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We generalize the topological entanglement entropy to a family of topological Rényi entropies

parametrized by a parameter �, in an attempt to find new invariants for distinguishing topologically

ordered phases. We show that, surprisingly, all topological Rényi entropies are the same, independent of �

for all nonchiral topological phases. This independence shows that topologically ordered ground-state

wave functions have reduced density matrices with a certain simple structure, and no additional universal

information can be extracted from the entanglement spectrum.
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Introduction.—Topological order (TO) [1] is a new kind
of order that corresponds to patterns of long range quantum
entanglement which cannot be described by symmetry
breaking. However, the long range quantum entanglement
in TO can leave its mark on the reduced density matrix, so
one may be able to study long range entanglement and TO
through the structure of these reduced correlations. The
reduced density matrix contains a lot of local nonuniversal
information. The key is to filter out all the nonuniversal
information to capture the universal topological informa-
tion, which is not affected by perturbations of the
Hamiltonian, or small deformations of the entanglement
partition geometry. One way is to calculate topological
entanglement entropy (EE) from reduced density matrices
[2–6]. Such a universal quantity provides a way to deter-
mine whether or not a ground state possesses TO. If we
only consider systems with a finite excitation gap, the low-
energy physics can be described in terms of an underlying
topological quantum field theory (TQFT). Then the topo-
logical EE is proportional to the logarithm of the total
quantum dimension Stop / log2D. Unfortunately the quan-

tum dimension does not provide a complete classification
of TO. For example, two topologically ordered states, the
Z2 gauge theory and Ising anyons [7–9], are different
phases of matter—with Abelian and non-Abelian anyonic
excitations, respectively. However, they have the same
Stop ¼ log22. To obtain a finer classification of TO,

Ref. [10] proposes using the entire entanglement spectrum
(possibly with additional conserved quantum numbers.)

These developments motivated us to consider an ap-
proach which might glean more universal information
from the entanglement spectrum. We introduce a general-
ization of the topological EE by deforming it into a Rényi
entropy parametrized by a real number � which can char-
acterize different aspects of the entanglement spectrum
akin to moments of a probability distribution. We calculate
this entropic quantity for the exactly solvable string-net
[11] and quantum double [12,13] models, which describe

all the nonchiral topological phases. Recent works have
mapped the quantum double models onto a subset of
string-net models [14,15], so we can compare entropies
calculated for two different wave functions with the same
TO. Our central result is that the only universal information
captured by the Rényi entropy is the quantum dimension
D, i.e., the topological Rényi entropy does not depend on
the extra parameter �. As a consequence, no more univer-
sal information about the TO phases can be extracted from
the entanglement spectrum without additional conserved
quantum numbers. Such a result suggests that the reduced
density matrix �A for a subregion A formally has the
following structure ��i ¼ �A � �top, where ��i is the

tensor product of the local density matrices of the degrees
of freedom living on the boundary of A. The ‘‘topological’’
density matrix �top has a simple form where all its nonzero

eigenvalues are equal, which leads to the � independence
of the topological Rényi entropy, which we demonstrate
explicitly for the quantum double models.
Rényi entropy.—The quantum Rényi entropy is defined

with respect to a parameter �> 0 as

S�ð�Þ ¼ 1

1� �
log2½Trð��Þ�; (1)

where the base of the logarithm is chosen to fix the units
with which one measures the entropy. Taking the limit as
� ! 1, one recovers the definition of the von Neumann
entropy lim�!1S�ð�Þ ¼ S1ð�Þ ¼ �Trð�log2�Þ. The
Rényi entropy is additive on independent states in the sense
that the entropy of a product state is the sum of the
individual entropies, S�ð� � �Þ ¼ S�ð�Þ þ S�ð�Þ. The
Rényi entropy is essentially unique if we look for a func-
tion that is symmetric, continuous, has the additive prop-
erty, depends only on the spectrum of �, and obeys a
generalized mean value property [16]. This essential
uniqueness given certain natural assumptions and desired
properties, together with the fact that the Rényi entropies
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cover a very broad class of functions motivates their con-
sideration as a classification tool for TO.

