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Abstract— The lack of transparency in robotic learning
processes poses a significant challenge to effective human-robot
collaboration. This is particularly relevant in non-industrial
settings because it prevents humans from adequately compre-
hending a robot’s intentions, progress, and decision-making
rationale, which is essential for seamless interaction. To address
this issue, this work presents a study where users observe
a robot endowed with three distinct emotional/behavioural
mechanisms for conveying transparent information about its
learning process. The proposed mechanisms use inner speech,
emotions, and a combination of the two communication styles
(hybrid). To assess and evaluate the transparency of these be-
havioural models, a between-subject study was conducted with
108 participants. Results indicate that the people’s perception
of the robot’s warmth dimension increased when it utilized
a hybrid model to explain its learning state. Additionally,
increased transparency was observed when the robot used inner
speech during the learning process.

I. INTRODUCTION

In human-centric environments, robots must acquire new
skills and tasks on-site, as it is impractical for designers to
pre-embed all the necessary knowledge to complete their
tasks. Consequently, while learning, robots must exhibit
transparent behaviours to maintain an effective human-robot
interaction (HRI), and not lose trust. Indeed, transparency
allows them to gauge the extent to which a robot has
mastered a task before collaborating with it [1].

Moreover, it is essential that a robot conveys its intended
actions transparently also to minimize uncertainty. As hu-
mans possess a natural ability to behave and infer others’
behaviour, we believe it is essential to study these inter-
actions to create robots that exhibit transparent behaviours
[2]. Key aspects of human behaviours used to foster natural
communication, and therefore transparency, include various
indirect and unconscious signals, often involving a combina-
tion of modalities such as gaze, facial expressions, emotions,
and posture [3]. In HRI, it has also been observed that a
stereotypical motion (a standardized movement) [4] and the
use of familiar cues [5] could make the robot’s behaviours
more legible and predictable.
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Another social cue used to communicate with humans
is through emotional expressions. Affective facial cues in
robots can enhance transparency in human-robot interactions
by resulting in an essential modality to understand the
robot’s internal state and decision-making processes [6],
[7]. When a robot conveys emotions, such as happiness or
frustration, humans can better interpret the robot’s inten-
tions and actions, making its behaviour more predictable
and accessible. Furthermore, emotionally expressive robots
can adapt their responses based on the human partner’s
emotional state, so facilitating collaborative and supportive
interactions [8]. However, it is important to consider the
potential downsides of emotional expression in robots. For
example, emotions may be misinterpreted as social feedback,
leading to confusion or miscommunication, and it could
inadvertently influence humans in unintended ways [7].

Providing verbal explanations is another way to improve
transparency in HRI [9]. When the robot is learning a task
alone, without interacting with the user, the concept of inner
speech [10] can become a crucial element. More specifically,
inner speech is a covert inner monologue or dialogue with
oneself that is associated with reasoning, self-regulation, and
self-awareness. Moreover, incorporating overt inner speech
in robotic systems can contribute to developing trust between
humans and robots. When a robot’s inner reasoning and
evaluations are made audible to its human partner, it enables
the human to understand the robot’s decision-making process
better, thus making the robot’s behaviour more predictable
and legible and fostering transparency.

To address transparency in human-robot interaction during
learning, this study designs, evaluates and compares three
naturalistic mechanisms for generating transparent robot be-
haviours. Specifically, we investigate the effects of verbaliza-
tion of the inner speech in reaction to rewards, emotions, and
a hybrid mechanism on robot behaviour during learning. The
study examines the impact of these mechanisms on human
perception of robots and their transparency levels.

II. RELATED WORK

Reinforcement Learning (RL) techniques integrated into
robots often appear as black-box learning systems to hu-
mans, making it difficult for users to understand the robot’s
decision-making process. Although recent HRI literature has
begun addressing this issue, the number of studies remains
limited and has only recently garnered attention.

