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The paper analyses catastrophic transitions in a forest-grassland ecosystem from a nonlinear dynamical point 
of view. Recently, forest-grassland ecosystems have been experimentally proved to be bistable systems and 
thus bistable dynamical vegetation models has been proposed in the literature.  We consider in this paper a 
recently proposed mathematical model which includes in a dynamic way the human influence based on the 
rarity perception of the grass and the forest value. Bifurcation analysis, conducted with continuation technique, 
has been conducted to trace and analyse the steady state solutions of the ecosystem considering the 
parameter related to the human influence as bifurcation parameter. Multiplicility and bistability have been 
observed in a wide parameter range, which are mainly organized by multiple hysteresis and transcritical 
bifurcations. Catastrophic transitions are then observed both as consequence of parameter perturbations in 
correspondence of limit point bifurcations or as consequence of the state vector perturbations in the 
multistability parameter region. 

1. Introduction 

Ecosystems may respond gradually (and thus predictably) to external human and/or environmental 
disturbance or they may change their equilibrium state in a sudden and sharp manner. It is now well accepted 
that such sharp change (catastrophic transitions) may be explained with the existence in the ecosystems of 
two or more stable states (May, 1977; Groffmann et al. 2006). Indeed, alternative states have been found in 
many ecosystems and many studies have explained mathematically catastrophic transitions in terms of 
possible regime shifts and/ or bifurcations. Examples of these studies range from coral reefs (Knowlton et 
al.1992, Hoegh-Guldberg et al. 2007) and deserts (Brovkin et al.1998) to lakes (Scheffer et al. 2001) and tidal 
flats (Rietkerk et al. 2004; vanNes and Scheffer 2007). 
In such systems sudden shifts to one state or to another, may manifest as consequence of external 
disturbances and thus mathematical models which possess two or more stable states have been adopted to 
explain such behaviour. The most simple cases are bistable systems where two stable states coexist and 
depending on the initial conditions or on the external perturbations the system may approach  one of the two 
stable states. Human interactions are frequent external disturbances in many ecosystems and to understand 
the way disturbances influence the dynamics of ecosystems is nowadays particular challenging as a sudden 
shift to an undesired stable state may represent an ecological disaster.  
In this context, dynamic systems where vegetation-environment feedbacks are present are of particular 
challenge. Forest-grassland mosaic ecosystems, such as savanna, are typical examples of such ecosystems 
where two species (forest and grass) compete for the same food (soil, sunlight and space) (Walker and Noy-
Meir, 1982; Sarmiento 1984; Sankaran et al 2005). 
Recent experimental observations suggest that forest–grassland ecosystems may have bistable behaviour  
where fire is the main responsible of the feedback mechanism which lead to the bistability (Staver et al. 2011; 
Alexandridis et al. 2008, 2011a, 2011b). Thus, it is of primary importance for the management and the control 
of the forests, to understand how the stability of these two states is affected by external perturbations. Indeed 
forest management policies such as deforestation, which is often used to control fire (Russo et al. 2013, 2014, 
2015; Evaggelidis et al. 2015), are able to maintain savanna in stable grassland state. Because of this 
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feedback mechanism, mathematical models have been constructed which consider the human-environment 
interaction  Horan et al. 2011;Innes et al. 2013).  
In this paper we demonstrate through the bifurcation analysis (Russo and Spliliotis 2016) that a forest-
grassland ecosystem model, proposed by (Innes et al. 2013) which also includes human inference, may have 
multiplicity and multistability. Catastrophic transitions are then analysed and explained from a nonlinear point 
of view.   

1. Mathematical model and steady states 

We consider a minimal model of a forest-grassland mosaic which includes the human influence in a dynamic 
way. The system equations are the following (Innes et al. 2013):  
 

 
( )( ) ( )

( ) ( )

1

1

df w f f f f J x
dt
dx sx x U f
dt

ν = − − −

 = −


   (1) 

 
f is the forest population expressed in terms of fraction of land occupied by the forest and  x is the fraction of 
people who prefer forest. In Eqs. (1), the forest growth rate is regulated by three terms: the first one is a 
generation term which is proportional to the forest fraction f, the grass fraction (1-f) and to a nonlinear term w(f) 
which takes into account the fire incidence; the second one, vf  , is the rate at which forest reverts to grassland 

through natural processes; in contrast,  ( ) 1
2 2
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, represents only human-driven transitions and it  is 

proportional to the relative value of the forest.  A more detailed explanation of the model can be found in 
(Innes et al. 2013).  
Setting the derivatives equal to zeros, the Eqs. (1) gives rise to an algebraic system of nonlinear equations, 
the solutions of which are the steady states of the model. Three kinds of steady states may be found solving 
the following subsystems:  
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A Newton-Raphson iteration method has been used to find the solutions of the nonlinear systems equations 
(2) and (3). Graphically, for x=0, these solutions correspond to the intersections of the straight line νf with the 
nonlinear function ( )( ) ( )1 0w f f f J− − , whereas for x=1, they correspond to the intersections of the 

straight line νf with the nonlinear function ( )( ) ( )1 1w f f f J− − . Setting the parameters 10s = , 6.5k = ,

