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Abstract: In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates
produced from various food sources. Biopeptides are considered interesting for industrial application
since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and
antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming).
Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must
be overcome before their administration via the oral route. The gastric, pancreatic, and small
intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that
can reach the site of action. Some delivery systems have been studied to avoid these problems
(e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies
conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products,
discusses their potential application in the nutricosmetic industry, and considers potential delivery
systems that could maintain their bioactivity. Our results show that food peptides are environmentally
sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory
agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in
analytical procedures and good manufacturing practice. It is hoped that new analytical procedures
can be developed to simplify large-scale production and that the authorities adopt and regulate use
of appropriate testing standards to guarantee the population’s safety.

Keywords: food antioxidant peptides; food analytical methods; large-scale biopeptide production;
supplements; delivery systems; nutricosmetic; cosmeceutical; circular economy; waste recycling;
anti-aging; skincare market

1. Introduction

The cosmetic industry considers food peptides as innovative bioactive compounds
for cosmetics market growth. According to the Food and Drug Administration (FDA;
responsible for health products’ regulation in the USA), peptides are defined as amino acid
polymers with a specific sequence and less than 40 amino acids in total [1]. According
to their intended action mechanism, cosmetic peptides can be categorized into: signal
peptides (which stimulate matrix protein production, cell growth, and other cell metabolic
functions); carrier peptides (which help transport of active or trace elements inside the
cell); neurotransmitter-inhibiting peptides (which inhibit acetylcholine release that may
lead to expression wrinkles); and enzyme-inhibiting peptides (which decrease the activity
of enzymes related to skin aging) [2]. Peptides have gained worldwide attention for their
sustainability, with no toxic side effects [3]. The global bioactive peptide market was USD
4960.4 million in 2022 with an expected compound annual growth rate (CAGR) of 9.4%
in 2022–2030 [4]. The growing number of biopeptides listed in the “European glossary
of common ingredient names for use in the labeling of cosmetic products” (there were
2698 entries with the word peptide [5] in the 2022 revision compared to 848 entries in the
2019 revision [6]) demonstrates the market interest in these bioactive compounds. As a
result, much research has been performed to optimize biopeptide production from natural

Antioxidants 2023, 12, 788. https://doi.org/10.3390/antiox12040788 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12040788
https://doi.org/10.3390/antiox12040788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-1418-1431
https://orcid.org/0000-0002-7069-3274
https://doi.org/10.3390/antiox12040788
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12040788?type=check_update&version=1


Antioxidants 2023, 12, 788 2 of 28

sources (e.g., food products and protein-rich by-products of the food industries) and to
examine their bioactivity in vitro (cell culture and biochemical assays) and in vivo (animal
and human tests). Traditional medicine and modern scientific research consider bioactive
peptides useful for formulating food supplements and cosmetic products. Bioactivity,
interaction with skin cells by multiple mechanisms, high potency at a low dosage, and size
compatible with penetration into the upper skin layers seem to confirm this hypothesis [7].
However, some questions remain unclear. Large-scale production, dietary interactions, and
human absorption are the most significant problems to solve. This review summarizes
the latest knowledge on purification and identification methods used to obtain natural
peptides and the approaches used to improve their bioavailability, hoping to provide a
basis for their application in the nutricosmetic market as well as a starting point for further
studies.

For this purpose, systematic bibliometric analyses were performed using bibliometric
records published between 1993 and 2023 in Scopus and Web of Science. These two central
citation databases rank journals entries based on productivity, influence, and prestige.

2. Production Methods for Natural Biopeptides

Natural peptides can be obtained by enzymatic hydrolysis, fermentation, and chemical-
physical processes (alkaline or acidic treatments and use of microwaves, ultrasonics, hy-
drostatic pressure, and pulsed electric fields). Electrophoresis, membrane separation, or
chromatography techniques (gel permeation chromatography, ion-exchange chromatogra-
phy, reversed-phase high-performance liquid chromatography, etc.) can be used for their
isolation and spectroscopic technologies (i.e., MS or NMR) as characterization techniques
(Figure 1).
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2.1. Pretreatment
2.1.1. Chemical Processes

A basic or acidic environment and high temperatures hydrolyze the protein struc-
ture [8,9].

Alkaline hydrolysis is a nonspecific protein hydrolysis that cleavages amide bonds.
The disadvantages of this method are the lack of specificity in the cleavage of peptide
chains [10] and the loss of some amino acids (i.e., lysine, cysteine, serine, arginine, isoleucine,
and threonine) [8,10,11].

Acidic hydrolysis can transform asparagine into aspartic acid and glutamine into
glutamic acid and can damage tryptophan, cysteine, and methionine. The high level
of salts generated by the neutralization process can also affect the antioxidant peptides’
bioactivities. Therefore, desalination is necessary before bioassay (Figure 2) [9–11].
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Figure 2. Natural source pretreatments to prepare peptides. Advantages are shown in green. Disad-
vantages are given in red.

2.1.2. Physical Methods

The ultrasonic and microwave techniques are simple applications and cost-effective
technologies used at the industrial level [8,12]. Ultrasonication systems can break molec-
ular bonds and produce cavitational bubbles that collapse. The high temperatures, high
pressure, and shock waves can damage the cell membrane and make the small molecules
available [8,9]. Ultrasound increases the release of antioxidant [13] and ACE-inhibitory
peptides by increasing surface hydrophobicity [14].

The microwave-assisted processing uses electromagnetic radiation (ranging from
300 MHz to 300 GHz) to extract biopeptides from protein resources. The energy is trans-
ferred through molecular interactions in the material by ionic conduction mechanisms
and dipolar rotation. The extraction of peptides is due to the collision of charged ions
through inter- and intra-molecular friction, resulting in thermal energy production that
breaks the membranes and protein cell walls. Microwaving improves enzymatic proteolysis
and hydrolysate properties (e.g., antioxidant properties), decreases hydrolysis time, alters
protein conformation, and enhances enzyme accessibility [15,16].

Hydrostatic pressure uses isostatic pressures (ranging from 100 and 1000 MPa), with or
without heat treatment. This technology’s advantage is minimal damage to the biopeptides
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due to the low temperature applied [17]. Guan et al. [18] used hydrostatic pressure (200 MPa
for 4 h) to obtain biopeptides from soy protein hydrolysates with higher antioxidant
activities and ACE inhibitory properties.

Pulsed electric field (PEF) technology employs short pulses of electric fields with inten-
sity ranging from 10 and 80 kV/cm and lasting for micro-or milliseconds. PEF improves the
production of biopeptides by denaturation, unfolding, or gelation. Electric field strength,
pulse shape, number of pulses, and treatment time affect the process quality [14]. The
use of physical methods to obtain antioxidant peptides is limited since they can lead to
unpredictable reactions and force-sensitive residues (Figure 2).

2.1.3. Fermentation

Microbial fermentation is an eco-friendly, cost-effective, but time-consuming method
of obtaining biopeptides using bacteria or yeast; their proteases hydrolyze natural proteins
into protein hydrolysates. Fermentation can make unpredictable products [19]. The mi-
crobial strain, type of protein, fermentation time, and temperature conditions can affect
the yield and quality of hydrolysis [10,20]. Generally, fermentation positively impacts
organoleptic and physicochemical final product quality [21] (Figure 2).

2.1.4. Enzymatic Processes

Enzymatic processes use single, double, or multiple proteases sourced from plants
(such as papain), from microorganisms (such as Flavourzyme, Aalcalase, and Protamex),
or from animals (such as pepsin and trypsin) to cleave proteins and release bioactive pep-
tides [22]. The enzyme/substrate ratio, temperature, pH, and hydrolysis time can affect
hydrolysis [8]. For example, pepsin, trypsin/pancreatin, and α-chymotrypsin (gastroin-
testinal digestion enzymes) can be used to produce inhibitory peptides (SSTY-hydrolysate-
derived DPP-IV) [23], and soy flour hydrolysate can be employed to produce antioxidant
peptides [24]. The main advantages are control, definition, and short reaction time [19]
(Figure 2). The enzyme choice must be based on the intended hydrolysate products (i.e.,
trypsin enzyme for hydrolyzing casein). Generally, the peptides’ activities and molecular
weights decrease when the hydrolysis degree is enhanced. However, the product activity
may decline when a certain amount of enzymatic hydrolysis occurs since peptides are
transformed into amino acids or their active groups are destroyed. Therefore, it is necessary
to strictly control the degree of enzymatic hydrolysis to ensure that the peptides formed
have high activity [25,26].

