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Abstract: The use of multispectral satellite imagery for water monitoring is a fast and cost-effective
method that can benefit from the growing availability of medium–high-resolution and free remote
sensing data. Since the 1970s, multispectral satellite imagery has been exploited by adopting different
techniques and spectral indices. The high number of available sensors and their differences in spectral
and spatial characteristics led to a proliferation of outcomes that depicts a nice picture of the potential
and limitations of each. This paper provides a review of satellite remote sensing applications for
water extent delineation and flood monitoring, highlighting trends in research studies that adopted
freely available optical imagery. The performances of the most common spectral indices for water
segmentation are qualitatively analyzed and assessed according to different land cover types to
provide guidance for targeted applications in specific contexts. The comparison is carried out by
collecting evidence obtained from several applications identifying the overall accuracy (OA) obtained
with each specific configuration. In addition, common issues faced when dealing with optical imagery
are discussed, together with opportunities offered by new-generation passive satellites.

Keywords: multispectral satellite imagery; water detection; flood mapping; multispectral indices

1. Introduction

Remote sensing techniques play a crucial role in monitoring water bodies and assessing
river dynamics, providing effective support to surface water management. Considering
the growing availability of medium–high-resolution and free remote sensing data, both
active and passive sensors onboard different satellites are being extensively used for water
segmentation and flood mapping. Satellite data are, in fact, of particular interest when
observations over wide areas are necessary, for example, to assist with large-scale flood
phenomena [1]. Active and passive satellite sensors operate in the microwave segment
of the electromagnetic spectrum, while passive satellites include both sensors operating
in the microwave spectrum segment and in the portion from the visible to the thermal
infrared (optical imagery). Although active microwave sensors provide their own source of
illumination, thus being in operation day and night and under all weather conditions, the
use of passive multispectral sensors is relatively straightforward [1], and observations are
easily interpretable. The availability of several spectral bands with different wavelengths,
in fact, makes it possible to derive valuable information from each band and surfaces’
spectral signatures, or through direct interpretation of true- and false-color composites. In
addition, with simple math algebra, vegetation indices exploit the reflectance characteristics
of different objects.

Multispectral images have been successfully used for water body and river monitoring,
change detection, and water feature extraction [2–5]. In addition, when cloud cover does not
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represent a major issue, the application of optical remote sensing to maps of flooded areas [6–8]
offers the possibility of quickly and reliably identifying hazardous areas and supporting
the implementation of flood coping strategies and response activities. In this context, the
use of Unmanned Aerial Systems (UASs) may also provide high-resolution data in the
presence of clouds, given the low-altitude range of these systems that allow flying below
the cloud layer to be achieved (e.g., [9,10]). Moreover, the advent of Global Navigation
Satellite System (GNSS) and, in particular, the Cyclone GNSS (CYGNSS) constellation,
has recently demonstrated the potential of passive microwave instruments to estimate
flood inundation and map inland surface water [11–16]. In fact, CYGNSS benefits from the
L-band microwave capabilities of penetrating cloud cover and low–medium vegetation
density, thus avoiding scattering problems due to precipitation and clouds [17].

Multispectral satellite data have also been recently proven to be suitable for monitoring
the long-term spatio-temporal dynamics of river planform morphology and vegetation
coverage, as well as land use/land cover evolution [18–21]. Boothroyd et al. [18] used
vegetation indices derived from multispectral images to assess changes in the wetted
river planform morphology and vegetation coverage along Po River Basin (Italy) with a
multi-temporal Landsat image analysis (from 1988–2018). Similarly, Henshaw et al. [19]
used Landsat scenes to determine the spatio-temporal trends of vegetation extent and
channel position of six different sites along Tagliamento River (Italy). The incorporation of
morphological processes into the evaluation of flood hazard has been carried out over both
long- [18,19] and short-term timescales [22] and has shown to be of relevance for flood risk
management. In addition, the hydrodynamics characteristics of the flow during a flooding
event can modify vegetation coverage and flow resistance through erosion and sediment
deposition [23,24]. In this regard, the information that can be inferred from optical remote
sensing data represents a unique opportunity for monitoring planform, vegetation, and
land cover changes, improving and supporting flood hazard predictions and modelling.