String-net states.—We can study all parity-invariant to-
pological phases in ð2þ 1ÞD using string-net models [11].
These models exhibit TO and represent an exactly solvable
fixed point in a topological phase. The degrees of freedom
are a set of strings living on the links of a honeycomb
lattice. To specify a string-net model requires several in-
gredients: a set of N string types i ¼ 1; . . . ; N, a branching
rule tensor Ni

jk, and two real tensors di and Fk‘m
hij which

satisfy certain algebraic relations [11] to ensure consis-
tency. Every string type i has an oppositely oriented partner
�i. The ground-state wave functions of the string-net models
obey a concise set of diagrammatic rules which are char-
acterized by the string-net data listed above. In Ref. [4] the
(von Neumann, � ! 1) topological EE for such string-net
models was defined and calculated to be Stop ¼ log2D

2

where the quantum dimension D ¼ P
N
i¼1 d

2
i . Thus, from a

knowledge of the ground state one can extract universal
information about the low-energy TQFT and underlying
TO in the form of the total quantum dimension.

Rényi entropy for string nets.—To define an EE we begin
by partitioning our system into two pieces. In this Letter we
will focus on a simply connected region A and trace out its
exterior. The region A is topologically a disk and the re-
duced density operator of the string-net model on the disk
can be deformed into a sum over string configurations on a
treelike diagram at the boundary of the disk [4]. We assume
that our boundary string-net tree diagram has n boundary
nodes with n links of the boundary tree labeled qi con-
nected by n� 3 internal links. To begin the Rényi entropy
calculation we start from Eq. (9) in Ref. [4], which gives
the reduced density operator in region A, which we label by
�A. We first raise �A to the power � and trace, summing
over the states by using the branching rules Ni

jk to get

Tr ð��
AÞ ¼

D�

D�n

X

fqg
Nfqg

Y

m

d�qm; (2)

where the expression for Nfqg is given succinctly in terms

of the matrices N̂q ¼ P
a;bN

b
aqjaihbj, whose basis states

form an orthonormal basis labeled by the string types:

Nfqg ¼ hq1jN̂q2N̂q3 � � � N̂qn�1
jqni. By relabelling the

boundary strings in terms of the real-valued vector jd�i ¼
P

qd
�
q jqi, we can return to Eq. (2) and write

Tr ð��
AÞ ¼

D�

D�n

X

fqg
hd�jN̂q1d

�
q1 � � � N̂qn�2

d�qn�2
jd�i; (3)

where the sum on fqg runs only over n� 2 different qi.
Since we are summing over all possible combinations, we
can collect terms to get the even simpler form

Tr ð��
AÞ ¼

D�

D�n hd�j
�X

q

N̂qd
�
q

�
n�2jd�i: (4)

We can make use of some properties of the N̂q matrices to

simplify this expression. The N̂q satisfy N̂
y
q ¼ N̂ �q (where �q

annihilates q) and if braiding is defined, we have Nc
ab ¼

Nc
ba, which implies that all the N̂q commute with each

other. This means that the N̂q are normal and can be

unitarily diagonalized simultaneously. Let S be the matrix

such that SyN̂qS ¼ �q is diagonal. Then we also have
P

qN̂qd
�
q ¼ SðPq�qd

�
q ÞSy.

Under the additional assumption that the braiding is
sufficiently nontrivial (as discussed in the Appendix of
Ref. [9]), we have so-called modularity, and the S de-
scribed above is indeed the unitary modular S matrix of
the theory. We choose the S matrix to be in the canonical
form where we can read off the quantum dimensions from
the first row or column. As we will see, this puts the largest
eigenvalue of

P
q�q in the first matrix element.