2.2. Purification Technologies

The separation of peptides in protein hydrolysate can be achieved by using ultra-
filtration, chromatography, supercritical fluid extraction, and electrophoresis (Figure 3).

2.2.1. Ultrafiltration

Membrane separation is a technique that saves energy, does not require extra chemical
agents, does not pollute, and can be combined with other techniques [12]. Permeable mem-
branes with different molecular weights are employed to purify peptides. In recent years,
microfiltration, nanofiltration, ultrafiltration, and affinity membrane filtration technologies
have been developed [27].

Microfiltration is a precision filtration technique using membranes with pores be-
tween 0.1 and 1 µm. Organic (e.g., cellulose acetate, polycarbonate, polyamide, and
polypropylene) and inorganic (e.g., metal and ceramic) microfiltration membranes are
available commercially. Microfiltration membranes separate the proteins and peptides
in the brine [28]. Ultrafiltration is a membrane filtration process employed to purify and
concentrate the components of a solution using membranes with pores between 1 nm
and 0.5 µm. Ultrafiltration membranes can separate molecular weight ranges between
10,000–300,000 Da.
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Nanofiltration membranes contain nanoscale pores that can separate molecular weights
between those intercepted in reverse osmosis and ultrafiltration techniques with a diam-
eter of ~1 nm. The separation mechanism depends on pore dimensions, charge, three-
dimensional obstruction, and electrostatic repulsions. Active peptides with similar molec-
ular weights, but different isoelectric points, can be separated using nanofiltration. The
nanofiltration membranes can trap only ions and not electrically neutral molecules [29].
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2.2.2. Chromatography

Chromatographic techniques are powerful tools for separating complex peptide mix-
tures. They are often associated with bioassay to reduce the number of peptides that
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coexist in the active fraction based on their chromatographic characteristics and biolog-
ical potentiality [22,29]. For example, Shih et al. [30] employed cation-exchange liquid
chromatography and an ACE inhibitory assay to purify biopeptides from Cassia obtusi-
folia. The chromatographic techniques most commonly used to separate biopeptides are
high-speed countercurrent chromatography (CC), magnetic solid-phase extraction, and
high-performance liquid chromatography (HPLC).

The high-speed countercurrent chromatography is a carrier-free liquid-liquid parti-
tioning chromatography that needs a large amount of equipment and time. It gives high
recovery rates and does not suffer from interference caused by the carrier; however, it has
poor separation efficiency.

The magnetic solid-phase extraction separates and purifies compounds from a complex
matrix dissolved in a liquid. A magnet adsorbs the analyte, a magnetic separator allows
their recovery, and a solvent elutes the analytes. Yu et al. [31] used magnetic solid-phase
extraction to purify γ-glutamyl peptides from garlic.

The HPLC is a fast separation technique that permits good separations and high
recovery rates based on hydrophobic properties (reverse-phase chromatography, RP),
hydrophilic properties (hydrophilic interacting liquid chromatography, HILIC), size (size
exclusion chromatography, SEC), and charge (ion exchange chromatography, IEX). The
HPLC can be combined with spectroscopic instruments (e.g., mass) to purify and identify
peptides.

(RP)-HPLC separates peptides based on the amino acids’ hydrophobic properties. It
employs a polar mobile phase and a nonpolar stationary phase. The (RP)-HPLC gives
good separation, high resolution, and high recoveries. Hara et al. [32] showed that adding
trifluoroethanol (10%–16%) to the mobile phase significantly increases the separation of
peptides. A disadvantage of (RP)-HPLC is that it cannot be used for hydrophilic pep-
tides [33]. The (RP)-HPLC was applied to separate wheat germ protein hydrolysates [34],
cow milk products [35], turmeric and ginger [36].

Hydrophilic interacting liquid chromatography (HILIC) or normal-phase (NP) chro-
matography employs a hydrophobic organic mobile phase (e.g., silica stationary phases
with siloxanes, silanols, and with (or without) a small number of metals, polysulfoethyl A
(derivatized silica), PolyWAX (weak anion exchanger), Polycat A (weak cation exchanger),
(ZIC)-HILIC (zwitterionic)), and a hydrophilic stationary phase (e.g., 70% acetonitrile,
methanol or isopropanol) to separate biopeptides [37]. The HILIC technique was employed
to purify biopeptides in homogenized milk [38].

Ion-exchange chromatography (IEX) separates biopeptides depending on their charge.
It uses a resin that contains ionic groups (anions or cations) as a fixed phase and a polar
solvent as a mobile phase. The disadvantage of this technique is the high salt concentration
in the final product. A desalting step is necessary to minimize interference during peptide
identification or bioassay [12].

Ion exchange chromatography is simple, resistant to alkalis and acids, and gives a high
resolution. IEX was applied to separate bioactive peptides from Boletus mushrooms [39],
sea cucumber [40], and watermelon [41].

Gel chromatography, also called size exclusion chromatography, is a fast and straight-
forward separation technique that uses a gel with a network of pores as a fixed phase.
Solutes are eluted in order from large to small molecular size. The mobile phase viscosity
must be such as to cross the column [8]. The disadvantages of this technique are low
resolution, a limited peak capacity, and large eluent volumes [12]. Gel chromatography
was applied to separate bioactive peptides from animal muscle proteins [42].

2.2.3. Supercritical Fluid Extraction

Supercritical fluid extraction uses fresh fluid through a sample (pressure and temper-
ature controlled) that is recovered from the extract by depressurization. This technique
allows a faster extraction than traditional methods since the supercritical fluids can pene-
trate a porous solid more easily. Supercritical fluid can be recycled or reused, diminishing
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waste. Supercritical carbon dioxide (CO2) is used to obtain bioactive peptides from various
sources (e.g., Chenopodium quinoa, fruit waste, Ganoderma lucidum) [43–45]. Under low-
temperature conditions, the proteins cannot denature (they cannot make polypeptides and
free amino acids), the amino acids cannot oxidize, and the amino acids and carbohydrates
cannot generate the Maillard browning products [46]. Unfortunately, the apparatus has
a high cost, solvent compression needs recirculation measures to decrease energy costs,
and the modifiers used to alter the polarity of the CO2 require a subsequent separation
process. Supercritical fluid extraction can be coupled with enzymatic hydrolysis to produce
biopeptides in less time and at low cost [47].

2.2.4. Subcritical Water Extraction (Pressurized Hot Water or Hot-Compressed Water)

Subcritical water employs water in a liquid state under high pressure and temperature
between 100 and 374 ◦C. It can be used for polar and nonpolar compounds. Under these
conditions, the dielectric constant reduces, the ionic product constant (Kw) increases,
and the hydrogen bonds deteriorate, making subcritical water similar to methanol and
ethanol (less-polar solvents). The high pressure and high temperature used separately can
denature the proteins [48,49]. Subcritical water conditions (the combined effects of high
pressure and temperature) break down proteins into peptides and free amino acids [50]
with an irreversible first-order reaction. Hydronium and hydroxyl ion reactions confer
bicatalytic characteristics on water (weak acid or base) [50]. High temperature and pressure
disrupt weak interactions (e.g., hydrogen bonds) and the loss of quaternary, tertiary, and
secondary structures [49,51,52]. The union of H+ (derived from the hydronium ion) to
the N-terminal generates atom excitation and breaks the peptide bond. Finally, the OH−

links with the new carbon cation of the C-terminal [53]. The degradation of Maillard’s
amino acids and reaction products improves the medium’s pH at temperatures above 200
◦C [54–56]. Subcritical water was used as a hydrolysis medium to obtain protein from
vegetal meal (e.g., soybean, rice bran, deoiled Oryza sativa bran) [57,58], animal sources
(e.g., ice-cream wastewater, African snail Achatina fulica) [59] and other sources (e.g., laver
Pyropia yezoensis) [60], obtaining hydrolysates with a strong free-radical scavenging capacity
and antioxidant activity. The disadvantages of subcritical water are the lack of selectivity
and cluster formation during the overheating process [61].