Over the past few years, different methods for water segmentation and flooded area
mapping using multispectral satellite images have been proposed in the literature. These
are generally divided into single-band and multi-band approaches. While the former
discriminates water features from other surfaces by thresholding a single band, usually the
near infrared (NIR), which is highly absorbed by water, the latter uses a combination of
two or more bands for deriving spectral indices. The multi-band method, also called water
index method, is a promising approach for surface water mapping both in data-rich and
data-poor catchments [25]. It performs better than the single-band method in detecting
land surface water, since it exploits differences in the reflectivity of the selected bands [26].

Multispectral remote sensing-derived indices allow flooded areas and water bodies to
be quickly and effectively recognized. However, this ability can be highly compromised by
the presence of scattering noise, built-up areas, clouds, and shadows. In addition, spectral
index performances can be different according to the geomorphological conformation of
the territory, as well as the land cover conditions, i.e., crops, forests, artificial surfaces, or
open water.

In this context, this paper aimed to gain insights into the state of the art of multispectral
satellite remote sensing and approaches to water extent delineation and flood mapping. In
detail, the review aimed to achieve the following:

(a) Providing an overview of the current optical satellites used in flooded area and
wetland inundation mapping, with a focus on some of the medium–high-spatial
resolution sensors that offer free-of-charge data.

(b) Highlighting the potential and limitations of the use of spectral indices for flood
mapping and water segmentation, with particular attention to the land cover setting.

A systematic review to address the first objective was initially carried out. The analysis
of the literature allowed us to identify the most frequently used sensors in flood detection
studies, as well as the main approaches and advances. Then, to address the second objective,
a further investigation of the literature was conducted to identify relevant studies that used
spectral indices for water extent delineation and flooded area detection. Several authors compared



Remote Sens. 2022, 14, 6005 3 of 22

the use of different water index methods for both surface water body extraction [5,27–29] and
flood mapping [30–32]. Therefore, we summarized the main outcomes from the literature,
identifying the most reliable indices to detect the presence of water (i.e., open water or
flooded areas). In addition, a further analysis of the selected literature was conducted
to classify the performances of the most used multispectral indices according to the land
cover conditions, with the aim to provide guidance for targeted applications of flood
mapping using multispectral remote sensing. The spectral indices considered included,
among others, the Normalized Difference Vegetation Index (NDVI [33]), the Normalized
Difference Water Index (NDWI [34]), and the Modified Normalized Difference Water Index
(MNDWI [26]).

The manuscript is organized into five sections, including the introduction. Section 2
describes the main characteristics of the most common optical satellites that offer free-
of-charge data to provide a summary of their characteristics and data accessibility. The
methodology adopted to conduct the proposed systematic review in the context of flood
detection and hazard mapping from selected optical remote sensors is also illustrated,
and an analysis of the main trends emerging from this review is presented. Section 3
introduces the most used spectral indices for the extraction of surface water extent and
describes the main characteristics of a performance assessment for image classification and
the corresponding error metrics. In addition, the investigation of the performances of the
selected indices, based on evidence from the literature, is presented, and the classification
of the accuracy values, according to the land cover conditions, is proposed. In Section 4, the
main outcomes are described; finally, in Section 5, the conclusions are drawn, and future
research directions are discussed.

2. Multispectral Satellite Remote Sensing for Flooded Area and Wetland
Inundation Mapping

Since the mid-1970s, several optical satellites have been monitoring the Earth’s surface.
The Landsat program represents the oldest and longest-running satellite mission, operating
since July 1972, when Landsat 1 was first launched. Over the years, new satellites equipped
with different instruments were placed in orbit, and the most recent mission, represented by
the Landsat 9 satellite, was recently launched in September 2021. Satellites still in operation
are Landsat 7, Landsat 8, and the aforementioned Landsat 9. Optical sensors onboard
these satellites capture images at different spectral (i.e., wavelengths and bandwidths) and
spatial resolutions, with a common revisit time of 16 days.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument operates
on the Terra and Aqua satellites, respectively launched in December 1999 and May 2002,
and captures images in 36 spectral bands. Despite its coarse spatial resolution (see Table 1),
MODIS has a daily revisit time, which is one of the most important factors when data
obtained during the flood event are needed for flood extent delineation [35].