Since the N̂q are normal and mutually commuting, they

share in common a complete set of orthogonal eigenvec-

tors. Each N̂q has an eigenvalue dq with the eigenvector

jdi. Moreover, due to the Perron-Frobenius theorem, every

other eigenvalue � for each N̂q satisfies j�j � dq. Thus we

know exactly what the largest eigenvalue of
P

qN̂q is,

namely
P

qdq. For symmetric matrices (and
P

qN̂q is sym-

metric), the Perron-Frobenius theorem gives us additional
guarantees. In particular, the largest eigenvalue �max is
nondegenerate. Furthermore, the least eigenvalue satisfies
�min ¼ ��max if and only if the symmetric matrix is the
adjacency matrix of a bipartite graph. But this cannot be
the case, since the vacuum always fuses with itself to form
the vacuum, giving at least one nonzero element on the
main diagonal, and bipartite graphs have no self-loops.

Therefore all other eigenvalues � of
P

qN̂q satisfy j�j<
P

qdq, and these � contribute exponentially less once we

raise to the power n� 2. Then, ignoring a multiplicative
factor of [1þOð expð�nÞÞ], we have

Tr ð��
AÞ ¼

D�jhd�jSj1ij2
D�n hd�jdin�2: (5)

To get a more explicit expression, we need to calculate
jhd�jSj1ij2. Let us consider how S acts on j1i. S is a unitary
matrix, and the first row is proportional to hdj. So Sj1i ¼
1ffiffiffi
D

p jdi. Hence jhd�jSj1ij2 ¼ hd�jdi2=D, and substituting

this into Eq. (5) and using the expression for the Rényi
entropy in Eq. (1), we obtain

S�ð�AÞ ¼ n

1� �
log2

�hd�jdi
D�

�

� log2D; (6)

which is correct up to a term of order Oð expð�nÞÞ. The
first term represents the area law. It is not universal and
cannot be used to describe the phases. The second term
represents the universal part: the topological entanglement
Rényi entropy. We see that it does not contain any �
dependence, just the total quantum dimension D.
Therefore it does not provide any additional universal
information. The Rényi entropies completely determine
the spectrum, hence no additional information (beyond
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D) can be gathered from the entanglement spectrum. This
is true when the partition geometry is simply connected;
Ref. [17] has shown that more can be extracted in more
complicated partitions.

We wish to find deeper insight into why there is nothing
else in the eigenvalues of the reduced density matrix that
can say more about topological order. To this end, we will
study an important class of TO states, those emerging from
discrete gauge theories. In the following, we prove that the
reduced density matrix of such states is proportional to a
projector, and thus all Rényi entropies contain no � de-
pendence and that the whole entanglement spectrum is
trivial and flat.

Quantum double models.—The quantum double models
are exactly solvable lattice models with discrete gauge
symmetries [12,13]. These models exhibit phases with
TO and anyonic excitations, and are in the same universal-
ity class as a subset of the string-net models [14]. To define
them, begin with a directed graph with orientations � and
with qudits on the edges. Consider a finite group G of
dimension jGj ¼ d, with identity e. The local Hilbert space
on the edge i is therefore H i ’ C½G� and an orthonormal
basis for the qudits is given by fjgi:g 2 Gg. The total
Hilbert space for a system with n qudits is given by H ¼
�n
i¼1H i. We focus on the model on a square lattice, with

n=2 vertices and plaquettes.
Following the construction of [13], the relevant opera-

tors are Lg
�, Th� defined by Lg

þjzi ¼ jgzi, Thþjzi ¼ �h;zjzi,
Lg�jzi ¼ jzg�1i, Th�jzi ¼ �h�1;zjzi. The gauge trans-

formations are defined as follows: AgðsÞ ¼
Q

j2sL
gðj; sÞ,

BeðpÞ ¼ P
h1h2h3h4¼e

Q
4
m¼1 T

hmðjm; pÞ. The star and pla-

quette operators are defined as the projector operators
AðsÞ ¼ jGj�1

P
g2GAgðsÞ, BðpÞ ¼ BeðpÞ. The Hamilton-

ian of the quantum double model is

HQD ¼ X

s

½1� AðsÞ� þX

p

½1� BðpÞ�: (7)

Since ½AðsÞ; BðpÞ� ¼ ½AðsÞ; Aðs0Þ� ¼ ½BðpÞ; Bðp0Þ� for all
s, s0, p, p0, the ground-state manifold is given by the set
L ¼ fj�i 2 H jAðsÞj�i ¼ BðpÞj�i ¼ j�i8 s; pg with
ground-state energy E0 ¼ 0.

