Ca2+ through the modulation of specific sperm channels. Such an increase is
essential for inducing sperm hyperactivation, acrosome reaction, and developing the ability
to fertilize the oocyte [50]. Redox regulation of the thiol groups of cysteine residues is
necessary to regulate different sperm proteins associated with capacitation [51]. In several
species, spermatozoa transiently adhere to the epithelial cells lining the isthmic portion
of the oviductal epithelium [52]. This adhesion selects high-quality spermatozoa and
maintains their fertilizing ability until periovulatory release, which allows their migration
toward the oviductal ampulla for fertilization [53]. Several pieces of evidence indicate that
selected spermatozoa are not capacitated, and that capacitation allows their release from
the oviductal reservoir. The quantity of sperm surface thiols has been shown to increase
during capacitation [51], and the level of thiols in sperm-surface proteins modulates the
ability of bovine spermatozoa to adhere to and be released from the oviduct in vitro and
their capacitation status [15,17].

Concentrations of O2
•−, H2O2, nitric oxide, and peroxynitrite are progressively increased

during the entire course of capacitation [32,54]. An early event of capacitation regulated by ROS
is the activation of adenylate cyclase by O2

•− and nitric oxide, which drives the increase of intra-
cellular cyclic adenosine monophosphate (cAMP), followed by the activation of protein kinase
A (PKA), which is essential for the tyrosine phosphorylation of target proteins [55,56]. Later ca-
pacitation molecular events in which specific ROS are implicated include the mitogen-activated
protein kinase (MEK), extracellular-regulated kinase (ERK), phosphoinositide-3 kinase/Akt
(PI3K/Akt) pathways, and tyrosine phosphorylation [57–60].

Hyperactivation, a high amplitude, increased lateral head displacement, asymmetric
flagellar movement, is part of capacitation and is required for successful sperm passage
through the cumulus oophorus and the zona pellucida and for fertilization. This motility
change depends on ROS-mediated tyrosine phosphorylation of flagellar proteins, and the
simple exposure of capacitating spermatozoa to ROS increases hyperactivation [61,62].

The increase of membrane fluidity needed for induction of acrosome reaction and
sperm-oocyte fusion is influenced by ROS. In fact, exposure of spermatozoa from several
species to exogenous H2O2 was shown to induce both the acrosome reaction and the sperm-
oocyte fusion [63–65]. In particular, exposure of human spermatozoa to H2O2 induces the
acrosome reaction whereas, this is inhibited by the addition of catalase [66,67].
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4. Effects of Oxidative Stress on Sperm Function

Spermatozoa are vulnerable to OS due to their high content of PUFA, deficiencies in
intracellular antioxidant enzymes, and limited DNA repair ability. In particular, the high
content of PUFA in the sperm plasma membrane regulates membrane fluidity but also
represents a preferential substrate for ROS attack. In fact, lipid peroxidation of the sperm
plasma membrane PUFA has been the first oxidative damage recognized in male infertil-
ity [22,68]. The highly reactive lipid aldehydes produced by peroxidation form adducts
with proteins and DNA and induce sperm mitochondrial dysfunction through binding
to ETC proteins. This reinforces the production of mitochondrial ROS and compromises
both the competence and the DNA integrity of the spermatozoa [38–40], causing mutations
in the sperm genome [9]. The generation of 4-hydroxynonenal-protein adducts has been
associated with loss of membrane integrity, motility, and reduced fertility [69].

5. Origin and Consequences of DNA Damage in Ejaculated Spermatozoa

Three main mechanisms are currently considered for the induction of DNA damage
in spermatozoa: abortive apoptosis during spermatogenesis [70], defective protamination
during spermiogenesis, defective epididymal microenvironment, and OS. Among these,
OS is considered to be the major cause of spermatozoa [24]. In fact, high ROS levels
and decreased total antioxidant capacity are closely correlated to increased sperm DNA
damage in infertile men [71–74]. ROS can directly damage DNA, generating oxidized
DNA adducts such as 8-hydroxy-2-deoxyguanosine (8-OHdG), 1,N6-ethenoadenosine, and
1,N6-ethenoguanosine. In particular, 8-OHdG, caused by hydroxyl radicals, represents the
most frequently generated adduct and is assessed as a marker of DNA oxidative damage
in several studies [25,75].

