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ABSTRACT

Aims. In the era of large sky surveys, photometric redshifts (photo-z) represent crucial information for galaxy evolution and cosmology
studies. In this work, we propose a new machine learning (ML) tool called Galaxy morphoto-Z with neural Networks (GaZNet-1),
which uses both images and multi-band photometry measurements to predict galaxy redshifts, with accuracy, precision and outlier
fraction superior to standard methods based on photometry only.

Methods. As a first application of this tool, we estimate photo-z for a sample of galaxies in the Kilo-Degree Survey (KiDS). GaZNet-1
is trained and tested on ~140 000 galaxies collected from KiDS Data Release 4 (DR4), for which spectroscopic redshifts are available
from different surveys. This sample is dominated by bright (MAG_AUTO < 21) and low-redshift (z < 0.8) systems; however, we could
use ~6500 galaxies in the range 0.8 < z < 3 to effectively extend the training to higher redshift. The inputs are the r-band galaxy
images plus the nine-band magnitudes and colors from the combined catalogs of optical photometry from KiDS and near-infrared
photometry from the VISTA Kilo-degree Infrared survey.

Results. By combining the images and catalogs, GaZNet-1 can achieve extremely high precision in normalized median absolute
deviation (NMAD =0.014 for lower redshift and NMAD =0.041 for higher redshift galaxies) and a low fraction of outliers (0.4%
for lower and 1.27% for higher redshift galaxies). Compared to ML codes using only photometry as input, GaZNet-1 also shows a
~10%—-35% improvement in precision at different redshifts and a ~45% reduction in the fraction of outliers. We finally discuss the
finding that, by correctly separating galaxies from stars and active galactic nuclei, the overall photo-z outlier fraction of galaxies can

be cut down to 0.3%.

Key words. surveys — galaxies: general — techniques: photometric — galaxies: photometry

1. Introduction

In the last decade, the Stage III sky surveys, such as the Kilo-
Degree Survey (KiDS, de Jong et al. 2013), Hyper Suprime-
Cam (HSC; Aiharaet al. 2018), and the Dark Energy Survey
(DES; The Dark Energy Survey Collaboration 2005), have pro-
vided images of hundreds of millions of galaxies at optical or
near-infrared (NIR) wavelengths. These surveys have achieved
significant advances in cosmology (e.g., Hildebrandt et al. 2017;
Hikage et al. 2019; Abbottetal. 2022) and galaxy forma-
tion and evolution (e.g., Royetal. 2018; Greco etal. 2018;
Goulding et al. 2018; Adhikari et al. 2021), but at the same time
have left many open questions about the overall cosmological
model (Di Valentino et al. 2021).

In the next decade, the Stage IV surveys (Weinberg et al.
2013), such as Euclid (Laureijs et al. 2011), Vera Rubin Legacy
Survey in Space and Time (VR/LSST; Ivezi¢ et al. 2019), and

China Space Station Telescope (CSST; Zhan 2018), will observe
billions of galaxies with photometric bands ranging from the
ultraviolet (UV) to the NIR. This unprecedented amount of
data will help us to obtain deeper insight into cosmology and
galaxy evolution. For instance, we will be able to gain a more
detailed understanding of the dark matter distribution in the
Universe, constrain the equation of state of the dark energy
with weak lensing (e.g., Laureijs et al. 2011; Hildebrandt et al.
2017; Abbott et al. 2018; Gong et al. 2019; Joachimi et al. 2021;
Heymans et al. 2021), study the mass—size relation of galaxies
at higher redshift (z > 1.0), and explore the stellar and dark
matter assembly in galaxies and clusters (e.g., Yang et al. 2012;
Moster et al. 2013; Behroozi et al. 2019, Tortora & Napolitano
2022) over enormous statistical samples.

To achieve real breakthroughs in these areas, accurate galaxy
redshifts are essential, as, by providing object distances and
lookback time, they allow those objects to be traced back in time.
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Precise redshifts can only be estimated from galaxy spectra: cur-
rent spectroscopic surveys, such as the Sloan Digital Sky Survey
(SDSS, Ahumada et al. 2020), the Galaxy and Mass Assem-
bly (GAMA Baldry et al. 2018a), and the Dark Energy Spectro-
scopic Instrument (DESI, DESI Collaboration 2016) have col-
lected data for millions of galaxies, while future surveys, such
as the 4-meter Multi-Object Spectroscopic Telescope (4MOST,
de Jong et al. 2019), plan to expand spectroscopic measurements
to samples of hundreds of millions of galaxies. However, due to
the limited observation depth and prohibitive exposure times, it
is impossible to spectroscopically follow up the even larger and
fainter samples of billions of galaxies expected in future imaging
surveys.

A fast, low-cost alternative is offered by photometric red-
shifts (photo-z) estimated from deep, multi-band photometry.
The idea of photo-z was initially proposed by Baum (1962),
who used a redshift-magnitude relation to predict the redshifts
from the galaxy luminosities. Without spectroscopic observa-
tions and the knowledge of galaxy evolution, the relation could
still provide acceptable redshifts, even using only a limited num-
ber of filters. Later, this method was adopted to extensively
estimate galaxy redshifts (e.g., Couch et al. 1983; Koo 1985;
Connolly et al. 1995; Connolly 1997; Wang et al. 1998). Nev-
ertheless, albeit straightforward, this method has some limita-
tions: (1) the redshift—-magnitude relation is inferred in advance
from bright galaxies via spectroscopy, and (2) the relation is
hard to extend to fainter galaxies. Another method used to
determine photo-z is spectral-energy-distribution(SED) fitting.
This method is based on galaxy templates, both theoretical and
empirical.

By fitting the observed multi-band photometry to the SED
from galaxy templates, one can infer individual galaxy photo-z.
With knowledge of galaxy types and their evolution with red-
shift, this method can be expanded to faint galaxies, and even
extrapolated to redshifts higher than the spectroscopic limit.
There is a variety of photo-z codes based on SED fitting. Among
the most popular ones is HyperZ (Bolzonella et al. 2000), which
makes use of multi-band magnitudes of galaxies and the corre-
sponding errors to best fit the SED templates by minimizing a
given y? function. An extension of HyperZ, known as Bayesian
photometric redshifts (BPZ, Benitez 2000), is another popular
photo-z tool. Instead of simple y*> minimization, BPZ introduces
prior knowledge of the redshift distribution of magnitude-limited
samples under a Bayesian framework, which effectively reduces
the number of catastrophic outliers in the predictions.