Sentinel-2 is a constellation formed by two twin satellites, S-2A and S-2B, respectively
launched in June 2015 and March 2017, that together ensure a revisit time of 5 days. A
multispectral instrument (MSI) mounted on Sentinel-2 provides images in 12 spectral bands
(see Table 1). Together with Landsat, Sentinel-2 constitutes the family of medium–high
spatial resolution multispectral satellites.

The National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very
High-Resolution Radiometers (AVHRR) sensor has been equipped on polar orbiting
weather satellites since 1978. Since then, different instruments onboard several satel-
lites have been imaging the Earth. The last version, AVHRR/3, currently operating on
NOAA-15, -18, and -19 satellites, acquires daily images in six spectral bands (from the
visible to the infrared portions of the electromagnetic spectrum) with a spatial resolution of
1.1 km, making it possible to perform flood mapping at very large scales.
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Table 1. Main spectral and spatial resolution characteristics of the selected satellites: Landsat 4- and 5-Thematic Mapper (TM), 7-Enhanced Thematic Mapper Plus
(ETM+), 8-Operational Land Imager (OLI), Sentinel-2 multispectral instrument (MSI), and Terra–Aqua Moderate Resolution Imaging Spectroradiometer (MODIS).
Note that only bands commonly used in water detection methods are reported. (W and R stand for wavelength and spatial resolution, respectively).

Landsat 4- , 5-TM Landsat 7-ETM+ Landsat 8-OLI Sentinel-2 MSI Terra–Aqua MODIS

Band Band
Number W (µm) R (m) Band

Number W (µm) R (m) Band
Number W (µm) R (m) Band

Number W (µm) R (m) Band
Number W (µm) R (m)

Blue Band 1 0.45–0.52 30 Band 1 0.45–0.52 30 Band 2 0.45–0.51 30 Band 2 0.46–0.52 10 Band 3 0.46–0.48 500

Green Band 2 0.52–0.60 30 Band 2 0.52–0.60 30 Band 3 0.53–0.59 30 Band 3 0.55–0.58 10 Band 4 0.55–0.57 500

Red Band 3 0.63–0.69 30 Band 3 0.63–0.69 30 Band 4 0.64–0.67 30 Band 4 0.64–0.67 10 Band 1 0.62–0.67 250

NIR Band 4 0.76–0.90 30 Band 4 0.77–0.90 30 Band 5 0.85–0.88 30 Band 8 0.78–0.90 10
NIR 1

Band 2 0.84–0.88 250

NIR 2
Band 5 1.23–1.25 500

SWIR 1 Band 5 1.55–1.75 30 Band 5 1.55–1.75 30 Band 6 1.57–1.65 30 Band 11 1.57–1.65 20 Band 6 1.63–1.65 500

SWIR 2 Band 7 2.08–2.35 30 Band 7 2.09–2.35 30 Band 7 2.11–2.29 30 Band 12 2.10–2.28 20 Band 7 2.11–2.16 500

Data
Access

USGS EarthExplorer data portal [36]
https://earthexplorer.usgs.gov/

(accessed on 4 February 2022)

Sentinel Scientific Data Hub [37]
https://scihub.copernicus.eu/
(accessed on 4 February 2022)

USGS EarthExplorer data portal [36]
https://earthexplorer.usgs.gov/ (accessed

on 4 February 2022)
NASA Earthdata Search [38]

https://search.earthdata.nasa.gov/search
(accessed on 4 February 2022)
LAADS DAAC Archive [39]

https://ladsweb.modaps.eosdis.nasa.gov/
(accessed on 4 February 2022)

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://search.earthdata.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/
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These are examples of passive remote sensing programs offering free-of-charge data.
In this work, we reviewed the use of medium–high-spatial resolution imagery for flooded
area and wetland inundation mapping. In addition, as reviewed by Zhao et al. [40], Sentinel,
Landsat, and MODIS are the most significant Earth observation satellite missions, based
on the remote sensing impact index (RSIF) built by the authors, that will likely still be on
the front line for environmental monitoring. For these reasons, we focused on the Landsat,
MODIS, and Sentinel-2 satellites in our review.