0.18ν = , these intersections are reported in Figure 1 as the h parameter is changed. In particular, in 
Figure1(a) we show the steady state solutions corresponding to x=0 and in Figure1(b) the ones corresponding 
to x=1.  As it clearly appears, for x=0, as h is higher then 0, the number of solutions passes from three to two, 
indicating that h=0 is a bifurcation point. When h is higher then ∼0.33, there are not solutions corresponding to 
x=0. For the case of x=1, when h is higher then 0, there are three solutions, two of them disappearing at 
∼0.36. Again for very high values of h, there are not solutions corresponding to x=1. Finally, it should be 
considered the steady state solution which is solution of the system (4), which exists for all values of h. 
Clearly, in both cases, decreasing the parameter related to the rate of transformation of forest in grass, the 
number of the steady states increases, leaving just the solutions corresponding to f=0.5. While this graphical 
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analysis can give a quick idea of the number of solutions for different values of h, usually it cannot give a 
precise information about their stability. Moreover, dynamic regimes like periodic solutions cannot be detected. 
In order to obtain a more complete picture of the system dynamics, phase portraits have been constructed 
tracing the trajectories for different initial conditions. Figure 2 shows two phase portraits, for h=0.2 (Figure2(a)) 
and for h=0.4  (Figure2(b)). It is apparent that, while a weak human influence (h=0.2, Figure2(a)) leads to a 
multiplicity of steady states (two of which stable, i.e.there is bistability), as h passes a critical value, there is 
one steady states which attracts all the trajectories.  

Figure 1. Steady states solutions for 10s = , 6.5k = , 0.18ν =  . The parameter h varies from zero to 3. 

Depending on h the number of fixed points varies from zero to three. (a) Solutions correspond to 0x = . (b) 

Solutions corresponds to 1x =   
 

 
Figure 2. Phase portraits for 10s = , 6.5k = , 0.18ν = , and trajectories for different initial conditions. (a)   

0.2h =  multi-stability of steady states (b) 0.4h =  one stable steady state. 

2. Bifurcation analysis and hysteresis 

Multiplicity of regime solutions as well as stability of steady and, eventually, dynamic regimes may 
systematically studied through the bifurcation analysis of the system as the main bifurcation parameter h is 
changed. Continuation based methodologies are the tool of choice for this analysis. Indeed, starting from a 
steady state solution, it is possible to trace the branch of solutions, to compute their stability and to detect the 
bifurcations involved in the stability change and/or in the number of solutions as the bifurcation parameter is 
varied. Numerical bifurcation analysis conducted through parameter continuation is then  applied to study the 
nonlinear dynamics of the system and in particular the multistability and the multiplicity of regimes.  
Fixing the values of the parameters at s=10,  k=6.5, v=0.18,  we construct the bifurcation diagram  in Figure 3 
with respect to the parameter h.  Solid lines depict stable solutions, while dashed lines the unstable ones. It is 
apparent from Figure 3 (a), that there are three branches of steady states: one corresponding to x=0; the S 
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branch which corresponds to  the locus of steady states with x=1, and the straight constant line corresponding 
to the steady states with f=0.5.  
In order to understand from a nonlinear point of view the origin of x=0 branch, we performed the bifurcation 
analysis also for negative values of h (Figure3b). In particular, in Figure3(b) the stability of each steady state is 
reported: (+,+) are stable nodes with two positive eigenvalues; (+,−) are saddles with one negative and one 
positive eigenvalue and (−,−) unstable nodes with two negative eigenvalues. It is apparent that the branch of 
the steady states x=0 appears with a S-shape in specular manner respect to the x=1 S branch. Both the S-
shaped branches (x=0 and x=1) cross the horizontal line f=0.5, corresponding of two transcritical bifurcations 
(BP2 for the x=0 branch, BP1 for the x=1 branch) where the steady states exchange their stability. 
Thus, looking just at the positive values of h (Figure3(a)), up to the h value corresponding to limit point 
bifurcation LP4, there are 6 steady states: two stable nodes (one for x=0 and one for x=1); three saddles (one 
for x=0,one for x=1 and one for f=0.5); and one unstable node (for x=0). Multistability and multiplicity is 
observed in a wide range of parameter, whereas as the parameter h passes the one corresponding to the limit 
point LP1 only one stable steady state exists.  
 