Pynadath et al. [11] developed a decision-tree-based ex-
plainable model for RL to enhance transparency in the
robot’s decision-making. They conducted a study assessing



the impact of text explanations generated using decision trees
on fostering transparency and trust calibration. Although the
results showed a positive impact on the robot’s transparency,
the study was conducted in simulated environments and did
not evaluate the human perception of the robots.

Hirschmanner et al. [12] presented a study with a Pepper
robot that learns object and action labels, and they investi-
gated two extensions geared towards increasing the robot’s
transparency during learning. The first extension utilizes
deictic gestures (i.e., pointing and gazing) to communicate
knowledge, while the second extension shows the current
state of the lexicon on the robot’s tablet. In their study, they
did not observe a significant increase in transparency, but
users reported a higher perception of control and perceived
learning success the more they interacted with the system.

Broekens et al. [13] proposed a computational model of
emotions as a mapping between RL primitives and emotional
labels. The authors showed that the proposed computational
model allows us to compare the dynamics of RL primitives
with the ones described in the psychological and behavioural
literature on emotions. However, the work of Broekens et al.
[13] mainly focuses on the possible roles of emotions for
action selections via prediction and anticipation of future
outcomes in a task involving a sequence of actions. The
communicative role of emotion in robots that learn, using
RL, in interaction with humans was also proposed in [14].
Starting from their computational model, the authors propose
the use of such emotions to select the appropriate emotional
expressions and to communicate to humans the state of
their learning process. In that work, joy/distress signals are
linked to a positive/negative temporal difference error, while
emotions such as hope/fear are linked to anticipation mecha-
nisms. However, no evaluation was provided on transparency.

Matarese et al. [7] proposed a model to enhance a robot’s
transparency during Interactive RL tasks by incorporating
non-verbal emotional and behavioural cues into a humanoid
robot. In their model, human feedback served as the RL
algorithm’s reward, and the robot exhibited emotional and
behavioural responses based on its learning progress. Al-
though the results indicated that people preferred interacting
with an expressive robot over a mechanical one, the model
led to misinterpretations when the robot expressed doubt or
uncertainty, adversely impacting the robot’s transparency.

In another work, Angelopoulos et al. [6] introduced two
categories of a robot’s emotional and behavioural reactions,
one related to the robot’s learning process and another
in response to user feedback. Their research demonstrated
increased transparency when the robot relied on both these
categories. However, the authors focused exclusively on non-
verbal cues and did not investigate the role of verbal cues in
their implementation.

Considering these studies and their limitations, further
exploration is still needed into developing and implement-
ing natural and efficient verbal and non-verbal emotional
behaviours/reactions in robots during the learning process
to improve transparency and facilitate seamless HRI.

Fig. 1: The interface where the human can observe each step.

III. METHODS

The temporal Difference (TD) technique, a widely utilized
RL method, was employed to estimate the value of a state
or action grounded in the expected reward and the expected
value of the subsequent state or action. In RL, an agent learns
by interacting with its environment, performing actions, and
receiving rewards. The agent’s goal is to maximize the
cumulative reward over time. To accomplish this, the agent
estimates state or action values using a value function, which
the TD technique updates based on the difference between
expected rewards and current value function estimates.

The TD error, which represents the discrepancy between
the current state value estimate and the actual reward added
to the discounted value estimate of the following state, is
computed according to Equation 1. The TD error is also
a natural measure of the divergence between the agent’s
expected and actual rewards.

TDerror ← Rt+1 + γ · V (St+1)− V (St) (1)

Moreover, it is used to update the value estimate for the
current state by adding the TD error multiplied by a learning
rate α to the current value estimate, as shown in Equation 2.

V (St)← V (St) + α · TDerror (2)

One of the primary advantages of TD is that it can update
the value function after every time step, making it more
computationally efficient and allowing the agent to learn
online. The TD error also provides a natural measure of the
discrepancy between the agent’s expected and actual rewards.

