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Despite decades of research on ADP-ribosyltransferases (ARTs) from the

poly(ADP-ribose) polymerase (PARP) family, one key aspect of these

enzymes – their substrate specificity – has remained unclear. Here, we

briefly discuss the history of this area and, more extensively, the recent

breakthroughs, including the identification of protein serine residues as a

major substrate of PARP1 and PARP2 in human cells and of cysteine and

tyrosine as potential targets of specific PARPs. On the molecular level, the

modification of serine residues requires a composite active site formed by

PARP1 or PARP2 together with a specificity-determining factor, HPF1;

this represents a new paradigm not only for PARPs but generally for post-

translational modification (PTM) catalysis. Additionally, we discuss the

identification of DNA as a substrate of PARP1, PARP2 and PARP3, and

some bacterial ARTs and the discovery of noncanonical RNA capping by

several PARP family members. Together, these recent findings shed new

light on PARP-mediated catalysis and caution to ’expect the unexpected’

when it comes to further potential substrates.

PARPs, ARTs and ADP-ribosylation

ADP-ribosylation is a widespread protein post-transla-

tional modification (PTM) that involves the enzymatic

transfer of the ADP-ribosyl moiety from b-NAD+ to a

protein amino acid residue [1] (Fig. 1). The attachment

involves an inversion of configuration at the ADP-ri-

bose C1’’ atom and a simultaneous release of nicoti-

namide. With as much as one third of the human

nuclear proteome being subject to ADP-ribosylation

according to recent studies [2], it emerges as a regula-

tory mechanism of major importance. The best-studied

ADP-ribosylation ‘writer’ is poly(ADP-ribose) poly-

merase 1 (PARP1), the founding members of the

PARP family of ADP-ribosyltransferases (ARTs) [3],

which in humans comprises 17 core members encoded

by separate genes (PARP1 to PARP16 including two

tankyrases, PARP5a and PARP5b). PARP1, which is

thought to account for most detectable ADP-ribosyla-

tion in human cells, is one of the most abundant

nuclear proteins, a key player in DNA repair and

many other cellular processes, and a target of anti-

cancer drugs [4–6]. PARPs and more distantly related

ARTs are widely distributed among living organisms;

in bacteria, ARTs include the paradigmatic ADP-ribo-

sylating toxins diphtheria toxin and cholera toxin [7].

Based on the closer relationship with the former,

PARPs are also classified as diphtheria toxin-like
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ARTs or ARTDs [8]. In human cells, ADP-ribosyla-

tion can also be catalysed by more diverged cholera

toxin-like ARTs (ARTCs) and unrelated sirtuins [9].

Like most other PTMs, ADP-ribosylation is reversible;

in human cells, it can be removed by numerous ‘era-

ser’ enzymes that possess ADP-ribosylglycohydrolase

activity [10,11].

In addition to modifying protein amino acid side

chains, PARP1 can elongate protein-linked ADP-ri-

bose to form long poly(ADP-ribose) (PAR) chains

with occasional branching, a process known as poly

(ADP-ribosyl)ation or PARylation [12]. Chain forma-

tion has also been observed for PARP2 and PARP5a/

b (tankyrase) [9]. In the polymer, the succeeding ADP-

ribose is attached to the ribose hydroxyl oxygen of the

preceding unit. PAR chains were discovered even prior

to their covalent attachment to proteins [13,14] and

have attracted a lot of attention. The progress over the

years gradually led to the idea of these polymers as

both biophysical entities that engage in electrostatic

repulsion and condensate formation and biochemical

scaffolds that mediate recruitment of various PAR-

binding ‘readers’, especially in the context of DNA

repair [15,16]. Moreover, detached PAR chains have

been implicated in triggering a specific form of cell

death referred to as parthanatos [17].

Short history of PARP specificity
research

The focus on PAR chains as functional agents in their

own right might have contributed to a relative neglect

of the question of the exact location and amino acid

specificity of PARP-catalysed protein modifications – a

question, which has additionally proven technically

challenging. However, even from a PAR-centric point

of view, it might be argued that the proteins to which

the chains are attached will determine PAR cellular

localisation and at least modulate other aspects of its

function. Moreover, ADP-ribosylation can also exist

as attachments of a single ADP-ribose unit (mono-

ADP-ribosylation; MARylation), and in this case, it

would likely function as a more conventional modula-

tor of protein function. For these reasons, knowing

PARP substrates and the exact modification sites is

crucial for understanding ADP-ribose-dependent regu-

lation (Fig. 2). This is as important for PARP1 as it is

for other PARP family members, whose emerging spe-

cialised functions [18] might depend on distinct speci-

ficities.