Defective protamination renders the spermatozoa highly susceptible to oxidative
DNA damage and DNA fragmentation [75]. DNA bases in the nucleus and mitochon-
dria can also be deaminated, nitrated, or oxidated by nitric oxide [76]. 8OHdG is highly
mutagenic if left unrepaired; it forms a stable base pair with adenine, resulting in G:C to
T:A transversion mutations following DNA replication [77]. A critical enzyme of the base
excision repair pathway, 8-oxoguanine DNA glycosylase 1 (OGG1), localized both in the
mitochondria and nucleus of mature human spermatozoa, is able to excise 8OHdG, allow-
ing the creation of an apurinic site and extracellular release of the adduct. However, human
spermatozoa have a truncated base excision repair pathway as they lack the downstream
components, apurinic endonuclease 1 (APE1), and X-ray repair complementing defective
repair in Chinese hamster cells 1 (XRCC1) [78]. During oogenesis, the oocyte accumulates
mRNA’s and proteins involved in base excision repair [79,80], and the apurinic sites in
the sperm DNA can be repaired following fertilization by the zygote before the S-phase
of the first mitotic division [81–83]. Although a remarkable acceleration of 8OHdG repair
by the base excision repair pathway has been reported in the mouse oocyte following
fertilization, OGG1 expression seems particularly low compared to male germ cells [77].
Therefore, spermatozoa carrying high levels of 8OHdG at the time of fertilization can
undergo an incomplete DNA repair in the zygote, and this may impair the preimplantation
embryo development [84] and fetal growth [85]. In addition, incomplete repair of sperm
8OHdG lesions has been linked to defects in offspring, including cancer and reduced
lifespan [86,87]. Spermatozoa may also carry single- and double-strand DNA breaks (DSB),
and the significance of the different methods to evaluate sperm DNA fragmentation has
been recently reviewed elsewhere [88,89]. Oocytes should be able to repair such damage as
they are equipped with components of DSB DNA repair, single-strand break (SSB) repair,
and nucleotide-excision repair (NER) pathways [86]. However, female age has been shown
to affect oocyte DNA repair pathways [90,91]. Further, detrimental effects of age have been
reported on the DNA repair capacity of oocytes after IVF with X- irradiated sperm [92].
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6. ROS Producers in Semen

The human ejaculate comprises mature and immature spermatozoa, germ cells, leuko-
cytes, macrophages, and epithelial cells suspended in the seminal plasma. The main ROS
producers in semen are leukocytes and immature spermatozoa. Peroxidase-containing
leukocytes include macrophages (20–30%) and polymorphonuclear leukocytes (50–60%)
and among them, neutrophils, which enter the semen in an activated state, are the most
powerful ROS producers [93]. Seminal plasma antioxidants protect spermatozoa against
the deleterious action of ROS generated by leukocytes [94], but in cases of infection or
inflammation, the concentration of peroxidase-positive leukocytes can be ≥ 1 × 106/mL,
leading to leukocytospermia. In such conditions, peroxidase-positive leukocytes have been
reported to produce 100-folds more ROS than under normal physiological conditions, and
the antioxidant protection of seminal plasma becomes insufficient, leading to OS [95–98].
Although the association of leukocytospermia with male fertility in vitro is still under
debate, the persistence of leukocyte contamination after removal of seminal plasma during
sperm manipulation in ART has been reported to decrease the fertilization rates [98,99].

Leukocytes produce ROS much higher than spermatozoa, but their level in human
semen is extremely low, and selection techniques such as density gradient centrifugation
(DGC) are able to remove leukocytes from sperm suspensions. Spermatozoa and specific
sperm subpopulations with enhanced ability to produce ROS are of concern once they are
separated from seminal plasma and subjected to laboratory interventions. Although it
would be important to determine which spermatozoon produces more ROS, these reactive
molecules are extremely short-lived (10−9 s) and, most redox-sensitive probes measure OS
rather than ROS directly [25].

A series of studies suggested a relationship between retention of the cytoplasmic droplet
and human sperm membrane peroxidative damage using creatinine kinase (CK) and glucose-
6-phosphate dehydrogenase (G6PDH) as markers of cytoplasm retention [100–103]. Gomez
and collaborators [44] demonstrated an enhanced ROS production in human spermatozoa
recovered from the low-density fraction after Percoll DGC characterized by large midpieces
and high content of cytoplasmic enzymes. As G6PDH is required for the reduction of
NADP+ to NADPH, it has been proposed to be involved in ROS production through
membrane NADPH oxidase [104–106]. The enhanced ROS production by immature sper-
matozoa has been suggested to induce an OS in neighboring mature spermatozoa during
their transit in the epididymis [44,107,108]. Koppers and collaborators reported that poorly
motile and dysfunctional spermatozoa from the low-density region of Percoll gradients
had an increased content of unsaturated fatty acids compared to motile and functional sper-
matozoa recovered from the high-density region, and this caused increased spontaneous
production of mitochondrial ROS and consequent oxidative DNA damage in the mitochon-
dria and nucleus [109]. Dysfunctional spermatozoa were characterized by the presence of
excess residual cytoplasm, poor protamination, and retention of histones and have been
suggested to result from defective differentiation during spermiogenesis [109]. Several
studies showed a positive correlation between abnormal sperm morphology, ROS produc-
tion, and DNA damage [93,107,110,111]. Moreover, an increased expression of the main
isoform of NADPH oxidase (NOX), NOX5, an active membrane-bound generator of ROS
in spermatozoa, has been reported in both teratozoospermic [112] and asthenozoospermic
human ejaculates [44]. Positive correlations found between sperm morphological abnor-
malities, histone persistency, and lipid peroxidation indicate that abnormal spermatozoa
with excessive histones and relaxed chromatin produce a higher amount of H2O2 [113].
The fact that the percentage of sperm persistent histones had an adverse effect on embryo
development and clinical pregnancy outcomes is another indication of the incidence of
sperm OS in such impairments [113].