Table 1 illustrates the main spectral and spatial resolution characteristics of Landsat
4- and 5-Thematic Mapper (TM), Landsat 7-Enhanced Thematic Mapper Plus (ETM+),
Landsat 8-Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Sentinel-
2 MSI, and Terra–Aqua MODIS instruments, with a particular focus on spectral bands
commonly used in surface water monitoring studies. In addition, references and links to
the data portals from which it is possible to visualize and freely download multispectral
images from these satellites are provided in the same table.

2.1. Trends in Using Multispectral Imagery for Flood Mapping

The international Scopus academic database was used to acquire the relevant literature
in the field of flood mapping extracted from free-of-charge optical satellite data. The
multispectral sensors considered for the review were the Landsat, Sentinel-2, and MODIS
satellites. An initial exploration was carried out using a list of keywords for each satellite.
An example of search instructions for the Landsat program is the following: (flood AND
mapping AND Landsat) OR (floodplain AND mapping AND Landsat) OR (flood AND
hazard AND mapping AND Landsat) OR (flood AND detection AND Landsat). A total
of 1153 documents were initially found in the database. A series of exclusions criteria
were used to limit the search results only to journal articles, conference papers, and book
chapters in the English language published in the last twenty years. All the relevant
literature on flood mapping using multispectral imagery accessible to the authors was
included. A further screening of the titles and abstracts of the selected papers was carried
out to exclude articles that were not a topic of interest for the research study. Finally,
multi-sensor approaches (i.e., those including a combined use of, for example, optical
and radar data; optical imagery acquired with different sensors, such as Landsat and
Sentinel-2, Landsat and MODIS, etc.; optical images and other sensors or data, such as
National Polar-orbiting Partnership Visible Infrared Imager Radiometer Suite (NPP-VIIRS)
and Soil Moisture Active Passive (SMAP); or satellite data integrated with hydrological
modelling) were not considered, since the focus of this analysis was to only address single-
sensor applications. The above criteria led to a selection of about 146 articles from 2002 to
2021 published in high-impact journals in the field of hydrological processes and remote
sensing (e.g., MDPI’s Remote Sensing, Elsevier’s Remote Sensing of Environment and Journal
of Hydrology, and Springer’s Natural Hazards).

Figure 1 describes the number of studies exploiting specific satellite products for
flooded area and wetland inundation mapping. Relevant documents that met the search
criteria were found starting from 2002, 2008, and 2018 onwards for Landsat, MODIS, and
Sentinel-2 data, respectively. Therefore, it is worth highlighting that the dates reported in
the figure do not refer to the years of the launch of each. It is interesting to remark that
the total number of studies (dashed black line) increased significantly over time thanks to
the increased availability of free-of-charge data. Considering that Landsat is the longest-
running remote sensing system, it also represents the most used dataset. MODIS and
Sentinel-2 are more recent missions, and their trends are not clearly detectable. Nevertheless,
it seems that MODIS initially received a good level of attention, while the number of studies
exploiting this product started to slightly decrease after 2012. On the other hand, the history
of Sentinel-2 has still to be written, since the 2B instrument started to operate only in 2017,
and few documents on the topic of interest were found from 2018 onwards.
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2.2. Flood Mapping Approaches Using Optical Remote Sensing

Satellite observations from optical sensors have long been used for river monitoring
and to assess inundation dynamics in the pre- and post-flood emergency. In detail, flooded
areas and wetland inundations have been mapped using Landsat [41–48], MODIS [49–52],
and Sentinel-2 imagery [53–56] in different contexts, including urban [57,58] and coastal
environments [59–62]. Satellite-derived flood maps also represent support for emergency
responses and the evaluation of flood severity and costs. Several studies assessed post-flood
damages to infrastructures, built-up, and agricultural areas [63–68], as well as the estimation
of flood impacts on natural environments and floodplain ecosystems (e.g., [61,62]).