A. The Learning Task
We chose a modified version of the Towers of Hanoi

problem as a learning task. The problem was modified to
facilitate the robot’s policy learning. In our version, the
learning agent must move two cubes from a random initial
position to a final one chosen by the human. The agent is
allowed to move one cube per time step, and it can move
each cube to the first, second, or third pillar. Furthermore,
the learning agent receives a reward of 1 when all cubes are
in the final configuration, a step cost of −.001 per time-step,
and a negative reward of −1 if the agent has exceeded the
maximum number of steps per episode. Participants oversaw
the learning task, including the agent’s previous move and
the goal configuration, and provided their inputs through a
graphical interface.



IV. THE PROPOSED APPROACH

This work, as in our previous ones [6], [7], builds on
the concept that an emotional reaction can be linked to
feedback [15], neural temporal difference assessment and,
therefore, to reward processing in RL and TD errors [13].
As explored in the literature, positive/negative emotional
reactions are linked to positive/negative temporal difference
errors. They are generated when the outcome of an action is
better/worst than expected and would increase the expected
value of that option. Moreover, affective reactions have an
impact on the learning process also in terms of physiological
arousal. Hence, the arousal of the emotional reaction is linked
to the magnitude of such error with higher/lower arousal
corresponding to bigger/smaller TD errors. Moreover, since,
according to [16], emotion awareness obeys Weber’s law of
perception, the intensity of emotional reactions is linked to
the TD error variation with a logarithmic association.

Here we are interested in using emotional and behavioural
responses, as linked to the TD evaluation, to be used to make
an agent’s learning process more transparent to the observing
user. Considering these factors, we aim to evaluate effective
ways of displaying and signalling such emotional reactions.
To create a more interactive experience for the users, three
behavioural mechanisms were integrated into a physical
Furhat robot, which was situated alongside the user interface
as described in the following. This allowed the robot to
provide real-time feedback and foster a more engaging and
transparent learning environment for the observers.

a) Behavioural Mechanism 1 (BM1 - Inner Speech):
As the display of emotions on robots with non-verbal be-
haviour only may be difficult to be interpreted and could in-
fluence humans in unintended ways [7], here we consider the
possibility of verbalization of an emotional or behavioural
reaction. With respect to the use of inner speech to provide
an explanation of the reasoning process [17], or in RL [11]
to explain the learned policy, here we use inner speech for
expressing verbal or para-verbal emotional feedback (i.e.,
“good”, “great”, “mhmm”) with also linguistic acknowl-
edgement of the action outcome with different intensity

modulations (i.e., “I’m getting better”, “I’m doing great”).
In [11], the authors also included an acknowledgement of
the action outcome before explaining its learning, but such
acknowledgements were constant and did not vary during the
learning progress. Our use of inner speech is associated with
the robot’s learning process, and therefore, it is elicited after
each robot action.

The sentences used in the experimentation are reported in
Table I. These sentences reflect different stages of the learn-
ing process, from acknowledging progress and maintaining
motivation to expressing dissatisfaction and recognizing the
need for strategy adjustments. Indeed, in HHI, various factors
can trigger inner speech, such as emotional contexts, external
objects, and the individual’s internal state. Based on the
specific trigger, distinct types of inner speech may manifest
[10]. Therefore, alternative inner-talk sentences were pro-
vided for each condition within the same TD error value
range, enabling the robot to switch between them during
consecutive occurrences of identical TD error values. This
approach mitigates monotony in the robot’s behaviour and
helps maintain observer engagement.

b) Behavioural Mechanism 2 (BM2 - Facial Emo-
tions): With respect to other social cues to display emotions,
facial expressions are the ones better recognized in HHI e
HRI. To have realistic facial expressions, in this work, we
relied on the use of a Furhat robot. Here, facial expressions
are associated with the robot’s learning process and are
elicited both during the learning process and after each robot
action (see Table II). As affective behaviours, we considered
negative emotions, such as disgust, sadness, and anger, and
positive ones as surprise, happiness, confidence, and elation.