The presence of an elevated fraction of dead spermatozoa is of concern during sperm
manipulation and especially during cryopreservation in ART. Dead spermatozoa are gen-
erally considered high ROS producers [114] though their contribution to semen ROS
generation can vary according to the species. The production of H2O2 by dead equine
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spermatozoa has been reported to be five-fold higher than in live spermatozoa [115].
Dead spermatozoa have been suggested to represent the major ROS producers through
an aromatic L-amino acid oxidase (LAAO) pathway in bull semen [116]. In boars, the
presence of dead spermatozoa in semen before and during freezing increased the pro-
duction of ROS and sperm DNA fragmentation (SDF) in cryo-survived gametes [117].
L-amino acid oxidases have been reported in bull, ram, and stallion, and its activity is
increased following sperm death [116–120]. Exposure of this enzyme to aromatic L-amino
acids present in cryo-diluents and extenders upon loss of sperm membrane integrity pro-
motes their deamination and the production of H2O2. Viable spermatozoa can therefore
undergo a ROS-induced death promoting, in turn, the loss of viability in the remaining
live cells [116,120]. Human spermatozoa containing LAAO are capable of inducing sperm
capacitation and acrosomal exocytosis, but in contrast to bull and ram spermatozoa, LAAO
activity is completely absent in nonviable human spermatozoa due to its rapid leakage
after the loss of membrane integrity [121].

7. ART Procedures That Generate Sperm Oxidative Stress

Spermatozoa are subjected to a wide range of in vitro manipulations during ART
in both human and domestic animals. In a typical ART setting, the potential sources of
oxidative stress in vitro include endogenous and exogenous factors. Although gametes
themselves have the potential to generate ROS, OS during ART could also arise from several
exogenous factors such as exposure to visible light, centrifugation, cryopreservation, culture
media, O2 tension, pH, and temperature (Figure 1).

In vitro manipulation of sperm primarily involves the separation of cells from the seminal
plasma that contains several protective enzymatic and non-enzymatic antioxidants and
low molecular weight compounds exerting powerful antioxidant activity [122,123]. On the
other hand, as the main sources of intracellular ROS in semen are leukocytes [124–126] and
immature sperm with abnormal head morphology and cytoplasmic retention [44,70], removal
of these ROS sources through sperm selection can reduce SDF and other oxidative damage.

Whole semen can be subjected to several sperm selection procedures. The most
commonly applied are swim-up techniques and centrifugation through discontinuous
density gradients of silane-coated silica colloidal particles. Swim-up can be performed
from the whole semen or a pellet obtained through centrifugation, through stratification of
a medium containing bicarbonate and albumin, in which motile sperm migrate.

Several factors could generate OS during the swim-up from a pellet. In fact, (1) the
seminal plasma antioxidants are removed as semen is mixed with culture medium; (2) the
shearing forces induced on spermatozoa and cells during centrifugation result in the
production of ROS [125]; (3) before migration, spermatozoa remain tightly packed for
a variable time in the pellet along with leukocytes and abnormal spermatozoa which
are both ROS producers. The level of ROS generation is dependent on the severity and
duration of exposure to centrifugation force [127,128]. Preparation techniques involving the
centrifugation of unfractionated sperm suspensions, such as simple washings or swim-up
from the pellet, have been associated with a sudden burst of ROS production, reduced
motility, and impaired sperm-oocyte fusion in the zona-free hamster oocyte penetration
test [125,129]. Therefore, it has been suggested to adopt sperm-selection techniques in
which centrifugation is only applied after the sperm motile fraction has been selected, as in
the swim-up from semen and gradient centrifugation procedures.

Several studies assessed the effects of DGC on DNA oxidative damage analyzing SDF
through TUNEL and the formation of the DNA-base adduct 8-hydroxy-2′-deoxyguanosine.
Aitken et al. showed that a majority of TUNEL and 8OHdG positive cells were dead both
before and after Percoll and Puresperm, and DGC positively selected motile and viable cells,
reducing the proportion of TUNEL-positive cells. However, DGC increased the fraction
of viable cells with high levels of 8OHdG both in a patient and donor population, leading
to an increase of viable TUNEL-positive sperm only in the former [25]. Such effects were
attributed to ROS production during centrifugation through the dense gradient rather than to
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the simple act of centrifugation that can also increase ROS generation [125,129]. Iwasaki and
Gagnon [130] showed a four- to five-fold increase of ROS in Percoll-washed spermatozoa
compared to the original semen sample, whereas a reduction of ROS was reported in sper-
matozoa recovered after DGC in SpermGrad™ [131], and a lack of increase in sperm DNA
damage was reported after centrifugation in PureCeption™ and Isolate™ [132]. Zhao et al.
reported a significant reduction of ROS and SDF after the selection of normozoospermic
samples through PureCeptionTM density gradient centrifugation or swim-up [133].

Figure 1. Factors inducing oxidative stress during sperm manipulation in ART. Central micrographs: TUNEL-labeled
human sperm. Bar, 5 µm. Sperm drawing is modified from https://www.vecteezy.com/vector-art/1434164-human-sperm-
or-spermatozoa-cell-structure (accessed date 3 March 2021).