In addition to these fitting tools, machine learning (ML)
algorithms, especially artificial neural networks (ANNSs), have
started to be extensively used to determine galaxy photo-z (e.g.,
Collister et al. 2007; Abdalla et al. 2008; Banerji et al. 2008).
Given a training sample of galaxies with spectroscopic red-
shifts, ML algorithms can learn the relationship between red-
shift and multi-band photometry. If the training sample covers a
representative redshift range and the ML model is well trained,
photo-z can be obtained with extremely high precision. Dif-
ferent tools for photo-z based on ML have been successfully
tested on multi-band photometry data, for example estimating
photo-z with ANNs (ANNz, Collister & Lahav 2004; ANNz2
Sadeh et al. 2016) or the Multi-Layer Perceptron trained with
the Quasi-Newton Algorithm (MLPQNA, Cavuoti et al. 2012,
Amaro et al. 2021).

Accurate photometry measurements are extremely important
for ML and SED fitting methods, as the presence of noisy or
biased photometry would end up in large scatter and a high out-
lier fraction in the predicted values. For instance, biased pho-
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tometry is typically produced in the case of close galaxy pairs or
in the presence of bright neighbors. In addition, there are well-
known degeneracies between color and redshift plaguing late-
type systems, in particular, as high-z star-forming galaxies can
be confused with lower redshift ellipticals. These examples sug-
gest that there might be some crucial information encoded in
images that can help in solving the typical systematic errors that
affect the methods based on photometry only.

Machine learning has been shown to be able to learn galaxy
properties such as size, morphology, and their environment from
images. This information can help suppress catastrophic errors
and improve the accuracy of the photo-z predictions. In recent
years, many studies have been trying to estimate photo-z directly
from multi-band images using deep learning. A first attempt
was presented by Hoyle (2016), where they estimated photo-
z with a deep neural network (DNN) applied to full galaxy
imaging data. More recently, a similar approach was applied
to data from the Sloan Digital Sky Survey and Hyper Suprime-
Cam Subaru Strategic Program (e.g., D’Isanto & Polsterer 2018;
Pasquet et al. 2019; Schuldt et al. 2021; Dey et al. 2021). These
analyses showed that unbiased photo-z can be estimated directly
from multi-band images. A more simplistic method for taking
morphology features into account, such as size, ellipticity, and
Sérsic index, was proposed by Soo et al. (2018), who added
structural parameters to the photometric catalogs used in stan-
dard ANN:S.

In this paper, we develop a new ML method to estimate the
morphoto-z, that is, redshifts estimated from the combination of
images and catalogs of photometry and color measurements. In
the following, we distinguish these morphoto-z from the red-
shift predicted from photometry only, the classical photo-z, and
from the redshift obtained from images only, which, for conve-
nience, we call morpho-z. This is the first time such a technique
has been developed and applied to real data: specifically, we use
optical images and optical+NIR multi-band photometry from the
KiDS survey. Just before the submission of this paper, a simi-
lar approach was proposed by Zhou et al. (2022), but this latter
work is based on (CSST) simulated data only.

This work is organized as follows. In Sect. 2, we describe
how to build the ML models and to collect the training and test-
ing samples. In Sect. 3, we train the networks and show the per-
formance of the tools. In Sects. 4 and 5, we discuss the results
and draw some conclusions.

2. The ML method

In this work, we intend to couple standard ML regression tools
—usually applied to galaxy multi-band photometry— with Deep
Learning techniques in order to improve the estimates of galaxy
redshifts using the information from features distilled from
galaxy images. In particular, we want to address the follow-
ing questions: (1) We would like to know whether or not red-
shifts can be estimated directly from multi-band images of KiDS
galaxies, and how the typical accuracy compares to that achieved
with ML tools based on integrated photometry and color mea-
surements only. (2) We would also like to know how much
improvement in precision and scatter images and catalogs can
add to tools when combined.

To answer these questions, we have developed and compared
four ML tools to estimate the galaxy redshifts. These differ from
one another in terms of the type of input data they can work
with. In this section, we start by describing the structures and
the training of these four tools.
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Fig. 1. Machine learning models used in this work. Top: CNN structure of GaZNet-14 with only galaxy images as input. Middle: ANN structure
of GaZNet-C4 and GaZNet-C9, with only catalog as input. Bottom: structure of GaZNet-1, fed by both galaxy images and the corresponding

catalogs.

2.1. Network architectures

The ML parts of our networks are constituted by ANNSs.
These have been shown to work well on catalogs made of
magnitudes and color measurements (e.g., Collister et al. 2007,
Abdalla et al. 2008; Banerji et al. 2008; Cavuoti et al. 2015;
Brescia et al. 2014; deJongetal. 2017; Bilickietal. 2018,
2021). A typical ANN structure consists of three main parts:
input, hidden, and output layers. The input and the output layers
are used to load the data in the network and to issue the predic-
tions. The hidden layers, composed of fully connected artificial
neurons in a sequence of multiple layers, are used to extract fea-
tures. These features are subsequently abstracted to allow the
networks to determine the final outputs. In redshift estimates,
the inputs of the networks are catalogs of some form of multi-
band aperture photometry of galaxies, that is, measurements of
the total flux in different filters, usually from the optical to NIR
wavelengths.

The deep learning components of the four tools are convo-
lutional neural networks (CNN, Cun et al. 1990), which are an
effective family of algorithms for feature extraction from images.
CNNs mimic the biological perception mechanisms with con-
volution operations. This makes them especially suitable for
image processing, pattern recognition, and other tasks relative to
images (e.g., Dominguez Sanchez et al. 2018; Ackermann et al.
2018; Walmsley et al. 2020; Ciprijanovié etal. 2020; Liet al.
2020, 2022, 2021; Tohill et al. 2021). CNNs have become pop-
ular years after their introduction because of the significant
progress in graphics processing unit (GPU) technology.