2.2.5. Bipolar Membrane Electrodialysis

Bipolar membrane electrodialysis (EDBM) technology does not use chemicals to
separate peptides. However, it employs monovalent anion exchange and cation-selective
permeation membranes to separate ions and bipolar membranes that allow the production
of H+ and OH− ions from water under the current application. Mikhaylin et al. [62] used
EDBM to separate casein from milk.

2.2.6. Electrophores

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is an analyti-
cal technique for separating biopeptides based on their molecular weight. In this technique,
the migration rate through the gel matrix is affected by the peptides’ size (smaller peptides
migrate faster than larger peptides due to less resistance from the gel matrix), charge, and
chain length. Siow et al. used SDS-PAGE to obtain peptides from Parkia speciosa seeds [63].

Capillary electrophoresis is a liquid-phase separation technology in which a capillary
tube separates biopeptides using a high-voltage electric field as a driving force. Capillary
electrophoresis can separate analytes in various separation modes (e.g., capillary zone
electrophoresis, capillary isoelectric, and capillary gel electrophoresis).

Capillary zone electrophoresis separates the biopeptides based on the different charges.
The speed affects the separation process [64]. The capillary isoelectric focusing electrophore-
sis separates analytes based on their different isoelectric points. It is generally used to
separate peptide isomers [65–67].
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Capillary gel electrophoresis separates analytes based on molecular sieving (molecular
shapes and weights). It is used to separate biopeptides with many hydrophobic side chains.

2.3. Identification of Peptide Sequences
2.3.1. Mass Spectroscopy

Mass spectrometry (MS) is a versatile analysis method for biopeptide characterization
by molecular weight. MS/MS is an alternative strategy to obtain mass spectra of peptide
fragment ions from a particular precursor ion. The MS can identify and quantify the
peptides, ionizing them in various modes.

Electrospray ionization (ESI) employs electrical energy to transfer ions from an initial
solution into a gas stage. This ionization into gas needs the dispersion of charged droplets,
solvent evaporation, and expulsion of ions from the highly charged droplets [68]. ESI-MS
detects femtomole quantities of multiple compounds, including non-volatile and thermo-
labile analytes such as peptides. It can analyze the peptides’ intact mass and amino acid
sequence by MS/MS technology. The peptide bond (-CO-NH−) is the most common source
of fragmentation. It produces y-ions (C-terminal fragment ions) and b-ions (N-terminal
fragment ions). The amino acid sequence is deduced from the peptide’s fragmentation
along its backbone and around the peptide bond that generates peptide fragment types.
In the case of isoleucine and leucine (that have identical molecular weight), w-ions al-
low the characterization (the R-group is different for isoleucine (CH2CH3) and leucine
(CH3CHCH3). Worsztynowicz et al. [69] used MS/MS technology to identify biopep-
tides from whey proteins, Karami et al. [34] from wheat germ, and Zanoni et al. from
hempseed [70]. MALDI-TOF spectra analysis of peptides usually identifies only the molec-
ular ion [M+H]+ (it is an advantage since it maximizes the signal), but gives no evidence
of structure. Daughter ions formed during the application of the extraction pulse increase
the background noise. This approach is poorly sensitive and selective [71]. Only highly-
abundant proteins generate patterns of peptides for their unambiguous identification. The
signals of co-migrating peptides are suppressed. Ayala-Niño et al. [72] studied biopeptides
from amaranth seed proteins using MALDI TOF. MALDI-TOF/TOF instrumentation can be
applied to obtain more specific and reliable results [73]. Cakir et al. [74] examined proteins
in black cumin seeds by MALDI-TOF/TOF-MS analysis.

2.3.2. NMR

The molecule momentum, in the presence of a magnetic field, can align in the same or
opposite direction to the field. Two states separated by an energy gap (resonance frequency)
are formed. The nucleus’ chemical environment in a molecule and the magnetic field
strength affect this difference in resonance frequency [75]. The structures of 131 peptides
from 17 fungi genera were unambiguously characterized using 1D and 2D NMR [76].

3. The Human Skin

The human skin is a complex organ with an exceptional structure. It is made up of
diverse cell types and compartments with distinctive functions. The epidermis (outermost
layer) contains four sublayers (strata corneum, granulosum, spinosum, and basalis) and
four major cell types (melanocytes, keratinocytes, Langerhans and Merkel cells). The
epidermal–dermal junction (border between the epidermis and dermis) constitutes the
basement membrane (an aggregation of proteins and structures). Under the basement mem-
brane is the underlying dermis, which contains dendritic cells, mast cells, macrophages,
fibroblasts, elastic fibers, collagen, hair follicles, blood vessels, nerves, lymph vessels, and
sweat glands.

The dermis allows nutrients to reach the skin and has a structural support function [77].
Aging affects all skin layers, altering their structure and function [77]. The organism’s
aging is inevitably a progressive process. The consequences of aging are changes at the
tissue and cellular levels. During physiological skin aging, the number of keratinocytes at
the epidermis level gradually decreases. The epithelium layers atrophy. The reproductive



Antioxidants 2023, 12, 788 9 of 28

layer cell division activity, Langerhans cell and melanocyte numbers decrease. The dermis’
connective tissue also atrophies (its cellular and extracellular matrix components dimin-
ish). The fibroblasts synthesize collagen, but the fibers are less elastic and efficient, and
protein fibers, already existing, are subject to degeneration. Only the corneocyte number
in the dead stratum corneum shows no changes. The accumulation of damage reduces
cells’ ability to renew [78]. The decrease in lipid and CD44 glycoprotein (regulator of
keratinocyte proliferation) levels, the loss of hyaluronic acid homeostasis, and the reduced
cell proliferation in the basal layer contribute to this decline [79,80].

Moreover, the contact surface area between the epidermis and dermis becomes thin-
ner, resulting in a weakened epidermis nutrition supply and a further decline in basal
cell proliferation ability [81,82]. The epidermal–dermal junction and dermis also become
thinner, causing wrinkle formation since there are fewer cells, with less oxygen and less
nutrition. The dermal extracellular matrix (ECM) accumulates type I and type III colla-
gens [83], and there is a decrease in the synthesis of type I/III [84], altering the elastic fiber
organization [85]. The low fibroblast levels increase wrinkling and reduce elasticity [86].
Skin aging is associated with extrinsic (external) factors, e.g., UVA, UVB, temperature,
environmental pollution, nutritional factors, cigarette smoke, lack of sleep, and stress [87]
and with intrinsic (endogenous) factors, e.g., genetic factors, chronological time, hormones,
decreased age-related antioxidant capacity, and increase in reactive oxygen species [88,89].
The principal consequences are blemished, dry, pale skin with rugged texture, visible pores,
redness, small actinic keratomes, gradual loss of elasticity, and fine wrinkles [90]. The intrin-
sic clinical skin aging signs caused by intrinsic factors are xerosis (dry skin), fine lines, and
laxity [91]. The aging signs caused by extrinsic factors are irregular pigmentation, coarse
wrinkles, and lentigines (or age spots). The photo-exposed areas (e.g., the face, hands,
and neck) show a more visible occurrence of these changes. The duration and intensity
of exposure to environmental factors and the skin type affect the occurrence of extrinsic
skin aging signs [91]. Skin aging impacts human aesthetics and increases susceptibility to
infections and chronic wounds (e.g., venous, pressure, or diabetic foot ulcers, dermatitis,
and melanoma) [92,93].