The PAR chains were first seen to be associated

with histones, but a diverse set of mostly nuclear sub-

strates have been reported over the years, even prior

to high-throughput proteomic analyses [12]. The iden-

tification of PARP1 itself as the main or at least a

major PAR acceptor in vivo [19] was followed by the

narrowing down of the modification sites to the ‘auto-

modification domain’, a central region of the poly-

merase between the DNA-binding and catalytic

segments [20]. For reasons that are explained below,

PARP1 automodifies in cells at both glutamate/aspar-

tate and serine residues, and major sites include gluta-

mates 488 and 491 [21] and serines 499, 507 and 519

[22,23]. One key function of PARP automodification

appears to be to release the enzyme from DNA

lesions, presumably through electrostatic and steric

repulsion [24–26]. Interference with this mechanism

accounts in part for the ability of clinical PARP inhi-

bitors, which are used in anticancer therapy, to trap

PARP1 on chromatin [27], thus promoting cytotoxic-

ity, especially in cells with defects in DNA repair

[28,29]. Additionally, PAR formation, including on

PARP1 itself, has been implicated in orchestrating

DNA repair through recruitment of PAR-binding

Fig. 1. A simplified scheme of the ADP-ribosylation reaction. A protein glutamate residue is shown as a sample acceptor. Configuration at

the C1’’ atom (a or b) is indicated. The reaction might proceed through an oxocarbenium transition state or intermediate (not shown).
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factors and possibly direct effects on chromatin com-

paction [30].

Regarding amino acid specificity, while there has

always been considerable ambiguity in the field, the

majority of early biochemical experiments [12] and

later mass spectrometric analyses [31–34] pointed to

glutamate and aspartate residues as the main PARP

target sites. Modifications at these residues can be

erased in vitro by the human ADP-ribosylglycohydro-

lases MacroD1, MacroD2 and Targ1 [35–37], as well

as some hydrolases from lower organisms [38,39],

which would allow dynamic regulation of these marks

in vivo and thus points to their physiological relevance.

However, just as a relatively consistent picture was

emerging, further mass spectrometric studies shook the

field by pointing to the unexpected prevalence of serine

residues as physiological PARP targets and suggesting

further promising candidates including cysteine and

tyrosine.

Recent advances in elucidating PARP
protein amino acid specificity

A prelude to this breakthrough was the proposal of

lysine as the main PARP target [40–42]. However,

while some lysine sites might be physiologically rele-

vant, their apparent predominance turned out to be

largely a result of computational mislocalisation due

to the failure to consider serine as a possible ADP-ri-

bosyl acceptor in vivo [22,43–45]. Also, it is likely that

a significant proportion of the correctly identified

lysine sites are a consequence of nonenzymatic lysine

ADP-ribosylation events [46].

Indeed, a broader approach to ADP-ribosylation

localisation, accompanied by a more tailored mass

spectrometry fragmentation procedure, allowed the

identification of serine sites in the PARP1 automodifi-

cation domain, histone tails and other known PARP

substrates, both in vivo and in vitro [22,43,47]. Inde-

pendent studies have confirmed serine as the most fre-

quently detected ADP-ribose acceptor in mammalian

cells, especially under genotoxic conditions [2,23,48–
51]. The identified serine sites are enriched for Lys-Ser

and, to a lesser extent, Arg-Ser motifs [22,47,50].

While it is possible that for technical reasons pertain-

ing to sample preparation or stability during mass

spectrometry measurements some forms of ADP-ribo-

sylation cannot be detected or are underrepresented,

serine does appear to be the major acceptor of ADP-

ribosylation, at least upon DNA damage, as confirmed

with an immunoblotting-based study [52]. Despite its

recent discovery, serine ADP-ribosylation is already

best understood mechanistically compared with other

forms of ADP-ribosylation. As explained below in

Fig. 2. Selected canonical and novel substrate specificities of mammalian poly(ADP-ribose) polymerase (PARP) family members and related

bacterial enzymes. Substrate classes and corresponding enzymes are indicated. The atoms to which the ADP-ribosyl moiety is attached are

highlighted in red. The details and supporting literature are provided in the main text.
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more detail, it can be catalysed by PARP1 and PARP2

in the presence of a novel specificity-determining fac-

tor, HPF1 [22,53,54], and is reversed by the ADP-ribo-

sylglycohydrolase ARH3 in a selective manner [55,56].