Below, we introduce the structures of the first series of
algorithms for “Galaxy morphoto-Z with neural Networks”

(GaZNets). These are introduced to derive galaxy morpho-z and
photo-z using different combinations of inputs, including multi-
band photometry and imaging (see Fig. 1).

— GaZNet-14. This is a CNN model that makes use of galaxy
images in four optical bands (u,g,r, i), with a cutout size of
8 x 8” (corresponding to 40 x 40 pixels; see Sect. 2.2) as input.
The model is a slightly modified architecture from VGGNet
(Simonyan & Zisserman 2014). It is constituted of four blocks
made of different numbers of convolutional layers. Each of the
first two blocks contains two layers, and the other two blocks
each contain three layers. After the four blocks, a flatten layer
is used to transform the high-dimensional features into one-
dimensional features. Finally, we adopt three fully connected
layers to combine the low-level features into higher level ones
and output the predicted redshift.

— GaZNet-C4. This is a simple ANN structure with two
blocks each made of four fully connected layers separated by
a flatten layer. The input is an optical four-band (u, g, r, i) cat-
alog of magnitude and color measurements. As we use the
information from the same bands, comparing GaZNet—I4 and
GaZNet—C4 allows us to quantify the impact of the imaging and
photometry on the redshift estimates.

— GaZNet-C9. This has the same structure as GaZNet—C4,
but is input with the four-band optical catalogs from KiDS plus
the five-band catalogs from the VISTA Kilo-degree Infrared
Galaxy survey (VIKING, Edge & Sutherland 2014, see Sect. 2.2
for details). Using a broader wavelength baseline, GaZNet—C9
will allow us to estimate the impact of the multi-band coverage
on the ANN redshift predictions.
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Fig. 2. Distribution of some relevant parameters of the training and testing data. In the rop row, number counts are in linear scale, while in the
bottom row number counts are in logarithmic scale. The first panel on the left shows the original spectroscopic sample of the 148 521 galaxies
collected in KiDS+VIKING. However, only the 134 148 galaxies located between the two vertical dashed lines (spec-z = 0.04 and spec-z = 3) are
used in this work for training and testing the GaZNets. For these galaxies, we show the MAG_AUTO and S/Ns in the second and third panels.

— GaZNet-1. This is the reference network we have devel-

oped: the input is a combination of the r-band images and the
multi-band photometry catalogs. GaZNet-1 has been designed
to have a two-path structure. The first path comprises four
blocks, as in GaZNet—I4, while the second is made of eight
fully connected layers, as in GaZNet—C4 and C9. After a flat-
ten layer, the features from each path are concatenated together.
Finally, five fully connected layers are added to combine the
features from images and catalogs to generate the final redshift
predictions.
Of the four tools illustrated above, the first three are mainly
designed to test the impact of the different inputs on the final red-
shift estimates. Being constructed with the same structure assem-
bled in the final GaZNet-1, that is, the one to be used for science,
they guarantee the homogeneity of the treatment of the input data
(see Fig. 1).

In this first series of GaZNets, we do not consider the mag-
nitude ratios between different bands as inputs, although there
are experiments suggesting that they can improve the precision
(see e.g., D’Isanto et al. 2018, Nakoneczny et al. 2019). We plan
to implement this in future analyses, because here we are inter-
ested in checking the advantages of the combination of images
and photometry compared to previous analyses made on the
same data (see Sect. 3.2.3). Also, in this analysis, we focus on
redshift point estimates. In the future, we plan to expand the
capabilities of the GaZNets to estimate the probability density
function p(z) for each galaxy. This can be achieved by mix-
ture density networks (e.g., Rhea et al. 2021, Wang et al. 2022)
or Bayesian networks (Gal & Ghahramani 2015; Kendall & Gal
2017), and some studies have been carried out with these two
networks (e.g., D’Isanto & Polsterer 2018; Ramachandra et al.
2022; Podsztavek et al. 2022). We also evaluate the performance
of the p(z) using a cumulative distribution function (CDF) and
CDF-based metrics, such as the Kolmogorov-Smirnov (KS)
statistic, the Cramer-von Mises statistic, and the Anderson-
Darling (AD) statistic (see details in Schmidt et al. 2020).
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2.2. Training and testing data

The dataset used in this work is collected from KiDS and
VIKING, two twin surveys covering the same 1350 deg” sky
area, in optical and NIR bands, respectively. KiDS obser-
vations are carried out with the VST/Omegacam telescope
(Capaccioli & Schipani 2011; Kuijken 2011) in four optical fil-
ters (u, g, r, i), with a spatial resolution of 0.2”/pixel. The r-band
images are observed with the best seeing (average FWHM ~
0.7"), and its mean limiting AB magnitude (50 in a 2" aperture)
is 25.02 £ 0.13. The seeing of the other three bands (u, g and i) is
slightly poorer than that of the r-band, namely FWHMs < 1.1”,
and the mean limiting AB magnitudes are also fainter, namely
24.23 +0.12, 25.12 + 0.14, 23.68 + 0.27 for u, g, and i, respec-
tively (Kuijken et al. 2019).

VIKING is carried out with the VISTA/VIRCAM
(Sutherland et al. 2015) and was designed to complement
KiDS observations with five NIR bands (Z,Y,J,H and Ks).
The median value of the seeing in the images is ~0.9”
(Sutherland et al. 2015), and the AB magnitude depths are 23.1,
22.3, 22.1, 21.5, and 21.2 in the five bands (Edge et al. 2013),
respectively.