4. Biopeptides’ Potential in Cosmeceutical Applications

The increased demand for natural cosmetics has led to the formulation of a new gen-
eration of cosmetics based on active compounds obtained from natural sources such as
biopeptides. Biopeptides can enhance skin health (acting against aging-related enzymes)
and decrease the harmful effect of agents that produce skin injuries (acting as antioxi-
dant, antimicrobial, and anti-inflammatory agents). Multifunctional biopeptides, which
can simultaneously start, modulate, or impede multiple physiological pathways, are pre-
ferred to single-activity peptides [94]. The problems associated with using biopeptides in
cosmetics concern the yields of the techniques with which biopeptides are produced (in
terms of production quantity and concentration of biopeptides capable of expressing desir-
able bioactivity) and the biopeptides’ structural stability and bioactivity during product
manufacturing and storage. Biopeptide activity is affected by pH, interactions with other
components, temperature, water activity, and formulation processes (e.g., concentration,
delivery of the active compounds, and packaging) [95,96].

For example, when used in gels, creams, or lotions, the parameters to consider are
sensitivity to temperature and pH to guarantee the peptide bioactivity at the action site.
Moreover, it is essential to realize that only the bioactive peptides with low molecular
weight penetrate the skin. Biopeptides with high molecular weight, hydrophobic char-
acter, and poor aqueous solubility at high concentrations require carriers to permit their
release when needed [97]. When biopeptides are administrated orally, their bioavailability
(integrity during digestion, intestinal absorption, and transport) must be controlled [97]
since they are exposed to gastric, pancreatic, small intestinal enzymes, and acidic stomach
conditions, meaning that only minimal biopeptide levels (nano-molar or pico-molar con-
centrations) reach the action site [98]. Finally, some protein-derived peptides have a bitter
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taste. Therefore, they must be subjected to processes to debitter them and/or mask the
bitter taste to enhance the sensory properties of the final product [99]. Transport systems
studied to overcome these problems include liposomes, biopolymer microgel emulsions,
and solid–lipid nanoparticles [100]. Some natural lipid-based systems (e.g., chitosan fab-
ricated nanocarriers, soy lecithin-derived nanoliposome, and microgels from alginates
and methacrylate) were suggested as potential inclusion complexes for biopeptides [101].
Another limitation is the risk of allergens since most peptide preparations are produced as
unpurified mixtures of several components. Plant hydrolysates may contain allergens and
potentially toxic contaminating compounds (environmental pollutants) [102]. Therefore,
peptide preparations from plant tissue cultures (grown in the laboratory, under axenic and
controlled conditions) are preferred today [103].

4.1. Biopeptides with Anti-Aging Properties

Some natural peptides (e.g., snake venom, yeast, skin frog, toads, spirulina, and
fish) have anti-aging properties [104]. They can inhibit key physiological enzymes such
as elastase, tyrosinase, collagenase, and hyaluronidase, which are involved in the degra-
dation of the skin protein matrix and are overproduced when intrinsic or chronological
aging occurs [105]. Some of these biopeptides are under patent protection, such as the
pentapeptide-3 (GPRPA) (from snake venom), which decreases skin roughness and wrin-
kles [106], and the hexapeptide11 (FVAPFP) (from yeast) that improves skin firmness [107].

4.1.1. Biopeptides That Decrease Collagenase Activity

Collagen is the most widely distributed protein in mammals. It confers support and
strength to human skin and can restore flexibility and elasticity [108]. Collagen has a
role in the structural integrity and strength of connective tissues (e.g., tendons, teeth, and
skin) [109]. There are different forms of collagen: type I (found in the skin, bone tissues,
and tendons and widely used in cosmetic formulations), type II (found in cartilage), and
type III (found in vasculature and skin) [110]. The collagen-derived peptides and collagen
hydrolysates positively improve skin conditions [111]. Under heat treatment, collagen is
converted into water-soluble gelatin, from which can be obtained collagen peptides (by
enzymolysis). Collagen peptides are antioxidant compounds that prevent dermal collagen
decomposition, negatively affect collagenase and gelatinase activity, decrease skin moisture
loss and reduce wrinkling; they increase skin hydration and elasticity, and address collagen
degradation and elastic fiber abnormalities due to UV radiation [112]. They can improve
the hyaluronic acid content in skin tissue by enhancing the expression of hyaluronic acid
synthase mRNA and filaggrin and decreasing the expression of hyaluronidase mRNA.
Collagen and collagen peptides can be obtained from animal tissue, poultry, livestock,
fish (bones, scales, and skin), and vegetables (spirulina) [113]. The source of collagen
peptides affects their anti-skin-ageing effect (Table 1) [112]. In vivo studies showed that
women given oral supplementation of collagen hydrolysate showed improvements in skin
hydration, elasticity, wrinkling [114], dermal thickness, firmness [115], and texture [116]
and a lessening of skin pores [117].
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Table 1. The anti-skin-ageing effect of collagen peptides made from a natural source.

Peptides Source Skin-Aging Effect Biblio

Type I collagen-derived
collagen peptide
Chicken collagen

Pig collagen
Enhancement of skin collagen content by

changing the ratio of type I and type III collagen.
No effect on skin moisturizing.

[118]

High tripeptide-containing
collagen hydrolysate

(HTC-col) has high tripeptides
comprising the Gly-X-Y

sequence.

Porcine skin Anti-photoaging action.
Skin dryness improvement. [119]

Chicken-derived collagen
peptide Chicken collagen

Anti-inflammatory.
Antioxidant.

Collagen I synthesis.
Improve cell proliferation on human skin

fibroblasts

[120]

YGDEY
(Tyr-Gly-Asp-Glu-Tyr) from. Tilapia collagen hydrolysate

Prevention of ultraviolet (UVB)-induced damage
to cells

Inhibition of UVB-mediated photoaging of
the skin.

Improvement of the glutathione and superoxide
dismutase expression.

Enhancement of type I procollagen.
Reduction of the ROS in keratinocytes.

Prevention of DNA oxidative damage. Inhibition
of the collagenase and gelatinase expression.

[121]

Ala-Tyr dipeptide Carp skin hydrolysate Antioxidant activity [122]

Hydrolyzed collagen Prionace glauca
Stimulation of the collagen type I mRNA by

fibroblasts.
mRNA production improvement.

[123]

Hydrolyzed collagen with
neutrase Alaska pollock Antioxidant activity [124]

Hydrolyzed collagen with
pepsin under acidic

conditions
Rana chensinensis Antioxidant activity [125]

Hydrolyzed collagen with
pepsin, subtilisin A, and both

enzymes
Arthrospira maxima (spirulina) Peptides obtained from PHS showed the highest

collagenase inhibition activity [126]

Peptides Tetraselmis suecica Dunaliella
tertiolecta, and Nannochloropsis Decrease in hyaluronidase enzyme [127]

4.1.2. Biopeptides That Decrease Hyaluronidase Activity

Hyaluronic acid (HA) is an anionic, non-sulfated linear glycosaminoglycan [128]. It is
a component of the dermis extracellular matrix in many human body tissues (e.g., synovial
fluid, gum, eyes, heart valves, and skeletal tissues). It can maintain skin moisture (since it
can bind water) [129], improve skin rejuvenation and viscosity, and decreases extracellular
fluid permeability [130]. The concentration of HA in the skin naturally declines with age.
The hyaluronidase enzyme degrades it producing a loss of skin strength, flexibility, and
moisture. Peptides from three microalgae (Tetraselmis suecica, Dunaliella tertiolecta, and
Nannochloropsis sp.) can decrease the hyaluronidase enzyme [127]. The cosmetics industry
proposes products containing hyaluronic acid for topical application, for which inhibition
of hyaluronic acid degradation is crucial to avoid the inflammatory process related to the
exogenous application of hyaluronic acid [130].

4.1.3. Biopeptides That Decrease Tyrosinase Action

Tyrosinase is a metalloenzyme (whose active site includes two copper ions) responsible
for melanin (the pigment that controls skin color) production [131]. Tyrosinase overpro-
duction causes skin hyperpigmentation, leading to a darker skin appearance (dark brown
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spots and irregular grey patches) [132]. Tyrosinase activity is inhibited by compounds that
block the active site or chelate copper ions [131] (Table 2). High amounts of serine can
bind copper [133] and affect the C-terminal tyrosine residue [134] and amino acids with
hydroxyl function [133].

Table 2. Summary of recent studies on biopeptides that decrease tyrosinase activity.