Further studies will have to address unresolved points,

such as the question of the features of individual

endogenous serine-linked modifications (mono vs poly,

length and branching in the case of chains), and

whether they are specifically recognised by particular

reader domains.

The possible novel PARP acceptors do not stop at

serine. Other amino acid residues that have been iden-

tified to be ADP-ribosylated in recent studies include –
in addition to glutamate, aspartate and lysine – also

arginine, cysteine, histidine, threonine and tyrosine

residues [2,23,51,57,58]. It is not known to which

ADP-ribosylation writers these sites can be attributed,

and some of them might be, in part or completely,

accounted for by non-PARP ARTs; this applies in

particular to arginine, which is known to be modified

by human cholera toxin-like ectoenzymes [9]. Gener-

ally, however, most detected sites – especially in cyto-

plasmic and nuclear proteins – are likely to be the

products of various PARP family members.

Recently, complexes of PARP1 or PARP2 with

HPF1 have been suggested to catalyse ADP-ribosyla-

tion at tyrosine residues in addition to serines [51,58],

indicating that they could account for at least some of

the detected tyrosine sites. Of particular interest is the

family-wide analysis in which the automodification of

GFP-PARP fusions overexpressed in, and immunopre-

cipitated from, human cells was used as a readout for

PARP activity [57]. This study confirmed that PARP1,

PARP2 and tankyrases (PARP5a/b) catalyse PARyla-

tion, while also demonstrating MARylation activity

for PARP3, PARP4, PARP6, PARP7, PARP8,

PARP10, PARP11, PARP12, PARP14, PARP15 and

PARP16. Very little to no activity was observed for

PARP9 and PARP13. These results are generally in

line with previous reports available for some PARPs

[59], while extending them to the whole family.

The mapping of automodification sites in seven

PARPs (PARP3, PARP6, PARP8, PARP10, PARP11,

PARP12 and PARP16) after incubation with NAD+

in vitro yielded predominantly glutamate and aspartate

residues as ADP-ribose acceptors, but cysteine and

lysine sites have also been reported [57]. For PARP8

in particular, identified sites were exclusively at cys-

teine residues, all of which were located in a region

reminiscent of the PARP1 automodification domain.

This suggests that PARP8 might be a specific protein

cysteine ART, a conclusion that is corroborated by

recent in vivo identification of exclusively cysteine sites

on PARP8 [23], most of them overlapping with the

in vitro automodification sites. The same in vivo study

showed exclusively tyrosine sites on PARP16 and tyro-

sine and histidine sites on PARP14. However, since it

is not clear whether these originate from automodifica-

tion or are synthesised by some other ARTs present in

the cell, it is too early to draw conclusions about the

specificity of these enzymes. A specific cysteine auto-

modification site has been identified on PARP7 in vitro

[60]. Generally speaking, however, glutamate/aspartate

specificity might be the most common for PARPs, with

best-supported examples including – in addition to

PARP1 and PARP2 – also PARP3 [57,61] and tan-

kyrases 1 and 2 (PARP5a and PARP5b) [62,63].

Finally, the absence of catalytic activity in PARP9 has

since been revisited in a study that demonstrated

ADP-ribosylation of ubiquitin at its C-terminal car-

boxyl group by the DTX3L-PARP9 complex [64].

Taken together, these studies strongly suggest that

some PARPs might have ‘noncanonical’ amino acid

specificities. Nevertheless, we are still far from cer-

tainty and – should any of these various specificities

be confirmed – far from mechanistic understanding

how they are achieved. A foretaste of what might lie

ahead for different PARP family members is provided

by the recent structural and mechanistic characterisa-

tion of HPF1-PARP1 and HPF1-PARP2 complexes.

HPF1-dependent regulation of the
specificity of PARP1 and PARP2

In parallel to the identification of serine ADP-ribosyla-

tion by mass spectrometry, cell biology and biochemi-

cal analysis attributed this modification to PARP1 and

PARP2 in complex with a novel accessory factor,

HPF1 [22,52,53]. The recent crystal structure of the

HPF1-PARP2 complex illustrates how HPF1 com-

pletes the PARP active site in a way that could explain

the ability of PARP1/2 to modify serine residues and

their preference for Lys/Arg-Ser motifs [54] (Fig. 3).