In particular, the galaxy sample used in this work is made of
148 521 objects for which spectroscopic redshifts (spec-zs, here-
after) are available from different surveys, such as the Galaxy
And Mass Assembly survey (GAMA, Driver et al. 2011) data
release 2 and 3, the zCOSMOS (Lilly et al. 2007), the Chandra
Deep Field South (CDFS, Szokoly et al. 2004), and the DEEP2
Galaxy Redshift Survey (Newman et al. 2013). The spec-z range
of the galaxies covers quite a large baseline, in the range ~0-7,
although the distribution is far from uniform. Indeed, as shown
in Fig. 2, the number of galaxies at higher redshift (z > 0.8) is
much smaller than the one at lower redshift. In the same figure,
we can see a peak of distribution at spec-z < 0.6. It comes
from the GAMA survey, which is the most complete spectro-
scopic survey adopted, with ~95.5% completeness for r-band
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magnitude MAG_AUTO < 19.8 (Baldry et al. 2018a). Similarly,
we see a second peak at spec-z ~ 2.5, which is due to the quite
deep observations from zCOSMOS. Overall, this sample is dom-
inated by bright and low-redshift galaxies (0.04 < z < 0.8), but
in the range 0.8 < z < 3 it still contains about 6500 galaxies with
a relatively uniform redshift distribution that can be used as a
training sample to extend the predictions to higher redshift. Due
to the unbalanced redshift coverage, we expect the accuracy of
the predictions to show significant variation with redshift. How-
ever, we check if the final estimates meet the accuracy and preci-
sion requirements for cosmological and galaxy formation studies
(see e.g., LSST Science Collaboration 2009). After this redshift
cut, the final sample is made of 134 148 galaxies. The distribu-
tions of the r-band Kron-like magnitude, MAG_AUTO, obtained
by SExtractor (Bertin & Arnouts 1996) for these galaxies, and
their signal-to-noise ratio (S/N; defined as the inverse value of
the error of MAG_AUTO) are also reported in Fig. 2. Finally,
the 134 148 galaxies are divided into three datasets, 100 000 for
training, 14 148 for validation, and 20 000 for testing and error
statistical analysis.

The u, g, r,i band images, with a size of 8 x 8”, are cutout
from KiDS DR4 (Kuijken et al. 2019). The corresponding cat-
alogs, made up of nine Gaussian Aperture and Point spread
function (GAaP) magnitudes (u,g,r,i,Z, Y, J, H,Ks) and eight
derived colors (e.g., u — g, g — r, r — I, etc.), are directly selected
from the KiDS public catalog'. The GAaP magnitudes have
been measured on Gaussian-weighted apertures, modified per
source and per image, thereby providing seeing-independent flux
estimates across different observations and bands, and reducing
the bias of colors (see detail in Kuijken et al. 2015, 2019). The
extinction was also considered in the measurement of the GAaP
magnitudes.

2.3. External photo-z catalog by MLPQNA

To test the performances of GaZNet-1 against other ML-based
photo-z methods, we collected an external photo-z catalog
obtained from MLPQNA for the same KiDS galaxies that we
used as a testing sample. This allows us to perform a quanti-
tative comparison of diagnostics such as accuracy, scatter, and
fractions of outliers.

MLPQNA is an effective computing implementation of neu-
ral networks adopted for the first time to solve regression prob-
lems in an astrophysical context. A test on the PHAT1 dataset
(Hildebrandt et al. 2010) indicated that MLPQNA, with smaller
bias and fewer outliers, performs better than most of the tradi-
tional standard SED-fitting methods. This code has been used in
some current sky surveys; for example in KiDS (Cavuoti et al.
2015) and the Sloan Digital Sky Survey (SDSS; Brescia et al.
2014). For our comparison, we adopt the MLPQNA photo-z
catalog from Amaro et al. (2021), where these authors used the
same data presented in Sect. 2.2 to train and test their networks.

3. GaZNet training and testing

In Sect. 2.1 we describe the different GaZNets and anticipate
that they accept either images or catalogs of galaxies as inputs,
except the GaZNet-1, which is given both images and catalogs
as input. In particular, for the first test of morphoto-z predictions
made with this latter, we choose only the r-band images, that
is, the ones with best quality from KiDS, to combine with the
nine-band photometry catalog. As we demonstrate in Sect. 4, the

1 https://kids.strw.leidenuniv.nl/DR4/access.php

multi-band imaging does not add a detectable improvement in
the results in exchange for the higher computation time required.
In this section, we illustrate the procedures to train the networks
and test their predicted photo-zs against the ground truth pro-
vided by the spec-zs of the test sample introduced in Sect. 2.2.

3.1. Training the networks

We train the networks by minimizing the “Huber” loss (see,
Huber 1964; Friedman 1999) function with an “Adam” optimizer
(Kingma & Ba 2014). The Huber loss is defined as

1
—(a)?, lal<¢

Ls(a) = 1 (D
0- (Ial — 56) otherwise,

in which @ = y e — Ypred- Yurue 18 the spec-z and ypreq is the pre-
dicted photo-z. Here, ¢ is a parameter that can be pre-set. Given
a ¢ (fixed to 0.001 in this work), the loss will be a square error
when the deviation of the prediction, |a|, is smaller than ¢; oth-
erwise, the loss is reduced to a linear function. Compared to the
commonly used mean square error (MSE) or mean absolute error
(MAE) loss function, defined as

1
MAE = ; Z |Zpred - Zspec|

1
MSE = ;l Z(Zpred - Zspec)z’ )
Huber loss has proven to be more accurate in such regression
tasks (see detailed discussion in Li et al. 2022).

To guarantee that the loss function loses speed more quickly,
for each ML model, we set a larger learning rate of 0.001 at the
beginning and train the networks for 30 epochs. In each epoch,
the networks are trained on the training data and validated on the
validation data to decipher whether or not further adjustments
are needed to improve the overall accuracy. After the first train-
ing round, we reduce the learning rate to 0.0001, and load the
pre-trained model with a “callback” operation. We then train the
networks for a further 30 epochs. Reducing the learning rate to
0.0001 can help the network to converge to the global minimum,
where it finds the best-trained model.

For the networks input with images, we also apply some
data augmentations, including random shift, flip, and rotation
(only 90°,180° and 270°). We do not adopt any augmentation
that requires interpolation algorithms?, such as crop, zoom, color
changing, or addition of noise, because these operations would
change the flux in the image pixels, affecting the magnitudes and
colors of the galaxies.

Regarding computation time, with the NVIDIA RTX 2070
graphics processing unit (GPU), GaZNet-C4 and GaZNet-C9
require 28 min to complete the training and validation process,
while GaZnet-1 takes about 134 min (including ~2.5 min for
data reading) because of the time needed to process the r-band
image data along with the magnitudes and colors. Compared
with GaZNet-1, GaZNet-14 does not significantly increase the
time required for the training and validation process. However,
to deal with the four-channel images, it needs more GPU mem-
ory, and the duration of data reading increases significantly.