Peptides Source Activity Biblio

Skin collagen peptides (3–10 kDa fraction) Todarodes pacificus Copper-chelation [135]

Albumin peptide obtained using papain Rice bran Tyrosinase inhibition,
copper-chelation [133]

HGGEGGRPY, LQPSHY, and HPTSEVY Rice Tyrosinase inhibition [134]
Peptides Faba bean (Vicia faba) Tyrosinase inhibition [136]

Water and ethanol extracts from soy milk fermented
with lactic acid bacteria strains, Soy milk Tyrosinase inhibition [137]

4.1.4. Biopeptides That Decrease Elastase Action

Elastin is an extracellular matrix of highly polymerized protein that gives elasticity to
connective tissues. Arteries, skin, and lungs contain elastin [138]. It maintains skin elasticity
and firmness. Elastin contains two amino-acid sequences, one responsible for crosslink-
ing and the other for hydrophobicity. The extensive crosslinking in elastin determines
insolubility and durability [139]. Fibroblasts and vascular smooth muscle cells synthesize
elastin until puberty and stop when the body matures. Overproduction of the enzyme
elastase decreases the elastin fibers’ production [140]. Elastin-derived peptides may prevent
and regulate skin photoaging (decreasing elastase activities and fibroblast apoptosis and
improving the hydroxyproline content), water content, and fibroblast proliferation [141].
Aging increases elastin degradation and elastin-derived peptide (EDP) levels, enhancing
the affinity and deposition of calcium [142]. Two elastin hydrolysate-derived peptides
(TGVLTVM and NHIINGW) from the skipjack have shown protective effects against skin
damage due to UVA irradiation through the attenuation of oxidative stress and mitochon-
drial damage [143]. One elastase inhibitory peptide Phe-Phe-Val-Pro-Phe (FFVPF), with
significant stability in the gastric environment, was obtained from walnut meal protein
hydrolysates [144]. Norzagaray-Valenzuela et al. found peptides in microalgae (Dunaliella
tertiolecta, Tetraselmis suecica, and Nannochloropsis sp) with elastase inhibitory effects [127].

4.2. Biopeptides with Antioxidant Properties Derived from Foods

In the cells, oxidative stress is generated by the imbalance between the endogenous
antioxidant defense system ability and free radicals, which can produce oxidants. The
reactive oxygen species (ROS, e.g., hydroxyl radical (•OH), superoxide anion radical (O2

•−),
lipid radical (ROO•)) and reactive nitrogen species (e.g., nitrogen oxide (NO•)) are respon-
sible for degenerative changes in the aging process, heart disease, arteriosclerosis, stroke,
cancer, and diabetes [145]. Antioxidant molecules (synthetic and natural) decrease the
risk of chronic diseases (e.g., cardiovascular pathologies, diabetes, arthritis, Alzheimers
and cancer) and skin aging related to oxidative stress and control the oxidation of food
nutrients [146]. Natural antioxidants are heterogeneous secondary metabolites such as
phenols, vitamins (e.g., E and C), carotenoids, glutathione, biopeptides, and some enzymes
such as glutathione peroxidase, superoxide dismutase, and catalase [147]. Synthetic an-
tioxidants (i.e., propyl gallate, t-butyl hydroquinone, and butyl hydroxyanisole) have the
disadvantage of high costs and potential toxicity risk [7]. Antioxidants can donate electrons,
catalyze oxide-reductive reactions (e.g., antioxidant enzyme), and prevent the interaction
of transition metals (e.g., copper and iron) with hydrogen peroxide and superoxide binding
proteins [147]. The research on safe and high-efficiency antioxidants from natural products
(especially foods) has attracted widespread attention. Vitamins, carotenoids, bioflavonoids,
and peptides have attractive antioxidant potential [148–150].
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Peptidic antioxidants (PAs) can chelate metal ions, scavenge radicals, and quench
singlet oxygen. They can be ingested safely and sometimes act as antibacterial, antihy-
pertensive, and hypocholesterolemic molecules [151]. Peptide sequences with antioxidant
activity are found in food proteins and biowaste proteins, where they occur as inactive
sequences. Gastrointestinal digestion, enzymatic hydrolysis, and microbial fermentation
can release biopeptides from precursor proteins [152]. Biowaste peptides are attractive
for industrial applications and, at the same time, promote environmental protection. The
liberated peptides must be purified before determining the sequences [153,154].

Peptides with molecular weights less than 3 kDa, containing 2–20 amino acids, among
which are hydrophobic amino acids (e.g., tryptophan, phenylalanine, valine, histidine,
glycine, isoleucine, lysine, and proline), and having extra aromatic rings, hydrophobic
properties, and donor electrons have potential antioxidant activity [155,156].

The aromatic ring guarantees that the loss of electrons will not transform the peptide
into free radicals. The extra electrons can deactivate the free radicals [157]. The hydrophobic
properties permit the accessible entrance of the antioxidant peptides into target organs
through hydrophobic interactions with membrane lipid bilayers [158]. Nevertheless, ac-
cording to Chen et al. and Tironi et al., the antioxidant capacity of peptides declines after
hydrolysis [159,160].

Chen et al. [160] found that the concentration of antioxidant amino acids and the
peptide sequence might affect the antioxidant potential [161]. The amino acid sequence
order of antioxidant activity is Pro-Tyr-Ser-Phe-Lys > Gly-Phe-Gly-Pro-Glu-Leu > Val-Gly-
Gly-Arg-Pro, when DPPH, ABTS, and OH radical assays are used to measure it [162] and
the order is Trp-Pro-Pro > Gln-Pro if the hydroxyl radical scavengers are evaluated [163].
The peptides’ synergistic influence improves their antioxidant potential and avoidance of
gastrointestinal proteolysis [164–168]. The peptides’ antioxidant properties involve free
radical scavenging, metal ion chelation, singlet oxygen quenching, and lipid peroxidation
inhibition (enzymatic and non-enzymatic) [169]. PAs were found in plants (corn, rapeseed,
cacao seed, rice, rye, wheat, soybean, pea, and hemp seed) [170–172], milk [173–175],
marine organisms (algae, mackerel, horse mackerel bonito, yellowfin, monkfish, oysters,
tuna, salmon, mussel, catfish, sardine, eel, squid, and tilapia) [176–178], eggs (ovalbumin,
yolk, and white lysozyme) [179] and animals (porcine myofibrils, skin, buffalo horn, and
dry-cured ham) [180].

Methods Used to Evaluate the Antioxidant Potential

The most popular protocols used to test antioxidant activities employ spectropho-
tometric tests. They can evaluate the hydrogen atom transfer (HAT) mechanism, single
electron transfer (SET) mechanism, transient metal chelation, and in the cellular system,
the Nrf2/Keap1pathway.

The ORAC (Oxygen Radical Absorbance Capacity), TRAP (Total Radical Trapping
Antioxidant Parameter), CBA (Crocin Bleaching Assay), and LPA (Lipid Peroxidation
Assay) evaluate HAT-based reactions.

The TEAC (Trolox Equivalent Antioxidant Capacity, also known as ABTS), DPPH
(2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and CRC (Copper II Reduction
Capacity assay) measure the SET-based reactions [177,181].

The EECC (EDTA Equivalent Iron Chelation Capacity) and CECC (Carnosine Equiva-
lent Iron Chelation Capacity) test the ion chelating capacity [182].

The ABTS assay’s pH strongly affects the antioxidant potential of tryptophan, tyrosine,
and their derivate peptides [183].

4.3. Peptides with Antimicrobial Activity

The skin is constantly exposed to microbial agents. Skin aging decreases the cutaneous
production of antimicrobial peptides [184]. The bioactive peptides with antimicrobial
activity against Staphylococcus aureus, Propionibacterium acnes, Pseudomonas aeruginosa, En-
terococcus faecium, Acinetobacter baumannii, Klebsiella pneumoniae, Propionibacterium acnes,
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and Enterobacter species, are promising functional ingredients in food supplements and
cosmeceuticals (Table 3) [185–188]. The antimicrobial activity of biopeptides is ascribed to
the formation of transmembrane channels (by polymerization or self-aggregation), which
lead to cytoplasm leakage and/or cell death, and/or inhibition of cell division, protein-
folding, cell wall and protein biosynthesis, nucleic acid synthesis, and lipopolysaccharide
formation [189].