 
Figure 3. Bifurcation diagram with respect the parameter h . 6.5k = 0.18ν = . Solid lines correspond to stable 
steady states and dashed lines to unstable steady states. LP are limit point bifurcation and BP transcritical 
bifurcations. (a) The diagram only for positive value of h. (b) the complete diagram where it is shown the 

specular dynamical behavior. The diagram consists of two branches one of S type ( 1x =  ) and one S inverted 

(x=0). The S branch bifurcates at 1BP via a transcritical bifurcation at the point ( ) ( ), 0.349,0.5h f =  whereas 

the S inverted branch bifurcate at BP2. 
 
From a practical point of view, when the human influence is strong enough the system reaches an equilibrium 
with 50% of grass and 50% of forest, that is neither the grass neither the forest will be rare. On the other hand 
when the human influence is weak, then multiple stable steady states may occur and thus catastrophic 
transitions are possible between steady states with a very different percent of grass and forest. 

3. Catastrophic shifts 

In an ecosystem, catastrophic shifts occur when the system passes from a stable regime to another 
completely different in an abrupt way as a consequence of environmental or external disturbances. When this 
happens, the recovery of the previous state is extremely difficult due, in the majority of cases, to hysteresis 
effects. From a dynamical point of view, a catastrophic shift may occur in two ways. In the first case, these 
shifts are a consequence of perturbations of the vector state in a parameter region where the system has 
multistability. Indeed, if the system has more the one stable regime for a specific value of the parameter (h), 
then as a consequence of a perturbation in the vector state (x or f), the system may jump from one equilibrium 
to another.  
As each stable regime is characterized by its own basin of attraction (the set of all the initial conditions leading 
to the same stable regime), a perturbation to the vector state may bring it to jump to another basin of attraction 
which end the system to a different stable state. 
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This phenomenon is discussed in Figure 4, where simulation results are reported for a h parameter value 
belonging to the region of multistability [0;hLP4]. In this region there are two stable steady states: one 
corresponding to x=0 and one to x=1. Starting from an initial condition belonging to the basin of attraction of 
x=1, the system reaches first the state x=1 and then, when a perturbation is given (at time around t=100), the 
system finally reaches the steady state x=0 (Figure 4 (a) and (b)). Indeed, as a consequence of the state 
vector perturbations, the system trajectory has crossed the separatrix of the attraction basins of the two stable 
states (Fig.4 (c)).  

Figure 4. Catastrophic shifts after perturbation of the steady vector. (α) Perturbation of 
f

 at time 100t = . (b) 

Perturbation of x  at time 100t = (c) The corresponding phase diagram 
( ),f x

 . The dashed line is the 
separatrix between attraction basins of the two stable states. 
. 

 
Figure 5. Catastrophic shifts after perturbation of the parameter h (a) and (b) simulations of the jump from the 
x=0 steady state to the x=1 steady state. (c) The bifurcation diagram with the corresponding parameter 
perturbation. The coarse dashed line is the value of parameter h before the perturbation and the dense 
dashed is the value of h after the perturbation. 
 
The second way with which a catastrophic transition may occur, is when one equilibrium disappears as a 
consequence of a perturbation of a system parameter. In this case, the system reaches a new stable 
equilibrium in an abrupt way because it cannot reach anymore the pre-existing regime. Such transitions are 
observed for example when a parameter crosses a critical value corresponding to a catastrophic bifurcation 
such as a limit point. This case is discussed in Figure 5, where it is clearly shown that if the system is in the 
stable steady state x=0 just before the critical value of LP4, then a small perturbation of the parameter leads 
the system to another equilibrium (x=1) with a sharp and sudden transition. 

4. Conclusions 

We analysed steady states solutions and multistability in a model of a forest grassland model which considers 
dynamically the human interactions and their preference based on the rarity perception value. We analysed 
the change of the number of steady states and their stability as the parameter related to strength of human 
influence is varied. The analysis is conducted graphically and numerically by adopting continuation 
techniques. Bifurcation analysis is then performed systematically and bifurcation diagrams are constructed 
and thoroughly examined.  The main results are that multiplicity and multistability are observed in a wide 
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range of the parameter when human influence is weak. There are two stable steady states x=0 (where all 
human beings prefer grass) and x=1 (where all human beings prefer forest) characterized by a very different 
percent of grass and forest. Catastrophic transitions may then occur from one state to another as the  vector 
state or parameter related to the human influence are perturbed.  Strong human influence (high value of the 
parameter h) brings to a unique stable steady state characterized by 50% of forest and 50% of grass. 
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