Different methodologies were applied to detect flooded areas. A comprehensive
review of optical images classification methods was carried out by Gómez et al. [69] and
can also be found in Radočaj et al. [70] and Foroughnia et al. [71].

Most of the studies adopted segmentation approaches to discriminate between water
and non-water pixels. They included density slicing to a single band by visually inspecting
the grayscale histogram of the satellite images or thresholding the different band ratios or
compositions that form the spectral indices. Sims and Thoms [72] analyzed the vegetation
response to floodplain inundation using Landsat TM images. The authors applied a ratio
of Band 1 to Band 7 to map deep open water, while the change detection technique applied
to Band 5 for processing preflood images and those acquired during the flood event was
used to identify shallow water. NDVI maps were then used to study the relation between
vegetation growth and flood frequency, from which it emerged that where vegetation
was more vigorous, occurring where high NDVI values could be detected, flooding was
registered less frequently. Frazier and Page [73] applied density slicing to Landsat TM
infrared Band 5 to classify water and non-water regions and relate wetland inundation
with river flood peak discharge. By observing Digital Number (DN) values in the red band
of MODIS images, Thito et al. [48] identified threshold values for classifying inundated and
non-inundated areas to ultimately define flooding frequency and duration from 2001 to
2012 in Okavango Delta (Botswana, Africa). Similarly, image thresholding was applied by
Ludwig et al. [55] to multi-temporal Sentinel-2 imagery for large-scale wetland mapping
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mainly based on spectral indices. Thresholding represents an easily implemented technique
for flood mapping based on the selection of a single appropriate threshold value from
a bimodal intensity histogram that partitions the image into two classes, i.e., water and
non-water. One of the most common thresholding approaches is Otsu’s method, aimed at
maximizing the inter-class or, similarly, minimizing the intra-class variance [74]. Difficulties
arise because in most of the cases, the histograms are not bimodal, but several classes are
present in the flooded scene, and disturbance factors, such as dense vegetation canopies,
do not allow one to identify the presence of water beneath them [71].

Supervised classification was also found to be one of the most widely used approaches for
flood extent delineation and/or land cover/land use classification to assist with water detection.
This method includes maximum likelihood (e.g., [66,75]), random forest (e.g., [42,76–78]), and
support vector machine (e.g., [79,80]). Despite the large use of supervised classifiers,
their use requires a priori knowledge of the classes to be identified. Such information
assumes the form of large training datasets that must adequately describe the classification
problem and contain representative class samples [20,69,70]. An alternative is represented
by unsupervised approaches, mainly based on Iterative Self-Organizing Data Analysis
(ISODATA) clustering [81]. For example, Thomas et al. [46] identified inundated areas
in Macquarie Marshes in central–eastern Australia, using Landsat Multispectral Scanner
System (MSS), TM, and 7-ETM+ images over 28 years and applying ISODATA, while Jung
et al. [82] used the same classification algorithm to extract flood extent from Landsat 5-TM
data and estimate the relationship between the flood discharge and the elevation extracted
using a Digital Elevation Model (DEM) at the flood extent boundaries. Since unsupervised
methods do not require training samples, they are especially adopted when there is scarce
knowledge about the classification problem [69] and can easily be transferred to different
contexts [20].

In many studies, remote sensing data and derived flood extents were integrated or
used in conjunction with ancillary data to help to avoid flooded area underestimation and
misclassifications, especially caused by vegetation and forest cover [62]. Auxiliary informa-
tion included DEMs and Light Detection and Ranging (LiDAR) products (e.g., [62,65,83–85]),
or derived geomorphic indices, such as the Height Above the Nearest Drainage index
(HAND [86]; also defined as the elevation to the nearest stream, H) and the Geomorphic
Flood Index (GFI [87,88]). Totaro et al. [89] carried out a comparative analysis of geomor-
phic descriptors (i.e., H and the GFI) and satellite-based spectral indices derived from
Landsat 8-OLI images for flood-prone area delineation. More recently, Mehmood et al. [90]
implemented an innovative Flood Mapping Algorithm (FMA) on the cloud platform Google
Earth Engine (GEE) using the MNDWI for water classification and filtering dark and steep
vegetated hilly areas with NDVI and HAND maps, respectively.