Table 3. Summary of recent studies on antimicrobial biopeptides.

Peptides Source Activity Biblio

TITLDVEPSDTIDGVK ILVLQSNQIR
ISGLIYEETR MALSSLPR
ISAILPSR
LPDAALNR IGNGGELPR
QVHPDTGISK EAESSLTGGNGCAK

Saccharina longicruris Staphylococcus aureus [191]

MDN
ELAAAC
LRDDF
GNAPGAVA
ALRMSG
RDRFL

Alfalfa RuBisCo Listeria innocua [192]

QAIIHNEKVQAHGKKVL Crocodylus siamensis
Escherichia coli, Staphylococcus
aureus, Klebsiella pneumoniae
and Pseudomonas aeruginosa.

[193,194]

Cationic peptides Rice bran Propionibacterium acnes
JCM 6473 [190]

Peptides generated by Aspergillus
oryzae,
Aspergillus flavipes proteases

Bovine milk

Listeria monocytogenes
Staphylococcus aureus

Salmonella enterica Enteritidis
Escherichia coli

Pseudomonas aeruginosa

[191]

It seems that positive charges (ranging from +2 to +9), small size (15–50 amino acids
residues), and an amphipathic structure (ca. 50% hydrophobic residues) facilitate the
biopeptide’s interaction with the negatively charged membrane of some microorgan-
isms [190].

4.4. Peptides with Anti-Inflammatory Activity

Inflammation is how the body restores itself after injury, replaces damaged tissue and
combats pathogens [195]. Inflammation may be acute or chronic. It can remain for a few
minutes to weeks or years. Inducing inflammatory process factors are lipopolysaccharide,
dextran sodium sulfate, and other toxicants. Inflammatory processes induce the production
of cytokines (IL1α, IL1β, IL2, IL6, IL8, IL12, TNFα, and IFNγ) by T lymphocytes cells
and macrophages [196]. Moreover, inflammation involves immune systems cells such
as mitogen-activated protein kinases (MAPK; intracellular serine/threonine protein ki-
nases) [197], nuclear factor kappa B (NF-κB; which binds nucleotropic DNA and regulates
the expression of inflammatory factors) [198], and phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) [199].

The inflammation processes can contribute to aging diseases [200] and impact the
pathophysiology of cancer, rheumatoid arthritis, atherosclerosis, asthma, ulcerative colitis,
and type-2 diabetes [201]. Biopeptides’ anti-inflammatory effect is affected by low molecu-
lar weights (less than 1 kDa ca. 500 Da, composed of 2–6 amino acids) (Table 4) [202] and
depends on the amino acid composition (number, quality, and positions). Low molecular
weight peptides can reach their target place intact (they have few cleavage sites for en-
dopeptidase enzymes) and have specific transport modes. Peptide transport modes include
PepT1 transporters, cytokinesis, cellular bypass, and passive diffusion; dipeptides and
tripeptides can also be in the PepT1 category [195]. Regardless of amino acid composition,
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highly hydrophobic biopeptides containing leucine, tryptophan, and phenylalanine have
anti-inflammatory potential. Leucine and isoleucine can act on PI3K (Akt kinases in the
PI3K/Akt signaling pathway) and ERK kinases (in MAPK pathways) [203]. They can
mitigate the damage caused by inflammatory factors by decreasing the kinases’ phospho-
rylation and changing macrophages from M1 to M2 [204]. Moreover, highly hydrophobic
biopeptides can avoid lipopolysaccharide (LPS)-stimulated inflammatory responses by
forming peptide-lipopolysaccharide complexes and scavenging LPS through cell mem-
brane charge exchange [205]. Positively charged amino acids (e.g., lysine, histidine, and
arginine) positively influence the biopeptides’ anti-inflammatory potential, affecting the
inflammatory response linked to the activation of cascade pathways and improving their
absorption in the intestine [206]. Lysine can regulate the kinase ERK’s phosphorylation
and the nuclear transcription factor NF-κB’s translocation in the MAPK signaling path-
ways [207]. Arginine can reduce p38 and ERK kinases phosphorylation (in the MAPK
pathways) and decreases the expression of TLR4 receptors and transcription factor p65′s
nuclear translocation (by constraining IκB kinase phosphorylation in the NF-κB path-
way) [208]. The presence of glycine and glutamine also influences the anti-inflammatory
activity of biopeptides. Glycine has a high affinity for calcium, interferes with Ca2+ sig-
naling [209], modulates the NF-κB signaling pathway [210], downregulates inflammatory
factors (TNF-α, IL-1β, IL-8, and IL-6), and modulates the MAPK pathways (JNK, ERK, and
p38) [211]. Finally, the anti-inflammatory properties of biopeptides are related to the amino
acid positions. Hydrophobic amino acids situated at the peptide chain’s N-terminus and
charged amino acid C-terminal ends have a positive anti-inflammatory impact [195].

Table 4. Summary of recent studies on anti-inflammatory biopeptides.

Peptides Source Activity Biblio

LDAVNR (686 Da) and
MMLDF (655 Da) [35] Spirulina IL-8 produced by endothelial cells EA.hy926 [212]

FLWGKSY Spent hen muscle IL-6 [200]
VLER, WVGK, VVRP, VLLF,

VALVR, LFGK, FGPK Millet bran TNF-α, IL-1β, PGE2 [213]

DQWL Whey
IL-1β, COX-2, and TNF-α, and the secretion
of IL-1β and TNF-α proteins in LPS-induced

RAW 264.7
[214]

YFVP, SGRDP, MVWGP,
TGSYTEGWS Sunflower IL-1β [215].

KLRSRNLLHPT,
TNGRHSAKKH Bee pollen COX-2, IL-6, iNOS, TNF-α [216]

5. Peptide Delivery Systems

Chemical, physical, and biological variability can degrade biopeptides, decrease stor-
age life, and limit their application in different formulations. Chemical instability is due
to oxidation reactions, deamination, etc. Physical instability is mainly produced by aggre-
gation, denaturation, and surface adsorption. Biological instability is due to cell enzymes,
which may cause degradation or inactivation of the active molecule and loss of biological
activity [217]. Using nanocarriers can enhance the biopeptide’s stability and limit side
effects. Nanocarriers (e.g., liposomes, niosomes, novasomes, transferosomes, ethosomes,
cubosomes, ultrasomes, photosomes, polymerosomes, nanofibres, metal nanoparticles,
dendrimers, nanocrystals, carbon nanotubes, fullerene, cyclodextrin nanosponges, solid
lipid nanoparticles), hydrogels, and nanoemulsions are carrier systems used for biopeptide
delivery.

Liposomes are sphere-shaped vesicles with a hydrophilic core enclosed by at least
one phospholipid bilayer. They can enter the skin by merging with the lipids of the
stratum corneum or via the sebaceous glands [218]. The liposomes can be made with food-
grade materials (biodegradable and non-toxic) and can encapsulate nonpolar, polar, and
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amphiphilic amino acids [219,220]. Mechanical methods (e.g., sonication, film formation,
microfluidization, and extrusion), solvent replacement methods (reverse phase evaporation,
injecting ethanol, and proliposome techniques), or detergent removal methods can be
used to produce them [221]. The liposomes are used in lipsticks, antiperspirants, creams,
deodorants, moisturizers, and hair care formulations. They are employed to improve
the solubility of vitamins (e.g., A, E, and K), antioxidants (e.g., lycopene, coenzyme Q10,
carotenoids, etc.), and other active biomolecules in water, facilitate the skin’s hydration and
restore the skin’s epidermal layers by incorporating lipid compounds (e.g., cholesterols,
and ceramides) [222]. They can deliver biopeptides in moisturizing, anti-aging creams,
body sprays, deodorants, lotions, sunscreens, fragrances, shampoos, conditioning agents,
etc. High production cost and osmotic stability limit their use in cosmetic products [223].