The induction of oxidative DNA damage in PureSperm recovered spermatozoa was
demonstrated to depend on the simple exposure to the density medium and not associated
with generalized oxidative stress. Contaminating metals found in Percoll, PureSperm,
and other commercial density media have been suggested to promote ROS generation in
the immediate vicinity of DNA, and the addition of EDTA to PureSperm fully reversed
its ability to induce oxidative DNA damage [134]. Muratori and collaborators reported
that PureSperm centrifugation increased the percentage of DNA fragmented spermatozoa

https://www.vecteezy.com/vector-art/1434164-human-sperm-or-spermatozoa-cell-structure
https://www.vecteezy.com/vector-art/1434164-human-sperm-or-spermatozoa-cell-structure
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in about 50% of subjects studied, while a reduction was observed in the remaining ones.
Interestingly, the patients with PureSperm-induced DNA oxidation had a 50% lower chance
of achieving pregnancy after IVF/ICSI [135], even though no differences were found after
basal semen analysis. In a subsequent paper, the effects of DGC and swim-up selection on
the TUNEL positive live and dead fractions were evaluated in male partners of infertile
couples, which did not show any differences in average pre- and post-selection SDF values
but again a different behavior according to the sample. The analysis of single samples
revealed that in some subjects, both selection methods induced SDF, whereas in other
subjects, the opposite finding was observed. The analysis of viable-DNA fragmented
sperm allowed the identification of additional subjects undergoing DNA damage during
selection with respect to conventional methods revealing total SDF. Moreover, under these
conditions, the increase of both total and viable SDF (p = 0.047) in samples processed by
DGC was higher than swim-up of good quality semen samples and about equal to swim-up
selection in case of poor-quality samples [136]. Although ROS were not assessed in these
studies, the occurrence of DNA fragmentation in spermatozoa after ejaculation is generally
considered a result of OS.

Apparently, controversial findings of studies aimed to evaluate the effects of discontin-
uous gradient centrifugation on ROS production and/or DNA damage could be explained
by the particular gradient used, presence of metal contamination, and chelating agents in
diluting media, as well as by semen quality and patient age.

More advanced sperm selection techniques, including magnetic cell sorting (MACS)
with annexin V conjugated beads, intracytoplasmic morphologically selected sperm in-
jection (IMSI), and physiological ICSI using hyaluronic acid binding (PICSI), have been
proposed to select high-quality spermatozoa with intact chromatin [137–140]. However,
the additional value of such selection procedures on ART outcome is still debated [141,142],
and importantly, these techniques require longer culture or handling time, pH, and temper-
ature variations, and exposure to visible light under the microscope which could induce
OS and consequent DNA damage.

Ashgar et al. developed a centrifugation-free and flow-free microfluidic platform
where spermatozoa from whole semen migrate against gravity through 3, 5, or 8 µm pores
carbonate filters [143]. Human semen processed through the platform had decreased ROS
generation and SDF compared to parallel spermatozoa recovered through swim-up from
pellet [143]. Ebner and collaborators found a 90% reduction of SDF after a centrifugation-
free selection in special chambers, Zech-selectors, whereas no reduction was achieved after
DGC [144]. Other studies evaluated the efficiency of methods based on sperm electric
charge in selecting DNA fragmentation-free spermatozoa. A significant reduction of SDF
through a Zeta potential selection on spermatozoa recovered by DGC compared to DGC
alone has been recently reported [145]. An electrophoresis method developed to select high-
quality human spermatozoa on the basis of their high negative charge [146] was shown
to efficiently select spermatozoa without oxidative DNA damage in contrast to Percoll
DGC that increase such damage compared to neat semen [147]. In addition, Simon and
collaborators showed that DGC increased the fraction of positively charged and decreased
that of negatively charged human spermatozoa compared to neat semen [148].

Several studies showed that prolonged sperm incubation in culture media leads to
OS, SDF, and DNA oxidation in human and animal models [38,148–151]. Incubation of
spermatozoa from healthy donors after selection through swim-up from pellet led to a
reduction in motility and increased ROS levels starting from 6 h and reaching a peak at
48 and 24 h, respectively [152]. Other studies found significant changes at earlier incubation
times. In a study on 24 normozoospermic and 20 oligozoospermic patients, washed
spermatozoa in 75% of the patients decreased total and progressive motility and increased
lipid peroxidation and SDF during incubation for 6 h. [153]. Nabi and collaborators found
an increased SDF in spermatozoa selected through swim-up from whole semen during
incubation for 3 h (from 4.38% at 0 h to about 11% at 3 h) [154]. Sperm concentration during
in vitro manipulation also affects viability, ROS levels, and SDF in different species. Post-
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thaw incubation of ram spermatozoa at 6 to 100 × 106/mL for 6 h resulted in an increase
of SDF, with lower sperm concentrations being safer in this respect. The increase of SDF
also depended on individual ram semen [155]. The sperm concentration during storage of
bull semen in a fresh extender also affects the ROS levels, with higher concentrations of
spermatozoa (5 × 106 per 0.25 mL artificial insemination dose) exerting detrimental effects
on sperm cell viability and increased OS compared to lower sperm concentrations [156]. In
our lab, incubation of washed human spermatozoa from seven normozoospermic patients
at serial dilutions ranging from 5 to 100 × 106/mL in Sydney IVF Gamete Buffer for 3 h
at 37 ◦C led to increased SDF and oxidative DNA damage except for concentrations of
5–10 × 106/mL (Gualtieri and Talevi, unpublished data).

The effects of prolonged incubation on ROS production could also depend on the
specific sperm handling medium used. In fact, incubation of DGC selected human sper-
matozoa for 3 h in four commercial sperm-washing buffers resulted in different levels of
ROS production, sperm viability, and capacitation-associated tyrosine phosphorylation and
membrane reorganization. Impairment of sperm function can occur in media with high
ROS in response to OS, and in media with very low levels of ROS in which reductive stress
can prevent the ROS-induced capacitation events in spermatozoa [157]. Measurements
of oxidation-reduction potential (ORP) of sperm processing media using male infertility
oxidative system (MiOXSYS) showed values ranging from a condition of reductive stress in
freezing media designed to counteract the OS induced by cryopreservation to a condition of
OS in sperm washing media. Such measurements could help to define the correct values of
sperm processing media to ensure the development of ROS-induced physiological events
without introducing an OS during sperm preparation [158].