Disgust and sadness are used in the same TD error range
to represent the agent’s negative emotional responses to
unfavourable learning experiences. With different simulated
intensities, these emotions capture different aspects of dissat-
isfaction or disappointment when the agent receives a lower
reward than expected or faces undesired outcomes. Disgust
conveys the agent’s aversion to its performance and may
prompt the reconsideration of its current approach, while

TABLE I: robot’s behaviour in terms of the Temporal Difference Error.

Temporal Difference Error Robot’s Behavioural Mechanisms
Inner Speech Facial Emotions Hybrid Model

0 ≤ TD ≤ 10−9 -Not bad.
-I am learning in baby steps. Confidence Surprise (intensity: low)

Happiness (intensity: low)

10−9 < TD ≤ 10−5 -Good.
-I am getting better.

Surprise (intensity: low)
Happiness (intensity: low)

Surprise (intensity: medium)
Happiness (intensity: medium)

10−5 < TD ≤ 10−1 -Very good.
-I am learning.

Surprise (intensity: medium)
Happiness (intensity: medium)

-Good.
-I am learning in baby steps.

10−1 < TD ≤ 1
-Excellent

-I am doing great.
Surprise (intensity: high)

Happiness (intensity: high)
-I am doing great.

-Excellent.
TD > 1 -WOW, exploring is good for me. Elation Elation

−9 · 10−4 ≤ TD < 0
-Mhmm

- I could have made a better choice.
Disgust (intensity: low)
Sadness (intensity: low)

Disgust (intensity: low)
Sadness (intensity: low)

−10−3 ≤ TD < −9 · 10−4 -This is not good.
-That is not good at all.

Disgust (intensity: medium)
Sadness (intensity: medium)

Disgust (intensity: medium)
Sadness (intensity: medium)

−1 ≤ TD < −10−3 -It was not a good move at all.
-This move was even worse.

Disgust (intensity: high)
Sadness (intensity: high)

-This move was even worse.
-It was not a good move at all.

TD < -1 -From all these mistakes, I should
have learned something. Anger (intensity: high) -This is not really good.



TABLE II: Exemplar of stimuli projected onto Furhat robot.

Intensity Dimension
Low Medium High

Happiness

Surprise

E
m

ot
io

ns

Sadness

Disgust

sadness signifies a sense of regret that can serve as a cue
for having to adjust its strategy. By including both emotions
in the same TD range, the agent can alternate between them,
providing a more nuanced and varied response to negative
learning experiences.

Happiness and surprise are also used in the same TD
error value range to represent the agent’s positive emotional
responses to favourable learning experiences. These two
emotions capture different aspects of satisfaction or excite-
ment when receiving a higher reward than expected. Happi-
ness conveys the agent’s contentment with its performance
and reinforces its learning progress, while surprise signifies
unexpected or novel outcomes that might encourage further
exploration. Moreover, while elation is an emotion, it is a
strong affective signal acknowledging the agent’s success in
achieving a reward that greatly exceeds its expectations. This
emotion represents a powerful positive reinforcement for the
agent and encourages the exploration of new strategies or
actions. It is used in the scenario to convey a sense of extreme
happiness or excitement, aligning with the overall goal of
creating a relatable and understandable learning process [18].

c) Behavioural Mechanism 3 (BM3 - Hybrid Model):
The Hybrid Model is a combination of inner speech and
emotional expression during the learning process to create a
more flexible and engaging learning experience for human
observers. With the predefined TD error value ranges as
depicted in Table I, the agent can alternate between emotions
(for small and frequent variations) and inner speech expres-
sions (for bigger improvements), offering a nuanced and
diverse response to learning experiences. This adaptability
enhances the human-like aspect of the robot’s behaviour,
prevents monotony, and promotes a more engaging and
transparent learning process for observers. Using emotions
for smaller TD error value ranges allows the agent to
convey subtle changes in its performance, both positive and
negative, in a non-verbal manner. They offer a quick and
easily discernible way to communicate the agent’s progress
without overwhelming the observer with too much verbal
information. On the other hand, inner speech is utilized for

larger TD error value ranges to emphasize significant changes
in performance, warranting explicit verbal acknowledgement.