Niosomes contain one to seven bi-lipid layers, a non-ionic surfactant (spans, tweens,
alkyl amides, brijs, polyoxyethylene alkyl ethers, and sorbitan esters), and an amorphous
central core [224,225]. They are obtained by mixing free fatty acids, cholesterol, and a
non-phospholipid surfactant.

Novasomes can deliver hydrophilic and hydrophobic molecules, have a lower produc-
tion cost than liposomes [220], improve the biopeptides residence time on the dermal layers
and skin penetration, decrease the horny layer barrier’s resistance and the biopeptides’
systemic absorption [226]. Novasomes have high molecule entrapment efficiency and a
much lower production cost than liposomes. They have a little higher deposition volume
on the skin than niosomes [227]. Moreover, they are stable at pH changes between 2 and 13
and temperatures between 0 ◦C and 100 ◦C.

Ethosomes are vesicles containing phospholipids with a high concentration of ethanol
(20–50%) which improve the bioactive peptides’ permeation across the skin, mediating
the disruption of the skin’s lipid layers. Ethasomes with niacinamide are used to decrease
aging, pigmentation, skin blotches, and acne [228,229].

Transferosomes are deformable vesicles containing phospholipids and an edge ac-
tivator (e.g., sodium chlorate, tween 80, and span 80). They can be used as curcumin,
capsaicin, and resveratrol vehicles in transdermal skin layers [230], in antiwrinkle [231],
and anti-aging cosmetics [232].

Cubosomes are self-assembling honeycomb-shaped liquid crystalline lipid nanopar-
ticles (3D structures obtained from a bi-continuous cubic liquid phase with two aqueous
channels divided by a surfactant bilayer) which can contain lipophilic, hydrophilic, and
amphiphilic molecules [233,234]. They are used to absorb pollutants and as stabilizers for
oil-in-water emulsions [230].

Ultrasomes are liposomes that contain a UV-endonuclease enzyme that repairs UV-
damaged DNA and decreases the expression of pro-inflammatory cytokines [235].

Photosomes are liposomal formulations of photolyase. They are incorporated in
sunscreen products [236,237].

Polymersomes are artificial vesicular systems containing block copolymers encapsu-
lating lipophilic and/or lipophobic molecules. They have higher stability than liposomes
because of their thick and rigid bilayer structure [238,239]. They enhance skin elasticity
and increase the skin cells’ activation energy [240].

Biopolymer microgels are small particles comprising a cross-linked polymer molecule
network [241]. They can contain natural, synthetic, or bio-polymers (e.g., chitosan, hyaluronic
acid, collagen, gelatin, and polyvinyl alcohol), polyacrylamide, xanthan gum, polyethylene
glycol, pectin, starch, cellulose, alginate). They can be obtained by coacervation, antisolvent
precipitation, and emulsion. Unfortunately, porous microgels can diffuse small peptides.
Biopolymer hydrogels are used to produce “beauty masks” [242,243].

Solid lipid particles (SLN) are a colloidal delivery system formed by crystallized lipid
particles in an aqueous medium [244]. SLNs are used in cosmetic creams, lotions, and
sunscreens [243].
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Nanostructured lipid carriers (NLCs) are a mixture of solid and liquid lipids with a
less ordered structure that load more active molecules than SLN into their pockets. NLCs
are suitable carriers for volatile essential oils [245].

Nanofibers are one-dimensional nanomaterials (e.g., collagen, silk, PVP, and PVA)
having a high surface area to volume ratio, high bioactive loading capacity, small diameters,
and excellent absorbing capacity. They can be used for production of cleansers, face masks,
and skin healing products [246].

Inorganic nanocosmetics are nanoparticles containing metals (e.g., gold, silver, alu-
minum, platinum, titanium) or metalloids (e.g., silica and selenium). Among metal-based
nanoparticles, gold and silver are the most used. Gold has high stability and penetra-
bility, is inert, and is non-cytotoxic. Gold nanoparticles have antioxidant and anti-aging
effects, enhance skin elasticity, skin firmness, and blood circulation, and have antibacterial,
antifungal, and antiseptic properties [247].

Silver has antimicrobial properties against many microbial species and is an anti-
inflammatory agent. Silver nanoparticles (AgNPs) are used in lotions, skin cleansers,
creams, shampoos, deodorants, and toothpaste [248].

ZnO2 and TiO2 nanoparticles are used mainly in sunscreen for UV-A and UV-B
filters [249,250].

Inorganic metalloid silica and selenium are the most used in the cosmetic field. Silica
has a feel-good texture and excellent penetrability and can enclose hydrophilic and hy-
drophobic molecules. Silicone-based vesicles are used to deliver vitamins A, C, and E and
oils such as jojoba and lanolin, in emollients and creams [251,252].

Silica nanoparticles are employed in lipsticks to homogenize lipstick pigments, in
anti-aging/anti-wrinkle creams, and in hair and nail cosmetic products. They can improve
cosmetic products’ texture, effectiveness, and shelf-life and act as an anti-caking agent.
Moreover, they have high photostability and protect against UV radiation [253].

Dendrimers are macromolecular organic nanocarriers with a network of symmetric
branches (the number of branches required determines the production process) arising
from a central core, with functional groups attached at their terminal ends [223]. Polyva-
lence, solubility, monodispersity, low cytotoxicity, self-assembling, chemical stability, and
electrostatic interactions are key factors responsible for their high selectivity and precision
in the biopeptides’ delivery [254]. Biodegradable polymers (e.g., polysaccharides, poly
α-esters, poly alkyl cyanoacrylates, and poly amidoamine dendrimers) are used in cosmetic
formulations to benefit hair (e.g., hair-styling gels and shampoos), skin (e.g., anti-acne
cream) and nails (e.g., nail polishes), and as sunscreens. Dendrimers were developed to
improve resveratrol and vitamins A and B6 (PAMAM dendrimer) solubility and skin infil-
tration [221] and give a glossy appearance to the skin and hair (carbosiloxane dendrimer
able to resist oil and water) [255].

Nanocrystals are clusters of thousands of active agents linked together in a fixed
pattern to form a group (sizes ranging from 10 to 400 nm) having a very high surface area to
volume ratio and high solubility and bioavailability. They facilitate biopeptide absorption
into the skin by creating a high biological adhesion and concentration gradient on the skin
surface for long periods. They are usually utilized to administer poorly soluble active
compounds [256]. Undissolved nanocrystals can aggregate in hair follicles to produce an
active molecules reservoir in addition to intracellular and intercellular pathways [257–259].

Fullerenes (or buckyballs) are spherical structures with many carbon atoms [260]. They
can deliver biopeptides in cosmetics (e.g., anti-wrinkle, anti-acne, lightening toner, pore
reduction, and moisturizing creams) and sunscreen [261,262].

Cyclodextrin nanosponges are natural oligosaccharides (containing 6–8 glucopyranose
molecules) with a truncated cone-shaped structure [263]. Cyclodextrin’s lipophilic cavity
can encapsulate aromatic molecules, aliphatic hydrocarbons, and vitamins [264]. They
are used in perfumes, tanning products, deodorants, laundry detergents, odor removers,
underarm odor shields, etc. [265].
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Microemulsions (diameter 10 to 100 nm) are classified as water-in-oil (W/O) and oil-in-
water (O/W) based on the predominant system’s components. The W/O microemulsions
are thermodynamically stable, have noninvasive administration, high solubilization capac-
ity, and are easily formulated but require high concentrations of surfactants to stabilize
them [244] and can be only employed in oral formulations that contain mainly oil (e.g.,
oil-filled soft capsules). Water-dispersible forms can be formulated by homogenizing the
W/O microemulsion with water and a hydrophilic emulsifier to form a W/O/W type
system. Mortazavi et al. used W/O microemulsion to encapsulate PKEK, a tetrapeptide
that can decrease the pigmentation process [266].

The O/W microemulsion can encapsulate hydrophobic biopeptides mixed with a
hydrophobic surfactant and a co-surfactant [267,268].