2 We note that, even if a generic rotation does imply some interpo-
lation due to pixel re-sampling, the adoption of /2 multiples does
not, because it preserves the overall geometry of the cutout, except the
orientation.
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Fig. 3. Comparison between the spectroscopic redshifts and the predicted photometric redshifts for different models. From top left to bottom right
are the results from GaZNet-1, GaZNet-C, GaZNet, and MLPQNA, respectively. Error bars represent the mean absolute errors (MAEs), while the

quoted numbers are the mean |§z| in each bin.

Finally, GaZNet-14 requires about four times as much data read-
ing time as compared to GaZNet-1. We also estimated that to
make predictions on 20 000 galaxies (see Sect. 3.2), GaZNet-C9
needs only ~6 s for the whole galaxies, while GaZNet-1
needs ~55 s, including ~30 s for data reading and ~25 s for
prediction.

3.2. Testing the performance

After the training phase, we use the 20000 testing galaxies to
estimate the precision and the statistical errors of the redshift
predictions from different GaZNets.

3.2.1. Statistical parameters

We define a series of statistical parameters to describe the over-
all performances: (1) the fraction of catastrophic outliers, (2) the
mean bias, and (3) the normalized median absolute deviation
(NMAD).

The fraction of the catastrophic outliers is defined as the frac-
tion of galaxies with bias larger than 15% according to the fol-
lowing formula:

_ |Zpred - Zspec|

|oz]
I+ Zspec

> 15%, 3

where zgpe. are the spec-zs of the test galaxies and zpq are the
predicted redshifts by the ML tools. This definition is usually
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adopted for outliers in photo-z estimates (see details in e.g.,
Cavuoti et al. 2012, Amaro et al. 2021) and gives a measure of
the fallibility of the method. In addition, the mean bias in this
work is labeled as .

The NMAD between the predicted photo-zs and the true
spec-zs, is defined as

NMAD = 1.4826 x median(|6z — median(6z)|), 4)

where 6z comes from Eq. (3). The NMAD allows us to quantify
the scatter of the overall predictions in comparison to the ground
truth, and therefore is a measurement of the precision of the red-
shift estimates from the ML tools.

3.2.2. Predictions versus ground truth

The testing results on 20 000 galaxies for the four GaZNets are
shown in Fig. 3, where on the x-axis we plot the spec-zs as
ground truth, and on the y-axis we plot the predicted redshifts.
As a comparison, in the same figure, we also show the photo-
zs estimated by the MLPQNA. We divided the galaxies into six
redshift bins, and computed the mean absolute errors, shown as
error bars, and the mean |0z| defined in Eq. (3), reported as text.
We use equally spaced bins to check the effect of the sampling
as a function of the redshift.

From Fig. 3, a major feature noticeable at the first glance is
the odd coverage of the spec-z at high redshift (z > 0.8), which
we also discuss in Sect. 2.2. This is a potential issue for all meth-
ods, as a poor training set can introduce a large scatter in the
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predictions. Indeed, in Fig. 3, the §, tends to have an increas-
ingly large scatter toward larger redshifts. This means that at
z 2 0.8 the absolute scatters are dominated by the size of the
training sample rather than the true intrinsic uncertainties of the
methods. Unfortunately, this is a problem we cannot overcome
with the current data and we need to wait for larger spec-z data
samples in order to improve the precision at higher redshifts.
However, given the current training set, we can still evaluate
the relative performances of different methods and their abil-
ity to make accurate predictions even in the small training set
regimes.

To go into detail, from Fig. 3 we see that unbiased photo-
z can be obtained by GaZNet-14, with only four-band images
as input, although it seems that this starts to deviate from the
one-to-one relation at z > 1.5. However, at these redshifts, a
general trend of underestimating the ground truth is also shown
by GaZNet-C4 and GaZNet-C9, although the latter uses the
full photometry from the KiDS+VIKING dataset. Interestingly,
looking at the scatter, GaZNet-14 seems to perform better than
GaZNet-C4 at all redshift bins and almost comparably to C9 in
most cases.

The results from GaZNet-I4 demonstrate that the morpho-
z values from multi-band images are similar if not potentially
superior to photo-zs values from photometry in the same bands.
This high-performance of morpho-zs is also confirmed by the
noticeably smaller outlier fraction (1.5% for GaZNet-14 and
2.2% for GaZNet-C4 in general). Even more interestingly, look-
ing from the perspective of future surveys relying on a nar-
rower wavelength baseline, such as the space missions Euclid
and CSST, our results show that morpho-zs are not far from opti-
cal+NIR large photometric baselines in terms of accuracy, scat-
ter, and the fraction of outliers. This is particularly true for z < 1,
where, as seen in Fig. 3, the GaZNet-14 shows fewer outliers
than GaZNet-C9, while this latter shows a rather lower fraction
of outliers at higher redshifts.

Moving to GaZNet-C9, the results show the impact of the
broader wavelength baseline including the five NIR bands.
Generally, photo-z determined by GaZNet-C9 shows improved
indicators in comparison to GaZNet-14 and GaZNet-C4. From
Fig. 3, we can see these coming from a better linear correla-
tion, especially at z > 1.5, and smaller absolute errors. However,
looking at the results in more detail, at z > 1.5 the presence
of a rather large fraction of outliers causes the median values
to diverge from the one-to-one relationship in a way similar to
GaZNet-14 and GaZNet-C4. It is hard to assess whether this is
caused by the poor training sample, or is an intrinsic shortcoming
of the ML tool. In either cases, it is important to check whether
or not using the information from images can improve this
result.

Compared to GaZNet-C9, GaZNet-1 shows better perfor-
mance overall, with a tighter one-to-one relation, and smaller
errors (by ~10—-35%) in all redshift bins. This is shown in the
bottom-left panel of Fig. 3. This result leads us to two main con-
clusions: (1) images (even a single high-quality band; see Sect. 4
for the test on multi-band imaging) provide crucial information
for solving intrinsic issues related to the photometry only and
improve all performances of the redshift predictions in terms of
accuracy, scatter, and outlier fraction; we discuss the reason for
this in Sect. 4; (2) due to the poor redshift coverage of the train-
ing sample at z > 1, the results we have obtained possibly rep-
resent a lower limit on the potential performances of the tool. In
any case, the GaZNet-1 reaches an excellent overall precision of
0, = 0.038(1 + z) up to z = 3, with an overall outlier fraction of
0.74%.