V. EXPERIMENTS

We investigated which behavioural mechanisms (BM1,
BM2, or BM3) could convey a more transparent state of the
robot during learning, and how the human observer perceives
them. Based on existing literature, we hypothesized that
Inner Speech (BM1) is a more transparent mechanism than
Emotions (BM2) (Hypothesis 1). By listening to the robot’s
inner evaluation, its behaviour is anticipated to become more
legible and less unpredictable, thus influencing transparency
growth. Indeed, Geraci et al. [19] posited that inner speech
could impact transparency levels. Finally, it is expected that
the Hybrid Model (BM3) provides the most liked and trans-
parent communication of the robot’s state than Inner Speech
(BM1) (Hypothesis 2). This expectation arises because the
Hybrid Model combines multiple behavioural mechanisms,
offering a complete understanding of the robot’s state. We
believe that excessive verbal communication, as in the case
of Inner Speech (BM1), may lead to information overload
and potential annoyance.

A. Experimental settings and procedure

The transparency of the proposed behaviour models was
assessed through a between-subjects design. Participants
were randomly assigned to different conditions. We used
a video conferencing system to make participants remotely
observe the behaviour of the robot and interact with the
system. An experienced experimenter oversaw the human
interaction with the robot to guarantee seamless execution.

Upon arrival, participants were provided with an informed
consent form detailing the experiment’s objectives and pro-
cedures. They were then introduced to the experimental
environment and the physical robot. Participants were in-
structed to choose their preferred final configuration of cubes
and indicate the experiment’s completion by pressing the
stop button (in the upper right corner of Figure 1) when
they believed that the robot had learned the optimal path
between the randomly selected initial configuration and the
participant-selected final configuration.

B. Measures

HRI literature presents various interpretations of trans-
parency [20]. Our study aims at using a broad understanding
of transparency. The interpretation we adopt aligns closely
with the characterization provided in our prior work [6].
Considering the aforementioned, we assessed transparency
at each experimental session. The physical key metric used
to evaluate transparency was the stop button. Specifically,
participants were instructed to press this button once they
had gained confidence that the robot had successfully learned
the task at hand. This moment of confidence would typically
coincide with a clear understanding of the robot’s actions
during the learning process, a comprehension of the reasons
behind those actions, and an anticipation that the robot’s
future moves would be consistent with the desired task



2

4

6
*

BM1 BM2 BM3

Fig. 2: Average number of epochs believed necessary for the
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Fig. 3: RoSAS items, * indicates p < 0.05.

outcome. Finally, we also measured HRI safety, comfort, and
reliability factors, as they have been identified as factors for
transparency in prior studies [21].

Before the experiment, we collected participants’ demo-
graphic information, including age, gender, education, and
previous experience with robots. Participants also responded
to a 5-point Likert scale question assessing their fear of
machines becoming uncontrollable, which helped to evaluate
potential negative biases towards robots. To examine the
robot’s behaviour and its impact on participants’ perception
of the social attributes of the robot, we administered a post-
interaction survey at the end of each experimental session.
This survey consisted of 7-point Likert and 18 cognitive-
differences scale questions based on the Robot Social At-
tribute Scale (RoSAS) [22].

VI. RESULTS

We recruited 108 participants, equally distributed across
three conditions. The participants stated to be 72 males, 34
females, and two individuals preferred not to disclose their
gender. The age range of participants was between 18 and
72 years old (28.5 ± 10.9), and none of them was familiar
with the study’s setup. The majority of participants (71.3%)
had no prior experience interacting with robots, while 28.7%
reported having previous experience. We evaluated partici-
pants’ biases towards robots, and the scores indicated that
participants exhibited no significant negative biases towards
robots (2.4 ± 1.1); consequently, we did not exclude any
participants. The participant pool provided an effect size of
d=0.25 with .80 power at an alpha level of .05.