Finally, from the proposed review, it was interesting to note some emerging trends
in the last few years, especially the increasing interest in cloud computing for processing
remote sensing products. The already mentioned GEE, in fact, allows data visualization
and the analysis of ready-to-use satellite data and geospatial products to be performed at
the planetary scale [91], and these can be collected from a vast archive, including Landsat
imagery since 1982, and MODIS and Sentinel collections. Since 2016, several authors have
developed tools and automated flooded area mapping algorithms on GEE to delineate the
extent of the event or generate time-series flood maps [90,92–95]. Others just exploited
the GEE environment capabilities of managing large amounts of data and offering parallel
computations to process satellite data [96,97].

A summary of the references considered herein that suggest different methods for
flood monitoring and the adopted datasets are given in Table 2.
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Table 2. Sample of references, in chronological order, for flooded area and wetland inundation
mapping using Landsat, MODIS, or Sentinel-2 images.

Satellite/Sensor Sample References

Landsat (MSS, TM, ETM+, and OLI)

Sims and Thoms [72]; Zhou et al. [98]; Wang et al. [62]; Hudson and Colditz [43]; Wang [61]; Gianinetto
et al. [65]; Wolski and Murray-Hudson [99]; Villa and Gianinetto [68]; Demirkesen et al. [75]; Frazier
and Page [73]; Dey et al. [79]; Jung et al. [44]; Thomas et al. [46]; Ho et al. [100]; Jung et al. [82]; Sar
et al. [101]; Thomas et al. [47]; Chignell et al. [41]; Díaz-Delgado et al. [102]; Li et al. [57]; Tulbure
et al. [78]; Kumar and Acharya [84]; Tang et al. [95]; Nandi et al. [45]; Totaro et al. [89]; Li et al. [58];
Sajjad et al. [67]; Inman and Lyons [93]; Hardy et al. [92]; Ghansah et al. [42]; Farhadi and
Najafzadeh [77]; Li et al. [94]; Mehmood et al. [90].

MODIS (Aqua/Terra)
Timár et al. [52]; Islam et al. [50]; Yan et al. [60]; Amarnath et al. [49]; Haq et al. [66]; Zhang et al. [80];
Kwak e al. [85]; Ogilvie et al. [51]; Atif et al. [63]; Thito et al. [48]; Coltin et al. [96]; Colditz et al. [59];
Fuentes et al. [97].

Sentinel-2 (MSI) Kordelas et al. [53]; Cuca and Barazzetti [64]; Kordelas et al. [54]; Ludwig et al. [55]; Sadek and Li [103];
Solovey [56]; Esfandiari et al. [9].

3. Multispectral Indices for Water Segmentation

Spectral indices are a combination of two or more spectral bands through which the
water class is detected and separated from other features by exploiting the reflectance
characteristics of different bands. Since 1974, several spectral indices have been proposed
in the literature, each formed by a different band composition to enhance water features
from other objects. The NDVI was introduced by Rouse et al. [33] to detect the vegetation
greenness using Landsat 1-MSS images. This index exploits the contrast between the
reflectance in the infrared and red bands, where negative values indicate the presence of
water. To enhance water features, McFeeters [34] proposed the NDWI, which uses the green
and NIR bands. In this case, the index assumes positive values in water regions. Using
the same name, Gao [104] introduced an index that uses the NIR and SWIR1 bands. To
avoid confusion, Gao’s NDWI was later renamed as Normalized Difference Moisture Index
(NDMI) by Xu [26]. The same author, using Landsat TM images, developed a modified
version of the NDWI, the so-called MNDWI, which exploits reflectance differences between
the green and SWIR1 bands. This index was successfully introduced to better discriminate
water surfaces in regions where built-up land areas dominate the background [26].