Consider the vacuum state jei ¼ jei�n. For each pla-
quette p, it easily follows that BðpÞjei ¼ jei. We can build
a (unnormalized) ground state j�0i 2 L by projecting as
follows: j�0i ¼

Q
sAðsÞjei.

Now, consider the set G of all the possible AgðsÞ. What

this operator does is to make a small loop around s with
string of type g. We have G ¼ fAgðsÞ; g 2 G; s ¼
1; . . . ; n=2g. Now consider the set G ¼ hGi, that is the
set of all the possible products of elements in G. The set
G is a group. With this definition, we have

j�0i ¼ jGj�1
Y

s

X

g2G

AgðsÞjei ¼ jGj�n=2
X

h2G

hjei: (8)

It is important to see that the set of fjhig is orthonormal.
Moreover, given a bipartition of the Hilbert space H ¼

H A �H B, the set fjhAi � jhBig is biorthonormal. Let us
compute the density matrix �0 ¼ j�0ih�0j. Since each
vector jhi factorizes as jhAi � jhBi, we have

�0 ¼ jGj�n
X

h;h02G

jhAihh0Aj � jhBihh0Bj; (9)

Consider now the subgroup of G acting exclusively on
subsystem A, GA :¼ fg 2 Gjg ¼ gA � 1Bg, and analo-
gously consider GB. It is easy to show that GA, GB,
and GA � GB are normal in G. Therefore we can define
the quotient groups GAB :¼ G=GA �GB, G=GB, G=GA.

We see that the only elements of G such that hej~hBjei � 0

are those in GA, and therefore we find �A ¼
jGj�n

P
h2G;~h2GA

jhAihh�1
A

~hAj, where we have relabeled

the group elements as h0 ¼ h�1 ~h. Notice that jhAih~hAj ¼
gjhAih~hAj for every g 2 GB, and jGj ¼ jGjn. Therefore,
reordering gives

�A ¼ jGj�1jGBj
X

h2G=GB;~h2GA

jh�1
A ihhA ~hAj: (10)

Squaring this expression for �A and using the group prop-

erties shows that �A is proportional to a projector, �2
A ¼

jGAjjGBj
jGj �A, and therefore the Rényi entropies contain no

additional information beyond the quantum dimension,
D ¼ jGj. The entanglement spectrum is flat which is con-
nected [10] with the trivial nature of the edge states for the
QD models.
The origin of the topological term.—At this point, we

would like to understand why �A is just a projector. And
why, in the more general string-net setting where the
reduced density matrix is not just a projector, is there still
no topological information other than D? Here we prove
that the reduced density matrix �A is unitarily equivalent to
a matrix that only addresses the degrees of freedom on the
boundary of the partition. Moreover, we show that the area
law has a correction because there is a global constraint on
the boundary. We can enlarge the system by removing this
constraint and express the reduced density matrix as the
tensor product of the local density matrix of each of the
degrees of freedom on the boundary. We focus on the Z2

case for simplicity, but the argument can be generalized to
all the quantum double models. In this case, the ground
state is given by Eq. (8), whereG is the group generated by
the plaquette operators Ap ¼ Q