Water-in-oil-in-water (W/O/W) systems are used to encapsulate the water-soluble
peptides. They are multicompartment liquid dispersions where the dispersed phase is an
emulsion [269]. The double emulsion can mask flavor and odor and regulate bioactive in-
gredients released during digestion. The type of oil used significantly affects the formation
and structure of multiple emulsions and the skin barrier function [270]. Their use is limited
by instability [271]. The W1/O/W2 double emulsion system is a helpful delivery matrix
for hydrophilic biopeptides, as shown by Ying et al. [272], who prepared applications of
W1/O/W2 double emulsions containing soy peptides by a two-step emulsification process
and Giroux et al. [273] who encapsulated β-lactoglobulin hydrolysate using a W1/O/W2
emulsion system, obtaining a peptides’ release inversely correlated to the oil’s viscosity
and peptides’ hydrophobicity.

6. Conclusions

Foods and food waste are promising sources of biopeptides for the nutricosmetic
industry. Using food waste for the production of biopeptides may contribute to sustain-
able development and represent economic advantages. Conversion of highly abundant,
inexpensive and renewable biomass to obtain biopeptides for nutricosmetic formulation
is dependent on purification processes and “tailor-made” manipulation of the precursor
structures. This requires expertise in analytical procedures and good manufacturing prac-
tice to ensure the population’s safety. Therefore, before thinking of recovering biopeptides
on a large scale from food waste, technologies are required that can produce peptides
industrially as well as regulated analytical tests to ensure consumer safety.

Nanotechnology is becoming a crucial tool for developing new cosmetic and personal
care products including biopeptides in their industrial formulation. Inspection of the
extensive literature shows that nanomaterials that can deliver biopeptides differ in physical
and chemical properties, biocompatibility, stability, site-specificity, and biopeptide-loading
capability. Additional research on biopeptide applications in final products is needed to
understand their potential risks and consumer acceptance.
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66. Kašička, V. Recent developments in capillary and microchip electroseparations of peptides (2019–mid 2021). Electrophoresis 2022,
43, 82–108. [CrossRef] [PubMed]

67. Lu, Z.; Sun, N.; Dong, L.; Gao, Y.; Lin, S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A
Comprehensive Review. J. Agric. Food Chem. 2022, 70, 7607–7625. [CrossRef]

68. Ho, C.S.; Lam, C.; Chan, M.; Cheung, R.; Law, L.; Lit, L.; Ng, K.; Suen, M.; Tai, H. Electrospray ionisation mass spectrometry:
Principles and clinical applications. Clin. Biochem. Rev. 2003, 24, 3. [PubMed]

69. Worsztynowicz, P.; Białas, W.; Grajek, W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed
using a new proteolytic lactic acid bacteria. Food Chem. 2020, 312, 126035. [CrossRef]

70. Zanoni, C.; Aiello, G.; Arnoldi, A.; Lammi, C. Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like
Mechanism. J. Agric. Food Chem. 2017, 65, 8829–8838. [CrossRef] [PubMed]

71. Soboleva, A.; Schmidt, R.; Vikhnina, M.; Grishina, T.; Frolov, A. Maillard Proteomics: Opening new pages. Int. J. Mol. Sci. 2017,
18, 2677. [CrossRef] [PubMed]

72. Ayala-Niño, A.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Contreras-López, E.; Regal-López, P.; Cepeda-Saez, A.
Sequence Identification of bioactive peptides from amaranth seed proteins (Amaranthus hypochondriacus spp.). Molecules 2019, 24,
3033. [CrossRef]

73. Smolikova, G.; Gorbach, D.; Lukasheva, E.; Mavropolo-Stolyarenko, G.; Bilova, T.; Soboleva, A.; Tsarev, A.; Romanovskaya, E.;
Podolskaya, E.; Zhukov, V.; et al. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int. J.
Mol. Sci. 2020, 21, 9162. [CrossRef] [PubMed]

74. Cakir, B.; Gulseren, I. Identification of Novel Proteins from Black Cumin Seed Meals Based on 2D Gel Electrophoresis and
MALDI-TOF/TOF-MS Analysis. Plant Foods Hum. Nutr. 2019, 74, 414–420. [CrossRef] [PubMed]

75. Lafarga, T.; Acién-Fernándeza, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications:
Natural occurrence, isolation, purification, and identification. Algal. Res. 2020, 48, 101909. [CrossRef]

76. Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A Comprehensive Review of Bioactive Peptides from Marine Fungi and
Their Biological Significance. Mar. Drugs 2019, 17, 559. [CrossRef] [PubMed]

77. Barbieri, J.S.; Wanat, K.; Seykora, J. Skin: Basic Structure and Function; Elsevier: Amsterdam, The Netherlands, 2014;
ISBN 9780123864567.

78. Bonté, F.; Girard, D.; Archambault, J.C.; Desmoulière, A. Skin Changes during Ageing. Subcell Biochem. 2019, 91, 249–280.
79. Jensen, J.-M.; Förl, M.; Winoto-Morbach, S.; Seite, S.; Schunck, M.; Proksch, E.; Schütze, S. Acid and neutral sphingomyelinase,

ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp. Dermatol. 2005, 14, 609–618. [CrossRef]
80. Kaya, G.; Tran, C.; Sorg, O.; Hotz, R.; Grand, D.; Carraux, P.; Didierjean, L.; Stamenkovic, I.; Saurat, J.-H. Hyaluronate Fragments

Reverse Skin Atrophy by a CD44-Dependent Mechanism. PLoS Med. 2006, 3, e493. [CrossRef]
81. Makrantonaki, E.; Zouboulis, C.C.; William, J. Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously

aged skin. Dermatology 2007, 214, 352–360. [CrossRef]
82. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [CrossRef]
83. Lovell, C.R.; Smolenski, K.A.; Duance, V.C.; Light, N.D.; Young, S.; Dyson, M. Type I and III collagen content and fibre distribution

in normal human skin during ageing. Br. J. Dermatol. 1987, 117, 419–428. [CrossRef]

http://doi.org/10.1016/j.supflu.2020.104943
http://doi.org/10.1016/j.fbp.2020.03.008
http://doi.org/10.1016/j.biortech.2006.12.030
http://doi.org/10.1016/j.biortech.2007.12.021
http://doi.org/10.1016/j.fbp.2018.08.002
http://doi.org/10.1016/j.supflu.2019.03.004
http://doi.org/10.1111/j.1750-3841.2011.02462.x
http://doi.org/10.1039/C5GC00970G
http://doi.org/10.1016/j.foodchem.2013.06.030
http://doi.org/10.1111/jfbc.12482
http://doi.org/10.1002/elps.201900269
http://www.ncbi.nlm.nih.gov/pubmed/31657477
http://doi.org/10.1002/elps.202100243
http://www.ncbi.nlm.nih.gov/pubmed/34632606
http://doi.org/10.1021/acs.jafc.2c02696
http://www.ncbi.nlm.nih.gov/pubmed/18568044
http://doi.org/10.1016/j.foodchem.2019.126035
http://doi.org/10.1021/acs.jafc.7b02742
http://www.ncbi.nlm.nih.gov/pubmed/28931275
http://doi.org/10.3390/ijms18122677
http://www.ncbi.nlm.nih.gov/pubmed/29231845
http://doi.org/10.3390/molecules24173033
http://doi.org/10.3390/ijms21239162
http://www.ncbi.nlm.nih.gov/pubmed/33271881
http://doi.org/10.1007/s11130-019-00751-9
http://www.ncbi.nlm.nih.gov/pubmed/31278561
http://doi.org/10.1016/j.algal.2020.101909
http://doi.org/10.3390/md17100559
http://www.ncbi.nlm.nih.gov/pubmed/31569458
http://doi.org/10.1111/j.0906-6705.2005.00342.x
http://doi.org/10.1371/journal.pmed.0030493
http://doi.org/10.1159/000100890
http://doi.org/10.1016/j.cell.2013.05.039
http://doi.org/10.1111/j.1365-2133.1987.tb04921.x


Antioxidants 2023, 12, 788 22 of 28

84. Autio, P.; Risteli, J.; Haukipuro, K.; Risteli, L.; Oikarinen, A. Collagen synthesis in human skin in vivo: Modulation by aging,
ultraviolet B irradiation and localization. Photodermatol. Photoimmunol. Photomed. 1994, 10, 212–216. [PubMed]
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