3.2.3. Test versus external catalogs

We can finally compare the performance of the four GaZNets
versus the external catalogs. The MLPQNA is rather similar
to the ANN method used for the GaZNets-C9, as it makes
use of a similar algorithm and the same catalogs from KiDS
DR4. From Fig. 3, we see that MLPQNA performs similarly
to GaZNet-14 and better than GaZNet-C4. This is not surpris-
ing as the MLPQNA uses a larger wavelength baseline. This
is particularly visible at higher redshift, where the predictions
from MLPQNA are more tightly distributed around the one-
to-one relationship with the ground truth than GaZNet-14 and
GaZNet-C4.

3.2.4. Performance in space of redshift and magnitude

In the preceding subsections, we demonstrate that GaZNet-1
shows better performance than other tools in terms of accuracy
and precision. However, in Fig. 3, we also see a variation of this
performance as a function of redshift. Here, we want to quantify
this effect in more detail, as well as the dependence on the mag-
nitudes of the same performances. The reason for this diagnostic
is to assess the impact of selection effects on overall performance
(see e.g., van den Busch et al. 2020). For example, in Sect. 3.2.2,
we anticipate that the redshift sampling by the training sample
can be one source of degradation of performance at z > 1.

In Fig. 4 we plot the outlier fraction (out. fr.), mean bias
(usz), and scatter (NMAD) as functions of spec-z, photo-z, and
r-band magnitude. For comparison, we plot the same relations
for GaZNet-C9 and MLPQNA, the other two tools showing
comparable performances to GaZNet-1. The bottom row of
Fig. 4 finally shows the distribution of the training sample in
the same parameter space.

This figure gives the overall impression that GaZNet-1 gen-
erally performs better than the other two tools in most if not all
redshift and magnitude bins, with lower outlier fraction, mean
bias, and scatter. We also see a clear correlation of the perfor-
mances of all tools, including GaZNet-1, with the size and mag-
nitude of the training sample in different redshift bins and at
different magnitudes of the training galaxies All three tools per-
form relatively well in the range of z < 0.8, where the train-
ing sample is about one order of magnitude larger, resulting in
a more accurate training. To quantify the overall performance
in this redshift range, in Table 1 we report the global statistical
parameters for these galaxies. All three tools can achieve rela-
tively small outlier fractions (0.01), mean bias (close to 0), and
scatter (50.022). Of the three tools, GaZNet-1 shows the best
performance. In particular, its outlier fraction is 43% smaller
than GaZNet-C9 and 60% smaller than MLPQNA.

In Fig. 4, we see that the number of galaxies decreases
rapidly at z = 0.8, which produces a degradation of the per-
formance of all three tools. Interestingly, looking at the central
panels, after z ~ 1.5, where the COSMOS spec-z sample is
concentrated, the performances, especially in terms of scat-
ter (NMAD), show a significant improvement up to z 2 2.6,
where the spec-z of the training sample quickly drops in number
again. This is also quantified in Table 1 by the global statisti-
cal parameters for these higher redshift galaxies. Compared to
GaZNet-C9, all the indicators from GaZNet-1 are significantly
improved. The fraction of outliers, the mean bias, and the scatter
are decreased by 46%, 58%, and 44%, respectively. On the other
hand, MLPQNA remains the tool that shows the poorest perfor-
mance. A similar behavior in performance is seen as a function
of photo-z, as this latter closely follows spec-z (see Fig. 3).
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Fig. 4. Outlier fraction (out. fr.), mean bias (us,), and scatter (NMAD) as functions of spec-z, photo-z, and magnitude in 20 bins. In each panel,
the blue line is for GaZNet-1, orange is for GaZNet-C9, and green is for MLPQNA. In the last row, we also present the number distribution in the

corresponding parameter space.

Regarding magnitude space, we find that all indicators show
very small values at MAG_AUTO <21, which means that the
redshift estimates for brighter galaxies are highly reliable. After
r-band MAG_AUTO ~ 21, all indicators degrade, showing a
worsening of the accuracy, precision, and outlier fraction. How-
ever, in this respect, among the three tools, GaZNet-1 shows the
best performance. In particular, after MAG_AUTO ~ 22, there is
a peak at 30%, which could be driven by the poorer S/N of the
systems, but is more likely caused by the smaller statistics. Nev-
ertheless, in general, the GaZNet-1 still has a relatively small
outlier fraction (~1.0%).

Overall, it is clear that collecting more galaxies cov-
ering higher redshift (z > 0.8) and fainter magnitudes
(MAG_AUTO 3 22) will be essential for improving the perfor-
mance of these ML tools, and the results collected here sim-
ply represent a lower limit on the real performance that these
tools can achieve, especially GaZNet-1. However, even with the
current training set, GaZNet-1 can provide results that satisfy
the requirements for weak gravitational lensing studies in next
generation ground-base surveys, even for high-redshift galaxies
(e.g., NMAD =0.05 in VR/LSST, LSST Science Collaboration
2009), although this has only been tested here on a rela-
tively bright sample with AB magnitude MAG_AUTO <22 (see
Sect. 4). For the low-redshift samples, GaZNet-1 is already well
within the requirements for the same surveys and is virtually
‘science ready’. In the future, we will look for more higher red-
shift galaxies from different spectroscopic surveys to build a less
biased training sample and improve the performances at z > 0.8.
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4. Discussion

In the preceding section, we compare the performances of the
different GaZNets based on different architectures, both with
and without the inclusion of deep learning. We also compare
the GaZNets against external catalogs of photo-z based on tradi-
tional ML algorithms. The reason for developing different tools
with an increasing degree of complexity is to understand the
impact of the different features on the final predictions. The
main conclusion of this comparison is that GaZNet-1, which
uses a combination of nine-band photometry and r-band imag-
ing, clearly outperforms the other tools —either developed by
us or taken from the literature-which take only photometry as
input and do not use deep learning. We also see how deep learn-
ing only, applied to only four-band optical images, can produce
morpho-z of greater accuracy than the photo-z from the cor-
responding photometry and can match the performance of the
nine-band photometry, except at redshifts of z > 0.8. Overall,
we find that part of the superior performance of deep learning is
its ability to reduce the outlier fraction. In this section, we inves-
tigate the reasons for these findings and discuss the impact of
some of the choices we made in the setup of the GaZNets pre-
sented in this first paper.