j2@p�
x
i and j0i is the state

with all spins up in the z basis. By choosing a simply
connected region of plaquettes, we partition the spins
into (A, B), where A includes the spins in the interior and
on the boundary. The quotient group GAB consists of the
closed strings that act on both A and B, that are equivalent
under deformations acting entirely within A or B.
Therefore, the equivalence classes in GAB can be repre-
sented by those closed strings that live near the boundary
between A and B, namely, those closed strings that are
generated by the plaquettes that are external to A and share
one edge with the boundary. So every element h 2 GAB
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can be decomposed as h ¼ hA � hB where hA only acts on
spins that live on the boundary (‘‘a’’ spins). The hB part
only acts on those spins which are external to A (‘‘b’’
spins). The rest of the lattice consists of the spins in the
bulk of A and B, namely, all those spins that belong solely
to either A or B: j0i ¼ j0ia � j0ib � j0ibulk so that hj0i ¼
hAj0ia � hBj0ib � Ij0ibulk. Therefore the ground state can
be written as

jc i¼ jGj�1=2
X

gA�gB2GA�GB
h2GAB

hAj0ia�hBj0ib�ðgA�gBÞj0ibulk:

Define QX ¼ jGXj�1=2
P

gX2GX
gX, with X ¼ A; B. We

obtain jc i¼ jGABj�1=2QAQB

P
h2GAB

hAj0ia�hBj0ib�
j0ibulk. The density matrix can be therefore be factored as

� � QAQB ~� � �ðbulkÞQAQB, with

~� � �ðbulkÞ ¼ jGABj�1
X

h;h02GAB

hAj0ih0jah0A � hBj0ih0jbh0B

� j0ih0jbulk:
Notice that the bulk part is separable in the bipartition (A,
B) so that the reduced density matrix can be written as

�A ¼ QA ~�A � �ðbulkÞ
A QA, with �ðbulkÞ

A being a pure state, so
the EE of � is just the entropy of ~�A. Then

~� A ¼ jGABj�1
X

h2GAB

hAj0ih0jahA; (11)

which gives the expected result for the entanglement
S1ð�Þ ¼ log2jGABj [2,18]. We are interested in understand-
ing what are the spin configurations in the sum Eq. (11).
Notice that the support of ~�A consists only of the spins on
the boundary. Now, note that every spin configuration is
not allowed. In fact, we have the following global con-
straint:

Q
h2GAB

h ¼ gA � gB 2 GA �GB. So the product

of all the hA is also in GA and is þ1 on the ground state.
The global constraint is thus

Q
j2@A�

z
j ¼ þ1 so that the

reduced density matrix Eq. (11) consists of the sum of all
spin configurations with parity þ1, namely, all the spin
configurations with an even pair of spins flipped. If the
boundary has length n, then there are 2n�1 such configu-
rations and the entanglement is then S ¼ n� 1. Now we
understand that the topological state is completely deter-
mined by the boundary, and that we have the completely
mixed state within the sector of parityþ1. We can consider
the enlarged system by considering the perfect mixture
with the sector of parity �1. In this case, we have that

�ðareaÞ
A ¼ ~�A � 1 0

0 1

� �

� ~�A � �ðtopÞ
A : (12)

So �ðareaÞ
A is just the completely mixed state of all the

possible spin configurations on the boundary and thus

�ðareaÞ
A ¼ �n

j¼1�j ¼ ~�A � �
ðtopÞ
A : (13)

We have shown that the entanglement in the ground state of
a topologically ordered system is completely contained in

the boundary, namely, in the entropy of the reduced density
matrix ~�A. We have also shown that this state almost obeys
an area law, because there is a global topological con-
straint, namely, that only spin configurations of parity þ1
are allowed. Therefore, we can complete it with a density
matrix that describes a system before we project onto the
system with parity þ1. This term contains the topological
entropy. Once completed, the system obeys a strict area
law and decomposes into the local tensor product of the
single degrees of freedom on the boundary. Such structure
of the reduced density matrix, as described in Eq. (13),
explains why the topological Rényi entropies do not de-
pend on �.
Finally, we remark that our proof applies to nonchiral

topological phases. Therefore it is still an open problem to
what extent the entanglement spectrum can classify chiral
topological phases [10,19].
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