A. Reliability Analysis

A Cronbach’s alpha test was performed to assess the inter-
nal reliability of the questionnaire. The test results indicated
that the Warmth dimension of the RoSAS questionnaires
had internal reliability of αWarmth = 0.79, the Compe-
tence dimension was found to be αCompetence = 0.84,
and the Discomfort dimension had internal reliability of
αDiscomfort = 0.72.

B. Results of Transparency

At first, we focused on evaluating the time at which
participants pressed the stop button during learning. An
independent samples t-test was conducted and revealed a
statistical difference between BM1 and BM2 regarding the
pressing of the stop key, t(66.567) = −2.036, p = 0.046.
Figure 2 presents the average number of epochs participants
believed necessary for the robot to learn the optimal path. No
statistical differences were found in the average difference
between the effective convergence of the Q-Table and the
participants’ pressing of the stop button. Our observations
indicate that participants pressed the stop button as soon
as the robot learned the optimal path. Specifically, the
robot equipped with inner speech was perceived as more
transparent than the other two behavioural mechanisms. This
suggests that inner speech enabled participants to better
understand when the robot had learned the optimal path.

Regarding the safety, comfort, and reliability factors,
statistical differences were not observed (p > 0.7). We
believe that the absence of statistical differences may be
attributed to the novelty effect, as 71.3% of participants had
no prior experience with robots leading to evaluating all the
conditions positively [23].

C. Robotic Social Attributes Scale Ratings

An Independent Samples T-test was conducted with a
95% confidence level to investigate whether a statistical
difference exists among the behaviour mechanisms. The
results, as depicted in Fig. 3, indicate that there is a statistical
difference in the average responses across the conditions in
the “Warmth” scale, specifically between BM1 and BM3
(t(68.200) = −2.258, p = 0.027).

Further exploratory analyses were conducted to compare
ratings for each of the RoSAS subitems between the con-
ditions, as shown in Fig. 4. Statistical difference was found
in the subitem of awkwardness, and participants perceived
the robot as more awkward when utilizing BM2 (emotional
behaviour) compared to BM1 (inner speech) (t(54.736) =
−2.141, p = 0.037). The participants considered the robot
with BM3 (hybrid behaviour) to be more capable of feelings
and more emotional in comparison to BM1 (t(67.011) =
−2.065, p = 0.043 and t(66.851) = −2.691, p = 0.009
respectively). However, no statistical differences were found
in the remaining subitems of the RoSAS scale.

D. Evaluation of the Experimental Results

The aim of this study was to evaluate the transparency
of robot learning. Our findings support Hypothesis 1 that
Inner Speech (BM1) is a more transparent mechanism than
Emotions (BM2). Participants pressed the stop button as
soon as the robot learned, indicating high transparency ca-
pabilities. Regarding Hypothesis 2, our results demonstrated
higher ratings for the robot’s social perception in the Hybrid
Model (BM3), especially in the Warmth scale. The addition
of emotional behaviour to inner speech made the robot
perceived as more capable of feelings and more emotional.
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However, these differences were not enough to confirm
Hypothesis 2 and additional evaluations are needed.

VII. CONCLUSIONS

In this study, we investigated the effects of various be-
havioural mechanisms on robot transparency. We focused on
the use of inner speech, emotional behaviours, and a hybrid
model which combined the previous two. Our experimental
findings showed that the inner speech mechanism (BM1) sig-
nificantly improved transparency compared to the emotional
behaviour mechanism (BM2). Although the hybrid model
(BM3) displayed higher ratings for anthropomorphism, par-
ticularly in the warmth dimension, it did not exhibit the
expected improvement in transparency.

These results suggest that a robot endowed with inner
speech can enhance transparency and improve the overall
human-robot interaction experience. This aspect should be
included in the design for robots’ transparent behaviours
to develop robotic systems that can communicate more
effectively. Considering the satisfying results that this study
produced, we plan to refine our model to consider other
characteristics that may impact transparency, such as an
adaptive selection of the presented mechanisms. Future re-
search should also address the generalizability of our findings
regarding anthropomorphic inferences with other robotic
platforms and more complex learning scenarios.
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