The key elements provided by HPF1 include an addi-

tional catalytic residue, Glu284, that appears to be the

determinant of serine specificity (see below for discus-

sion of why it might be the case), as well as an adja-

cent negatively charged surface that likely mediates

recognition of the Lys/Arg-Ser motifs. Additional

insights into this process might be obtained by solving

a structure of the HPF1-PARP1 or HPF1-PARP2

complex bound to a substrate-derived peptide. Of

note, no such peptide-bound structure of any PARP

family member is currently available.

The discovery of HPF1-dependent serine ADP-ribo-

sylation, while dramatically changing our view of
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PARP1 and PARP2, does not necessarily contradict

previous findings. Glutamate and aspartate residues are

still likely to be the preferred target of PARP1 and

PARP2 in the absence of HPF1 [52]. In effect, HPF1

causes a specificity switch within PARPs [45,54,65],

something that is unprecedented in the field of post-

translationally modifying enzymes. In PARP1, serine

sites detected both in vivo and in vitro are located in the

automodification domain, close to known glutamate

sites, but – at least in in vitro assays on this isolated

domain as a substrate – the serine residues are much

more efficiently modified [22]. HPF1-dependent serine

modification appears mutually exclusive with PAR

chain formation due to structural incompatibility, but

serine-linked mono-ADP-ribosylation can in principle

be extended to form a chain [54]. If the initial attach-

ment is rate-limiting and the reaction at serines more

efficient than at glutamates, then serine ADP-ribosyla-

tion could actually promote PARylation. The details of

the coordination between serine and glutamate modifi-

cation on the one hand, and mono- and poly(ADP-ribo-

syl)ation on the other, are still unclear, but from what

we know so far the relative abundance of these different

forms of ADP-ribosylation would likely depend on the

ratio of active free and HPF1-bound PARP particles in

a given location and at a given time. In this regard, it is

worth noting that while HPF1 is much less abundant

than PARP1 in model human cells [53], its affinity for

PARP1 and PARP2 increases when these are bound to

DNA and become activated [54].

Terminal DNA and RNA phosphates as
novel PARP targets

Even more surprising are recent studies that demon-

strate the ability of certain PARPs to efficiently ADP-

ribosylate DNA or RNA oligonucleotides in vitro.

Specifically, the modification is attached to the 30 or 50

phosphate of a terminal deoxy- or ribonucleotide.

Accordingly, ADP-ribosylation may turn out to be a

post-replicative DNA modification and a post-tran-

scriptional RNA modification in addition to being a

protein PTM. PARP1, PARP2 and PARP3 have been

shown to catalyse DNA ADP-ribosylation [66–70],
while PARP10, PARP11 and PARP15 modify RNA,

producing what can be described as a noncanonical

RNA cap [71]. RNA is also efficiently ADP-ribosy-

lated in vitro by TRPT1/Tpt1 [71,72], a highly diverged

PARP-like protein that is sometimes referred to as

the 18th member of the PARP/ARTD superfamily

[8]. Although studies that demonstrate these activities

were prevalently conducted in vitro, both the concen-

tration of enzymes and of NAD+, which are compati-

ble with physiological values, as well as the features

of nucleic acid substrates used in biochemical assays,

strongly suggest that the same reactions may occur in

cells [66–70]. Experiments with cell-free extracts and

preliminary in vivo observations also point in that

direction [68–70]. Finally, ADP-ribosylation of both

DNA and RNA can be reversed in vitro by multiple

ADP-ribosylglycohydrolases, including canonical (i.e.