Oxygen tension during sperm media incubation could also influence the levels of
ROS and their beneficial or detrimental effects on spermatozoa. Although spermatozoa are
generally incubated in 20% O2, samples with high ROS levels could benefit from reduced
O2 tensions. In fact, no differences in sperm function were detected for normozoospermic
sperm samples after incubation under 5 versus 20% O2, whereas 5% O2 incubation was
found beneficial for oligozoospermic samples that are known to have higher levels of ROS
than fertile samples [159].

Moreover, incubation of spermatozoa in whole semen or after washing/selection
at 37 ◦C accelerates the DNA damage compared to room temperature. In fact, incuba-
tion of fresh liquified semen for 1 h at 37 ◦C has been reported to significantly increase
phosphatidyl serine translocation and TUNEL positivity compared to parallel samples
maintained at 34 and 25 ◦C [160], whereas incubation of DGC and swim-up selected sper-
matozoa at 37 ◦C increases the oxidative damage that can be minimized storing samples at
room temperature [161,162].

Exposure of cells to light, especially to short wavelengths in the UV range but also
to violet-blue wavelengths, is considered potentially harmful in terms of ROS production
and DNA damage. Phototoxicity depends on the wavelength, photon concentration, and
also on the cell type, and transmitted light microscopy is generally regarded as poorly
phototoxic to cells [163–165]. Although the exposure of gametes and embryos to light
during microscope observation is generally reported as a potential exogenous source of
ROS production [166,167], specific studies on the detrimental effects caused by exposure of
spermatozoa to light are lacking. On the other hand, photo-modulation with visible light
at different wavelengths has been used to increase sperm hyperactivation and fertilizing
potential of human and animal spermatozoa, leading to intracellular Ca2+ rise and a
controlled mitochondrial ROS production without affecting the DNA [168–170].

Sperm cryopreservation is routinely used in human ART and in the preservation
and transport of male gametes in most domestic species. However, several studies in
human and domestic animals indicate that cryopreservation reduces sperm viability and
can impair sperm motility, mitochondrial activity, chromatin integrity, and reproductive
potential in surviving cells [114,171–174].
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Although the high number and quality of gametes present in good-quality ejaculates
make survival rates acceptable, spermatozoa in poor-quality ejaculates can be more suscep-
tible to cryoinjuries impairing the recovery of viable spermatozoa after thawing in severely
oligozoospermic patients [175]. In fact, impairment of sperm motility, DNA integrity, and
sperm competence, as a result of cryopreservation, has been reported, especially in subfer-
tile and infertile men [176–178]. There is a general agreement on the contribution of OS as
the main factor accounting for the reduced survival and competence of cryopreserved sper-
matozoa in supporting fertilization and embryo development, especially in non-human
mammals [85,150,179,180]. Hence, several studies have been addressed to understand the
causes and remedies of cryopreservation-associated sperm damage and the effects of pre-
or post-treatment with antioxidants on the improvement of cryopreserved spermatozoa
in infertile patients and in animal species prone to cryodamage. The most commonly
assessed damages considered are DNA fragmentation and oxidation, ROS levels, and
collapse of inner mitochondrial membrane potential [181]. Mitochondria are thought to
be central in triggering the OS associated with sperm cryopreservation and opening of
the mitochondrial permeability transition pore in response to the increase of intracellular
Ca2+ brought about by permeant cryoprotectants has been proposed to represent the main
mechanism in this respect (see [182] and references therein for review).

8. Effects of Sperm OS on Embryo Development

Studies have ascertained that OS in spermatozoa can substantially contribute to
the poor embryo development in experimental animal models [180,183,184] as well as
in humans undergoing ART [185] (Table 1). The most predominant consequence of OS
on spermatozoa is DNA damage. Therefore, most of the studies in the literature have
correlated the embryonic response to the sperm OS with reference to the sperm DNA
damage. The response to the entry of spermatozoa carrying DNA damage to the ooplasm
during fertilization can have various consequences [81,82,186–189]. Depending on the
extent of sperm DNA damage, the oocyte can repair the damage in spermatozoa and lead to
a healthy embryo; it can successfully fertilize with the development of the defective embryo,
or it may lead to fertilization failure or embryo arrest [190]. Simões et al. have demonstrated
that elevated endogenous oxidative stress and DNA damage in bovine spermatozoa give
rise to blastocysts with a high percentage of apoptotic cells [191]. Similar observations were
made in studies in which OS was exogenously induced. Bittner et al. observed that the
spermatozoa exposed to H2O2 resulted in embryos carrying high DNA damage at the early
cleavage stage as well as blastocyst stage [184]. De Castro et al. reported a dose-dependent
decrease in cleavage and blastocyst rates when H2O2 exposed bull spermatozoa were used
for in vitro fertilization [183]. In vitro exogenous OS, induced through xanthine/xanthine
oxidase system, has been shown to decrease frozen–thawed bull sperm motility, increase
SDF, reduce fertilization rates, and reduce blastocyst rates and quality. Pre-treatment
with zinc, d-aspartate, and co-enzyme Q10 before exogenous OS was able to prevent
these effects [179]. Lane et al. have reported that inducing oxidative stress in mouse
spermatozoa using H2O2 can cause oxidative damage to sperm, which not only reduced
the developmental potential of preimplantation stage embryos but also decreased their
implantation potential. The OS in spermatozoa appeared to have a sex-specific effect on the
growth of offspring and their metabolic function. Further, female offspring had metabolic
disturbances such as glucose intolerance and increased levels of adipose tissues [85].
Wyck et al. have demonstrated that the sperm OS can impair the epigenetic reprograming
in early cattle embryos due to impaired active DNA demethylation on male pronucleus,
which can potentially contribute to defective embryo development and poor embryo
quality [19]. Rhesus embryos produced from sperm with ROS exposure prior to fertilization
exhibit early cleavage abnormalities and a delayed start of first cytokinesis compared to
control embryos [192]. Few clinical studies have tried to establish the relationship between
basal OS in spermatozoa/seminal plasma and the reproductive outcome in clinical settings.
Elevated ROS in seminal plasma has a negative correlation with fertilization rate in IVF
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and ICSI [193]. Similarly, excessive ROS in semen was found to reduce the fertilization
rate, embryo quality, and live birth rate [194]. Further, Ghaleno et al. have shown that
high levels of both sperm intracellular H2O2 and O2