4.1. Outliers

From Table 1, it is evident that the major advantage of deep
learning when applied to high-quality imaging resides in the
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Table 1. Statistical properties of the predictions.

CNN model Out. fr. oz NMAD
Low-redshift galaxies (z < 0.8)
GaZNet-C9  0.007 0.0 0.016
GaZNet-1 0.004 0.0 0.014
MLPQNA 0.01 0.006 0.022
High-redshift galaxies (0.8 < z < 3)
GaZNet-C9  0.234  -0.067 0.073
GaZNet-1 0.127 -0.028  0.041
MLPQNA 0.216 -0.022  0.087

Notes. Outlier fraction, mean bias, and NMAD (see Sect. 3.2.1) from
different tools on lower (z < 0.8) and higher (z > 0.8) redshift galaxies.

low outlier fraction. For GaZNet-1, this is smaller than that of
GaZNet-C9 by ~43% for low-redshift galaxies (z < 0.8) and
46% for higher redshift galaxies (z > 0.8). Understanding the
reasons for these results is important for identifying the source
of the systematic errors and for planning future developments for
more accurate morphoto-z estimates.

To investigate the genesis of these outliers, we start by check-
ing the galaxies for which the ML tools fail to obtain accurate
photo-zs. In Fig. 5, we show the optical gri color-composed and
the r-band images of representative outliers from GaZNet-C9,
which are no longer outliers for GaZNet-1. In each r-band
image, we report the spec-z ot the top, the GaZNet-C9 photo-
z in the bottom-left corner, and the GaZNet-1 morphoto-z in the
bottom-right corner. For comparison, in Fig. 5, we also show out-
liers from GaZNet-C9 that are still outliers for GaZNet-1. The
color images in this figure provide a relatively good idea of the
galaxy SEDs, while the r-band images illustrate the correspond-
ing “morphological” features that the GaZNet-1 uses to improve
the overall predictions.

From Fig. 5, we can distinguish four kinds of outliers for
GaZNet-C9. The first one (A-row) is made of galaxies that are
close to bright and often saturated stars or large bright galaxies.
In some cases, GaZNet-1 can improve the predictions and solve
the discrepancy with the ground-truth values (A-row). However,
in some other cases, the environment is too confused to allow the
CNN to guess correctly, despite the CNN being able to deblend
the embedded source (E-row; see discussion below). The sec-
ond type of outlier (B-row) is irregular galaxies or, generally,
diffuse nearby systems. These systems are generally star form-
ing and blue, similarly to the majority of high-redshift galaxies.
Thus, they typically have a higher chance of being confused with
higher-z systems. In this case, GaZNet-1 can recognize the com-
plex morphology (knots, substructures, pseudo-arms, etc.), or a
noisier surface-brightness distribution, which are typical features
of closer galaxies®. The third type of outlier (C-row) is merging
or interacting systems. For these systems, GaZNet-1 can solve
the discrepancy using information about the size of the two sys-
tems and the degree of detail of the substructures, making the
predictions of these systems relatively accurate. The fourth type
of outlier (D-row) is blue objects, generally high-z compact sys-
tems, sometimes also at low-z. In this case, again, GaZNet-1
can make more accurate predictions from the size and the round
morphology.

3 We can guess here that the CNN can learn the surface brightness
fluctuation of galaxies, which is a notorious distance indicator (see e.g.,
Cantiello et al. 2005).

With this insight into the ways in which deep learning can
help to improve the predictions of photo-z, we can now check
where it still fails. This might give us valuable indications as to
how we can improve GaZNet-1 performances in future analy-
ses. In Fig. 5 we see three types of outliers also for GaZNet-1.
The first (E-row), similarly to those for GaZNet-C9 in the A-
row above, is caused by the presence of large, bright systems. In
these cases, GaZNet-1 has difficulty in either correctly deblend-
ing the source or correctly evaluating the size, especially if very
compact. However, we stress here that these outliers are gen-
erally fewer than all of the other kinds (~5% of the total out-
liers for both GaZNet-1 and C9), and in the case of bright stars
can often be automatically masked out from catalogs. The sec-
ond type (F-row) is galaxies whose size appears to be at odds
with their redshift; for example small-sized low-z objects (which
could be ultra-compact galaxies or misclassified stars, etc.) or
even large-sized high-z systems (which could be very massive or
high-luminosity systems, or galaxies with large diffuse haloes,
etc.). As for the previous type, these systems are also relatively
limited in number (~4%), and their failure also depends on the
poor training sample. In general, these outliers do not represent
a significant issue. The third type (G-row) is extremely com-
pact, almost point-like and generally blue sources. These are the
most abundant sample of outliers (~58%). Although their red-
shift distribution is relatively sparse, they have a very similar
appearance, being mainly concentrated at z > 1 but with cases
even at z < 0.5. There is little chance that all these systems are
misclassified as stars or very compact blue galaxies (e.g., blue
nuggets), although we cannot exclude that some of them are
indeed misclassified. The only possible option is that these are
galaxies hosting active galactic nuclei (AGNs) or quasars. If so,
these represent a marginal fraction of the training sample, and
for this reason, they are not accurately predicted.

The SED of a quasar is different from that of a typical galaxy
(e.g., Feng et al. 2021), and a small fraction of quasars may not
provide enough training samples. In addition, most quasars can
present strong variability, because they are observed in different
bands at different times. This introduces fictitious color terms
that increase the uncertainties on photo-z measurements. To ver-
ify this assumption, we check the star—galaxy—quasar separation
in Khramtsov et al. (2019) based on an ML classifier. We find
that only ~35% of the 147 outliers are classified as galaxies. For
the remaining ~65%, about half are classified as quasars and half
as stars. Regardless of the accuracy of the ML method to clas-
sify stars and quasars, this analysis confirms that only a minority
of the catastrophic events are galaxies, which is consistent with
our guess based on the visual inspection above. In particular, the
three objects in Fig. 5-G are all quasars in the ML classification.