macrodomain-containing) and noncanonical erasers

[11,66–70,73].
Of note, for the DNA damage-dependent PARPs

PARP1, PARP2 and PARP3, DNA is not only a

potential substrate, but also an established allosteric

activator. Binding of single-strand DNA break (SSB)

or double-strand DNA break (DSB) to the N-terminal

DNA-interacting domains of these enzymes relieves

their autoinhibited state, effectively stimulating the

ADP-ribosylation reaction [74–78]. When DNA is also

an acceptor of ADP-ribosylation, this mechanism

might serve as a selectivity filter, whereby optimal

DNA substrates would need to have the right spacing

between two DNA breaks to simultaneously activate

the enzyme at its N terminus and serve as its substrate

at the catalytic C terminus. In vitro analyses of

PARP1, PARP2 and PARP3 lend some support to

this hypothesis [68–70]. From a functional perspective,

DNA duplexes shown to be modified in vitro are com-

patible with potential in vivo substrates generated by

reactive oxygen species, during DNA replication, or by

different DNA repair pathways [66-70]. Moreover, ini-

tial studies suggest that DNA ADP-ribosylation by

PARP3 may facilitate DNA break ligation [79]. It is

also conceivable that DNA ADP-ribosylation, rather

than serving a physiological role, is a detrimental side

product of PARP activity, similar to DNA adenylation

that occurs during DNA ligation [67,80]. If this

Fig. 3. Factors that regulate PARP specificity. Left: HPF1

completes the PARP1 (or PARP2) active site, providing both

catalytic and substrate-binding elements needed for efficient ADP-

ribosylation of serine residues in lysine-serine motifs in proteins.

Right: DTX3L allows PARP9 to ADP-ribosylate ubiquitin, possibly

by recruiting an E2-Ub conjugate to the PARP active site.
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analogy held true, ADP-ribosylglycohydrolases that

are capable of removing DNA ADP-ribosyl adducts

would serve a similar role to that of DNA repair fac-

tor aprataxin in processing abortive DNA adenylates

[81], that is one of keeping erroneous DNA modifica-

tion under control. In such a scenario, any conditions

or mutations that aggravate DNA ADP-ribosylation

or prevent efficient ’proof-reading’ by eraser enzymes

could lead to increased endogenous DNA damage and

contribute to disease.

The ADP-ribosylation of nucleic acids by PARPs

opens new questions in the field, such as concerning

PARP preference for protein vs nucleic acid sub-

strates. This is particularly relevant for PARP1,

PARP2 and PARP3, which would encounter DNA

breaks as well as proteins while performing their func-

tion as DNA damage sensors. In vitro experiments

show that these PARPs perform DNA modification

more efficiently than simultaneous automodification

[66,68–70]. However, it would be interesting to assess

the results of competition between DNA and protein

substrates, for instance histones, for the same enzy-

matic reaction.

Whereas the potential roles of DNA ADP-ribosyla-

tion are most likely connected with DNA replication

or repair, RNA ADP-ribosylation could be part of

antiviral immunity. Notably, the hydrolytic activity of

certain macrodomain-containing proteins against

ADP-ribosylated RNAs is conserved in the macrodo-

main-containing nsP3 protein of many viruses includ-

ing – but not limited to – the causal agent of severe

acute respiratory syndrome (SARS) and coronavirus

disease 2019 (COVID-19) [11,67,71,82,83]. This activity

could allow viruses to counteract RNA ADP-ribosyla-

tion-dependent host defensive mechanisms [71].

Lessons from bacterial ARTs – DNA
bases as ADP-ribosylation targets

There has long been productive cross-fertilisation

between research into human PARPs and research into

related bacterial ADP-ribosylating toxins, for example

with respect to the catalytic mechanism. This extends

to the question of ADP-ribosylation substrate candi-

dates. Indeed, recent advances suggest that both

PARPs and bacterial toxins can modify a range of dif-

ferent protein amino acid residues. On the toxin side,

known targets currently include arginine, asparagine,

cysteine, diphthamide (modified histidine), glutamine

and threonine [84,85], a list that is largely overlapping

with that represented in the human ADP-ribosylome

(with a notable exception of serine). In this context, it

is interesting to note recent reports of toxins that

ADP-ribosylate a novel substrate type: DNA bases. Of

particular interest is DarT, an enzyme from the ARTD

class, which also includes PARPs [86]. Its substrate is

the thymidine base in single-stranded DNA, and the

modification is sequence-specific. DarT – which is

found in numerous bacteria including Mycobacterium

tuberculosis and pathogenic Escherichia coli – is part

of a toxin–antitoxin system with the essential DNA

ADP-glycosylhydrolase DarG. DarTG represents the

first well-characterised system for reversible ADP-ribo-

sylation of DNA bases. While the physiological func-

tion of these two proteins might be related to

controlling dormancy or the antiphage response, the

essentiality of DarG makes its inhibition a potential

novel antimicrobial strategy [87]. Bases are also modi-

fied by another ART group that belongs to the ARTC

class. These are pierisins, found in some butterflies,

shellfish and bacteria [88,89]. Pierisins irreversibly

modify double-stranded DNA substrates on the N2

position of the guanine base [88].