•− in ICSI patients have a deleterious
effect on sperm mitochondrial membrane potential; however, only H2O2 may interfere in
pronuclear formation [185]. Further, oxidative DNA damage in human spermatozoa can
influence time to pregnancy since an inverse relationship between sperm DNA oxidation
and monthly fecundity rate was observed in a naturally conceiving population [195]. In
contrast to these observations, Pujol et al. did not find any significant relationship between
embryo quality and OS levels in the ejaculate. Hence, these authors have not recommended
the routine OS measurement in fresh ejaculate for all patients, especially when the oocytes
for the ART cycle come from women younger than 35 years of age [196].

Oxidative stress-induced protein damage in sperm is expected to be implicated in
embryo degeneration at a progressive phase of pregnancy, which could lead to pregnancy
loss. Levels of SDF, ROS, and total antioxidant capacity (TAC) have significant correlations
with recurrent spontaneous miscarriage. The increase in SDF, along with the increase of
free radicals and reduction of total antioxidants in semen, has increased the frequency
of repeated miscarriages [197]. It has been suggested that histone-carrying sites for ox-
idative modification such as arginine and lysine might be responsible for disturbing the
paternal epigenomic control during early stages of embryonic differentiation, leading to
pregnancy loss [198].

Fewer studies were focused on the effects of OS induced by specific sperm manipula-
tions during ART on embryo development. Simon and collaborators showed that selection
of human spermatozoa through DGC increased the fraction of positively charged and
decreased that of negatively charged spermatozoa compared to neat semen. The negatively
charged fraction was relatively free of DNA damage and positively associated with in-
creased fertilization and blastocyst rates. In addition, embryos generated by patients with
a higher fraction of negatively charged spermatozoa had better implantation and clinical
pregnancy rates [148].

A recent study assessed the effects of cushioned centrifugation of frozen–thawed
bull spermatozoa using a commercial colloidal iodixanol-based solution (Cushion Fluid,
Minitube®, Tiefenbach, Germany) on fertilization and embryo development. The addition
of cushion fluid at the bottom of a Percoll gradient before centrifugation (C1), as well
as during washing of recovered spermatozoa (C1–2), or exclusively at washing (C2),
was compared with Percoll centrifugation without a cushion fluid (C). ROS levels in C
and C1 were comparable and were significantly lower than in C1–2 and C2 treatments.
Interestingly, cushioned Percoll centrifugation (C1) produced higher fertilization, cleavage,
and blastocyst rates compared to conventional Percoll centrifugation (C) [199].

Conflicting results have been reported on the effects of sperm selection through
hyaluronic acid compared to polyvinylpyrrolidone (PVP) prior to ICSI on ART out-
come [138,200–202]. Although measurements of oxidation-reduction potential (ORP) of
human spermatozoa treated with PVP, hyaluronic acid, or medium indicate that PVP
provides higher antioxidative protection, exposure of human spermatozoa to the different
handling media do not affect mouse oocyte activation, and injection of the three media in
parthenogenetically activated mouse oocytes had no effects on embryo development [203].

Spontaneous OS during culture was investigated in human spermatozoa and in bovine
frozen-thawed spermatozoa. In both species, culture for 6 and 3 h, respectively, decreased
total and progressive motility and increased lipid peroxidation and SDF, and such effects
were prevented by supplementation of sperm media with zinc, d-aspartate, and co-enzyme
Q10 [150,153]. Moreover, in the bovine, blastocyst rate was found to be significantly higher
in oocytes fertilized by treated spermatozoa, and these blastocysts harbored a significantly
lower percentage of apoptotic cells compared to parallel spermatozoa incubated in the
medium alone [150].

More studies are available in the literature on the detrimental effects of sperm cryop-
reservation on embryo development after IVF or ICSI. An interesting study considered the
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effects of cryopreserved versus fresh human spermatozoa on embryo development after
ICSI in normal or dysmorphic oocytes. A negative influence of sperm cryopreservation
on the quality of cleavage stage embryos and on blastocyst rates was only detected when
one oocyte defect was present, suggesting that healthy oocytes can better repair damaged
paternal DNA [204]. Mouse sperm cryopreservation increases SDF and affects embryo
development according to the specific cryopreservation procedures adopted [205]. In
bovine, treatment of frozen–thawed spermatozoa with GSH before ICSI improved the rates
of embryos reaching the 4–8-cell stage and blastocyst stage [206].