If indeed the outliers are dominated by misclassified stars
and AGNs or quasars, we can reasonably assume that optimizing
the classification of these groups of contaminants would reduce
the overall outlier fraction down to a very small value, ~0.3%.

4.2. Other tests

The four GaZNets illustrated in Sect. 2.1 and discussed in
Sects. 3.2.2 and 4 are the results of a selection process from a
number of other models that we have tested with different kinds
of inputs and different ML structures. Among these models, we
focus on two other experiments where we have tested two setups
that, in principle, can impact the final results. The parameters
describing the performances of these two further configurations
are shown in Table 2. Below, we summarize their properties and
the major results:
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Fig. 5. g, r, i color-composited color images (20" x 20”") and the corresponding r-band images for some representative outliers. Rows A, B, C, and
D (blue framed) show the outliers in GaZNet—C9, which are no longer outliers in GaZNet-1 predictions. Rows E, F, and G (red framed) show the
objects that remain outliers both for GaZNet-1 and GaZNet-C9. In the r-band images, we report spec-z at the top, the GaZNet-C9 photo-z in the

bottom left, and the GaZNet-1 morphoto-z in the bottom right.

1. GaZNet-81pix to test the cutout size. The GaZNets work
on images with a size of 8” x 8", which might be too small to
collect the light of the entire galaxies and their environments,
thus leaving some important features that the CNNs cannot see.
In order to check for this possibility, we tested the GaZNet-1 on
images with twice the size of each side (16" x 16”"). Compared
with the previous result in Table 2, the parameters remain almost
unchanged. A possible reason is that the features that the CNNs
extract from images are concentrated in the high-S/N regions
of the galaxies, while the outer regions bring little information
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about either the galaxy properties or the environment that might
otherwise be used to improve the redshift estimates. Using these
arguments, one could ask whether or not the standard 8" x 8”
cutouts could be replaced with smaller cutouts whilst obtaining
the same performance. To check this possibility, we also tested
4” x 4" and found slightly poorer results, and so we kept the
8" x 8" as the best choice.

2. GaZNet-C9l14 to test the nine-band catalogs plus four-
band images. GaZNet-1 makes use of nine-band catalogs and
only r-band images. To check if the addition of images in other
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Table 2. Statistical properties of the predictions.

CNN model Out. fr. Hoz NMAD
Lower redshit galaxies
GaZNet-81pix  0.004  0.001 0.015
GaZNet-C914  0.004 -0.002 0.015
higher redshift galaxies
GaZNet-81pix  0.15 -0.039  0.045
GaZNet-C914  0.124  -0.033  0.033

Notes. Outlier fraction, mean bias and NMAD (see Sect. 3.2.1) from
the further tools tested in Sect. 4.2.

bands can produce a discernable improvement, we trained a
GaZNet with the four optical band images plus the nine-band
catalogs. We report the statistical parameters obtained with this
new GaZNet in Table 2: generally speaking, there is no obvious
improvement. Some very small differences are compatible with
the random statistical effects in the training process. Even tak-
ing these results at face value, compared to the GaZNet-1, the
computing time registered by the GaZNet-C9I4 is almost three
times longer. For these reasons, we can discard this solution on
the grounds of the poor benefit/cost ratio.

5. Conclusions

Several million galaxies have been observed in the third gen-
eration wide-field sky surveys, and tens of billions of galaxies
will be observed in the next ten years by the fourth genera-
tion surveys from ground and space. This enormous amount of
data provides an unprecedented opportunity to study the evo-
lution of galaxies in detail, and to constrain the cosmological
parameters with unprecedented accuracy. To fully conduct these
studies over the expected gigantic datasets, accurate photo-z
that can be determined quickly are indispensable. In this work,
we explore the feasibility of determining the redshift with ML
by combining images and photometry catalogs. We designed
four ML tools, named GaZNet-14, GaZNet-C4, GaZNet-C9, and
GaZNet-1. The inputs for these tools are four-band images, four-
band catalogs, nine-band catalogs, and r-band images plus nine-
band catalogs, respectively. We trained the tools using a sample
of about 140000 spectra from different spectroscopic surveys.
The training sample is dominated by bright (MAG_AUTO < 21)
and low-redshift (z < 0.8) galaxies, which provides a relatively
accurate knowledge base in this parameter space. On the other
hand, the higher z and fainter magnitudes are poorly covered by
the training set. Despite this, we show that the four tools, espe-
cially GaZNet-1, still return accurate predictions also at z > 0.8.

More precisely, our tests show that accurate morpho-z can
be directly obtained from the multi-band images (u, g, r,i) by
GaZNet-14, with fewer outliers and smaller scatter than those
provided by GaZNet-C4, and using only four-band optical aper-
ture photometry. We also see that the combination of opti-
cal and NIR photometry in nine-band catalogs as used by
GaZNet-C9 can provide a much better determination of photo-
z. However, the information added by even one single-band
high-quality image, as tested with GaZNet-1, can achieve a
noticeable improvement in performance compared to GaZNet-
C9. The statistical errors are ~10%—35% smaller in different red-
shift bins, while the outlier fraction reduces by 43% for lower
redshift galaxies and 46% for higher redshift galaxies. We esti-
mated the variation of the scatter as a function of the redshift
over the range of z = 0-3, and find 6, = 0.038(1 + z). This is

heavily affected by the poor coverage of the training base at large
redshifts and we expect to significantly improve this prediction
by adding a few thousand more galaxies in this redshift range.

By visually inspecting the images of all outliers produced by
GaZNet-C9 and GaZNet-1, we confidently demonstrate that the
largest portion of the catastrophic estimates correspond to sys-
tems that are AGNs or quasars. This is corroborated by an inde-
pendent ML classification from Khramtsov et al. (2019). If these
contaminants are correctly separated from galaxies, the overall
outlier fraction of GaZNet-1 can be reduced to 0.3%. This is
potentially an impressive result, which, combined with the rather
high precision and small 6., will make the GaZNets performance
close to the requirements for galaxy evolution and cosmology
studies from the fourth generation surveys (e.g., Ivezic et al.
2019; Laureijs et al. 2011; Zhan 2018).
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