These examples, although concerning distant ‘cou-

sins’ of PARPs, suggest that we should keep an open

mind with respect to possible PARP substrates, which

might also include nucleic acid bases, or even other

molecules such as lipids or small-molecule metabolites.

Towards a molecular basis for PARP
specificities

PARPs and other related ARTs all share the same

core structural elements that surround the NAD+-

binding site [90]. Evolutionary adaptation to various

substrates is facilitated by the fact that the acceptor-

binding site is lined by loops – including the so-called

‘acceptor’ and ‘donor’ loops – that can easily change

without the core structure becoming destabilised. At

the same time, however, certain features of these

enzymes remain constant, including the unusual

strained NAD+ conformation [78,91] and the presence

of negatively charged residues in the active site, both

of which are thought to contribute to catalysis [1].

Comparing structures and sequences of ARTs that dis-

play various substrate specificities allows drawing some

tentative but potentially useful generalisations, which

we would like to present below. We focus on catalytic

residues alone, not the substrate-binding loops that are

much more variable in a way that makes structure–
function associations less reliable.

Many ARTs including PARP1 and PARP2 contain

a conserved active-site glutamate residue that has been

implicated in catalysis [90]. The ADP-ribosylation

reaction is thought to proceed via the oxocarbenium

ion that develops upon dissociation of the ribose–
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nicotinamide bond of NAD+, and this transition state

could be stabilised by the negatively charged glutamate

(either directly or by polarising the ribose ring through

interaction with 2’-OH); moreover, in the case of a

protonated acceptor residue, the glutamate could acti-

vate it through general-base catalysis [1,92–95]. Of

note, a reliance on a negatively charged glutamate

seems to be also a conserved feature of another group

of NAD+-utilising enzymes, ADP-ribosyl cyclases [96].

The functions of the active-site glutamate residue in

PARPs are illuminated by a seminal mutational analy-

sis, which showed that, in the case of PARP1, this resi-

due (Glu988) is dispensable for initial ADP-

ribosylation of glutamate/aspartate residues, but is

required for PAR chain elongation [94]. These obser-

vations can be explained by recourse to the concept of

‘substrate-assisted catalysis’, whereby the glutamates

or aspartates that are being modified would contribute

– through their negative charge – to NAD+ activation,

in effect replacing the active-site glutamate [59]. Fur-

thermore, such a deprotonated acceptor would not

itself require activation by deprotonation. The situa-

tion is different, however, during chain elongation,

when the target of the modification is a ribose hydro-

xyl – a moiety that is not negatively charged and itself

requires deprotonation, necessitating the catalytic glu-

tamate [97]. Consistently, the comparison of sequences

and specificities of various PARP family members,

most of which lack the catalytic glutamate, shows that

this absence predicts the lack of PARylation activity

but is consistent with MARylation at glutamates/as-

partates [57] or the C-terminal carboxyl [64]. More-

over, the catalytic glutamate appears dispensable for

the ADP-ribosylation of terminal RNA phosphates

[71], which could be explained by the negative charge

of the phosphate moiety and its relative similarity to

the carboxyl group. This, incidentally, raises the

intriguing possibility that phosphorylated proteins

could be ADP-ribosylated at their phospho-residues by

some PARPs (even those lacking the catalytic gluta-

mate), consistent with early reports suggesting ADP-ri-

bosylation of histone proteins at phosphoserine

residues in vivo [98,99].

In addition to PARylation, the catalytic glutamate

appears to be required in the case of MARylation at

targets other than glutamate, aspartate or phosphate –
as in bacterial toxins that modify a variety of amino

acids [84,85] and DNA bases [86,88]. One might con-

clude that the presence of the catalytic glutamate is

predictive of a function that goes beyond modification

of acidic residues: either PARylation or MARylation

at targets other than glutamate, aspartate or phos-

phate.

A further insight into this topic is provided by the

serine-specific HPF1-PARP1 and HPF1-PARP2 com-

plexes, in which HPF1 provides an additional catalytic

residue, Glu284 [54,65] (Fig. 3). Interestingly, serine

mono-ADP-ribosylation is still catalysed, albeit less

efficiently, by the Glu988Gln mutant of PARP1 in the

presence of wild-type HPF1 [55], but it cannot be pro-

duced by the wild-type PARP1 when it is comple-

mented by HPF1 harbouring the Glu284Ala mutation.