Sperm sorting, a valuable technique for selecting desired sex in domestic animals,
is associated with increased OS and SDF [207]. Bovine embryos derived from sex-sorted
spermatozoa had an increased incidence of arrest at the 4-cell stage, and reduced survival
and blastocyst rates [208]. Supplementation of vitamin C or lycopene in washing and
fertilization medium improves the fertilization, cleavage, and blastocyst rates of oocytes
inseminated with sex-sorted bull sperm [209].
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Table 1. Effects of endogenous, experimentally induced, and art-associated oxidative stress on sperm function, embryo development, and reproductive outcome.

Oxidative Stress ART Treatment Species Subjects or Samples Experimental Groups Adverse Effects:
Sperm Function

Adverse Effects:
Embryo Development

Antioxidant
(Effect) Refs

Endogenous NA Human First pregnancy— High vs. low 8OHdG NA Natural conception rate ↓ NA [195]
planning males

Endogenous ICSI Human Fresh semen High vs. low ROS Viability ↓ Fertilization rate ↓ NA [194]
Motility ↓ Pregnancy rate ↓

Morphology ↓
DNA integrity ↓ (TUNEL)

Endogenous IVF/ICSI Human Fresh semen High vs. low ROS Vitality ↓ Fertilization rate ↓ NA [193]
Membrane integrity ↓

Morphology ↓

Endogenous Washing/IVF Bovine F/T semen High vs. low TBARS DNA integrity↓ (SCSA) Cleavage ↓
bull semen Blastocyst DNA fragm. ↑ NA [191]

(TUNEL)

Endogenous Swim-up/ICSI Human Fresh semen High vs. low ROS ∆Ψm ↓ NA [185]
High H2O2 vs. high O2

•− ∆Ψm ↓ 2 pronuclei rate ↓

Endogenous Swim-up/ICSI Human F/T semen High vs. low O2
•− NA None NA [196]

ICSI donor oocytes

Endogenous NA Human Fresh semen Idiopathic recurrent Motility ↓ Recurrent pregnancy loss NA [198]
pregnancy loss male Lipid peroxidation ↑ (TBARS)

partners vs. fertile men Protein carbonylation ↑
Histone retention (ABS) ↑

Endogenous NA Human Fresh semen Idiopathic recurrent Motility ↓ Recurrent pregnancy loss NA [197]
pregnancy loss male ROS ↑ (luminol)

partners vs. fertile men TAC ↓
DNA integrity↓ (SCSA, TUNEL)

Ind. (H2O2) Culture 1h/IVF Mouse Fresh semen H2O2 vs. medium ROS ↑ (carboxy-DCFDA) 8-cell rate ↓ NA [85]
Mitochondrial ROS ↑(MSR) Blastocyst rate ↓

Lipid peroxidation ↑(4-HNE) Implantation rate ↓
Fetal weight ↓

Fetal:placental ratio ↓
Crown-rump length ↓

Female offspring health ↓
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Table 1. Cont.

Oxidative Stress ART Treatment Species Subjects or Samples Experimental Groups Adverse Effects:
Sperm Function

Adverse Effects:
Embryo Development

Antioxidant
(Effect) Refs

Ind. (H2O2) Culture 1h/IVF Bovine F/T semen H2O2 vs. medium Motility ↓ Cleavage ↓ NA [19]
DNA integrity ↓(SCSA) Blastocyst rate ↓

Active DNA demethylation
paternal pronucleus ↓

Ind. (X-XO) Culture 2h/ICSI Rhesus F/T semen X-XO vs. medium Motility ↓ Cleavage ↓ NA [192]
Delayed first cytokinesis ↑

Blastocyst rate ↓

Ind. (H2O2) Culture 1h/IVF Bovine F/T semen H2O2 vs. medium Motility ↓ Cleavage ↓ NA [183]
ROS↑ (CellROX™) Blastocyst rate ↓

DNA integrity↓ (AO)

Ind. (X-XO) Culture 3h/IVF Bovine F/T semen X-XO vs. medium vs Motility ↓ Cleavage ↓ Zn, D-asp, CoQ10 [179]
antioxidants + X-XO DNA integrity↓ (TUNEL) 8-cell rate ↓ (protection)

Blastocyst rate ↓
Blastocyst DNA fragm. ↑

(TUNEL)

Ind. (H2O2) Culture 1h/IVF Bovine F/T semen H2O2 vs. medium Motility ↓ Delayed first cleavage ↑ NA [184]
DNA integrity↓ (SCSA) Cleavage ↓

Blastocyst rate ↓
Blastocyst DNA fragm. ↑

(Comet, TUNEL)

Ext. culture Culture 3h/IVF Bovine F/T semen Antioxidants Motility 1 h ↑ Cleavage ↑ Zn, D-asp, CoQ10 [150]
vs medium DNA integrity 3 h ↑ (TUNEL) 8-cell rate ↑ (protection)

Blastocyst rate ↑
Blastocyst DNA fragm. ↓

(TUNEL)

DGC + mEP IVF/ICSI Human Fresh semen DGC vs. fresh semen Neg. charged sperm (NCS) ↓ NCS ↑: IVF fertilization rate ↑ NA [148]
Pos. charged sperm (PCS) ↑ NCS ↑: blastocyst rate ↑

NCS: DNA integrity (TUNEL) ↑ NCS ↑: implantation rate ↑
PCS: DNA integrity (TUNEL) ↓ NCS ↑: clin. preg. rate ↑

NCS ↑: Histone retention (ABS) ↑

DGC IVF Bovine F/T semen DGC + cushioning ROS (DCHF-DA): no differences Fertilization rate ↓ NA [199]
vs DGC Motility: no differences Cleavage ↓

Immobiliz. Mouse oocyte Human Fresh semen PVP vs. HA vs ORP: PVP < HA < medium MOAT: no differences NA [203]
activation medium
(MOAT)
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Table 1. Cont.

Oxidative Stress ART Treatment Species Subjects or Samples Experimental Groups Adverse Effects:
Sperm Function

Adverse Effects:
Embryo Development

Antioxidant
(Effect) Refs

Cryopr. IVF Mouse Fresh and F/T vs. fresh semen DNA integrity ↓ (SCSA) 2-cell embryos ↓ NA [205]
F/T semen Blastocyst rate ↓

Cryopr. ICSI normal Human Fresh and F/T vs. fresh semen NA ICSI defective oocytes: NA [204]
and defective F/T semen Day 2, 3 embryo quality ↓

oocytes Blastocyst rate ↓

Cryopr. ICSI Bovine F/T semen No GSH vs. post-thaw Motility ↓ Cleavage rate ↓ GSH [206]
GSH treatment ∆Ψm ↓ Blastocyst rate ↓ (protection)

ATP ↓

Sex sorting IVF Bovine F/T semen Post- vs. pre-sorting Motility ↓ Cleavage rate ↓ [208]
Hyperactivation ↓ 4-cell rate ↓

Survival ↓ Blastocyst rate ↓
(Extent is bull specific) Embryo survival ↓ (extent is

bull specific)

Sex sorting IVF Bovine F/T semen Washing/fertilization MDA↓ Cleavage rate ↑ Vitamin C or [209]
with vs. without Viability ↑ Lyc: Blastocyst rate ↑ Lycopene

Vitamin C (VC) or
Lycopene (Lyc)

Apoptosis (Annexin V) ↓ (protection)
∆Ψm ↑ (VC: extent bull specific)

Effects of endogenous, experimentally induced (Ind.), and ART-associated oxidative stress on sperm function, embryo development, and reproductive outcome. ABS, aniline blue staining; AO, acridine orange
staining; carboxy-DCFDA, 5- and 6-carboxy-2’,7’-dichlorofluorescein diacetate; CoQ10, coenzyme Q10; Cryopr., cryopreservation; D-asp, D-aspartate; DCHF-DA, 2′,7′-dichlorofluorescin diacetate; DGC, density
gradient centrifugation; ∆Ψm, inner mitochondrial membrane potential; Ext., extended; Fragm., fragmentation; GSH, reduced L-glutathione; HA, hyaluronic acid; 4-HNE, 4-hydroxynonenal; Immobiliz.,
immobilization; MDA, malondialdehyde; mEP, micro-electrophoresis; MSR, MitoSOX™ Red; NA, not applicable; 8OHdG, 8-hydroxy-2′-deoxyguanosine; ORP, oxidation-reduction potential; ROS, reactive
oxygen species; SCSA, sperm chromatin structure assay; TBARS, thiobarbituric acid reactive substances assay; TAC, total antioxidant capacity; Zn, zinc; ↑, increase; ↓, decrease.
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9. Conclusions

Several ART manipulations have the potential to induce an ex novo OS in spermato-
zoa. The individual semen characteristics can influence the degree of OS during sperm
in vitro manipulations. Although routinely used sperm selection methods can enhance
the recovery of spermatozoa with higher DNA integrity compared to the neat semen, an
enhancement of DNA fragmentation or oxidation can be found in some individuals. The
induction of OS and the consequent enhancement of DNA damage could be minimized
using advanced selection procedures such as microelectrophoresis, Zeta potential, and
microfluidic methods. However, such technologies still remain rarely applied in clinics.

Despite substantial evidence in human and animal models that clearly indicate that
sperm OS exerts detrimental effects on embryo development, fetal growth, and postnatal
health, studies addressing the effects of specific in vitro manipulations on sperm OS and
its consequences on embryo development and ART outcome are limited. Treatment with
specific antioxidants in vitro could prevent the impairment of sperm function and compe-
tence induced by ART manipulations. However, their application in the clinical practice
is still limited and should be introduced, taking into account the extent of OS caused by
the specific ART procedures and the need for a personalized treatment according to the
semen characteristics of the patient. Indeed, the prevention of OS could be needed in
some patients in whom ROS production exceeds semen antioxidants’ defenses, whereas it
could be dangerous in patients with low ROS levels. This could lead to a reductive stress
condition that suppresses the physiological redox signaling needed for sperm capacitation,
hyperactivation, acrosome reaction, and sperm–oocyte fusion.

During the next few years, the increase of success rate and safety of ART will require
further research to develop and individualize more adequate techniques to avoid the iatro-
genic causes of sperm OS and its short- and long-term consequences on the reproductive
outcome.
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