This suggests that – unlike a ribose hydroxyl during

chain elongation – a serine residue cannot be effi-

ciently activated by Glu988 and this function seems to

be taken over by Glu284 of HPF1. Both glutamates,

however, are required for full catalytic efficiency, pos-

sibly because Glu988 still contributes to NAD+ activa-

tion. Of note, a similar active site with two conserved

catalytic glutamates occurs in arginine-specific cholera

toxin and related enzymes [1]. Strikingly, Glu284 of

HPF1 and Glu988 of PARP1 of the human serine

ADP-ribosylation complex occupy similar positions in

space to those of the cholera toxin glutamate dyad

[54].

A seemingly similar case to HPF1-PARP1/2 is pro-

vided by the DTX3L-PARP9 complex in which both

components are required for specific ubiquitin ADP-ri-

bosylation at the C-terminal carboxyl group [64]

(Fig. 3). Of note, PARP9 lacks the catalytic glutamate

and on its own does not even automodify [57]. While

it is possible that DTX3L complements PARP9 active

site in a manner not dissimilar to the HPF1-PARP1/2

scenario, in the light of the above considerations we

would expect that the modification of the C-terminal

carboxyl group, like that of glutamate or aspartate

residues, does not require dedicated catalytic residues

and instead proceeds in a substrate-assisted manner. In

this case, DTX3L could serve as a specificity-determin-

ing factor solely by binding ubiquitin and positioning

it for the reaction. It must be stressed, however, that

the authors observed ubiquitin ADP-ribosylation only

when DTX3L (which has a ubiquitin E3 ligase activ-

ity) is accompanied by E1 and E2 ubiquitination path-

way enzymes [64]; therefore, it is possible that the

actual substrate that reacts with NAD+ is a ubiquitin

thioester and the reaction has mechanistic features of

both ADP-ribosylation and ubiquitin ligation. A

future structural and biochemical analysis will show

whether these speculations are correct.

The two examples mentioned last represent new

paradigms and thus prompt new questions. Are there

any further factors that regulate PARP specificity by

active site complementation and/or substrate recruit-

ment? Or could, in some cases, other regions within a

PARP protein – or even in a substrate – provide the
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catalytic or substrate-binding elements that are missing

from their catalytic domains?

Conclusions and outlook

PARP family members and related ARTs are found

across all domains of life, where they play important

roles in cellular physiology and pathology. In human

cells, PARP1 is one of the most abundant nuclear pro-

teins and a clinical cancer drug target. The functions of

PARPs are related to their substrate specificities; these,

however, have remained unclear. Recent years have

brought new insights in this area, including the identifi-

cation of serine as the major protein ADP-ribosylation

acceptor in human cells and of HPF1 as the specificity-

determining factor that allows PARP1 and PARP2 to

catalyse this modification [22,52–54]. With thousands

of sites in the human cell, serine ADP-ribosylation

appears to be a major contributor to the proteome

complexity. Further promising candidates include cys-

teine [23,57,60] and tyrosine [23,51,58], which might be

the targets of specific PARP family members; several

other amino acids are also possible as acceptors. More-

over, it has emerged that PARPs and related ARTs can

modify not only proteins, but also nucleic acids. These

breakthroughs, however, rather than answering all pos-

sible questions, suggest that we still know relatively lit-

tle about PARP substrate specificities. We should be

prepared for unexpected answers as we continue with

detailed analyses of individual PARP family members

and their substrates.

Future efforts should aim at identifying substrate

specificities and explaining them in structural and

mechanistic terms. In some cases, ADP-ribosylation

synthesis might require unknown ‘specificity-determin-

ing factors’ that are waiting to be identified and char-

acterised. The identification of new ADP-ribosylation

targets will necessitate the search for erasers and read-

ers that might be specific for a given modification.

Lastly, understanding the functional importance of

particular modification sites will require studying indi-

vidual substrate proteins in their modified forms. In

the end, a better understanding of PARP substrate

specificities will contribute to our knowledge of funda-

mental biological processes and of pathological condi-

tions induced by deficiency or malfunction of one or

more of these enzymes [4,100].
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