Other features can lead to the misclassification of water pixels, including dark surfaces
and the presence of shadow, which can be predominant especially in mountainous areas. To
reduce such environmental noises and improve surface water mapping, Feyisa et al. [105]
proposed an Automated Water Extraction Index (AWEI). Two indices were formulated by
the authors to distinguish situations in which shadow does not represent a major problem
(AWEInsh) from those in which shadows and dark surfaces predominate (AWEIsh).

A modification of the MNDWI was introduced by Ji et al. [106] for Landsat 7-ETM+
and MODIS sensors. The author proposed to substitute the Landsat 7-ETM+ SWIR1 band
with the SWIR2 band to form an index named NDWIL2,7. The same substitution was
proposed for the MODIS SWIR1 band, replaced by the SWIR2 band to form the NDWIM4,7.
Hereinafter, the index formed by the green and SWIR2 bands, regardless of the sensor, is
referred to as MNDWI7, as proposed by Colditz et al. [59].

A further investigation of the literature was carried out to identify the most employed
spectral indices derived from Landsat, Sentinel-2, and MODIS data. In particular, the NDVI,
NDWI, NDMI, MNDWI, AWEIsh, AWEInsh, and MNDWI7 were found to be applied to
both flooded area detection and water body mapping, while the Water Ratio Index (WRI)
introduced by Shen and Li [107] for Landsat ETM+ imagery, was also found to be used
in surface water delineation studies. Among these indices, the most frequently used are
the NDWI (around 65.2% of applications with Landsat, 21.4% with Sentinel-2, and 16.1%
with MODIS) and the MNDWI (66.7% of use with Landsat and 16.7% with both Sentinel-2
and MODIS). In Figure 2, the percentages of use of the MNDWI (left panel) and NDWI
(right panel) from 2002 to 2021 for each satellite are shown. Similar trend patterns on their
applications with Landsat, Sentinel-2, and MODIS were found both for the MNDWI and
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NDWI, i.e., an increasing use of Landsat and Sentinel-2 (pink and green lines, respectively)
and a decreasing interest in spectral indices for MODIS (blue line) since 2015.
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Table 3 illustrates the indices selected after an in-depth screening of the available
documents. For each index reported in the table, both the general formula with the original
bands composition from the authors that first proposed it and the specific formula for each
selected sensor are provided.

Table 3. Spectral index formulas according to the original band’s composition and formulation for
each selected sensor.

NDVI NDWI NDMI MNDWI WRI MNDWI7

Reference Rouse et al. [33] McFeeters [34] Gao [104] Xu [26] Shen and Li [107] Ji et al. [106]
NIR−RED
NIR+RED

GREEN−NIR
GREEN+NIR

NIR−SWIR 1
NIR+SWIR 1

GREEN−SWIR 1
GREEN+SWIR 1

GREEN+RED
NIR+SWIR 1

GREEN−SWIR 2
GREEN+SWIR 2

In
de

x
Fo

rm
ul

a

Landsat
5-TM

7-ETM+
B4−B3
B4+B3

B2−B1
B2+B1

B4−B5
B4+B5

B2−B5
B2+B5

B2+B3
B4+B5

B2−B7
B2+B7

Landsat
8-OLI

B5−B4
B5+B4

B3−B5
B3+B5

B5−B6
B5+B6

B3−B6
B3+B6

B3+B4
B5+B6

B3−B7
B3+B7

Sentinel-2
MSI

B8−B4
B8+B4

B3−B8
B3+B8

B8−B11
B8+B11

B3−B11
B3+B11

B3+B4
B8+B11

B3−B12
B3+B12

Terra–Aqua
MODIS

B2−B4
B2+B4

B4−B2
B4+B2

B2−B5
B2+B5

B4−B6
B4+B6

B4+B1
B2+B6

B4−B7
B4+B7

AWEInsh AWEIsh

Reference Feyisa et al. [105] Feyisa et al. [105]

4·(GREEN − SWIR 1)− 0.25·(NIR + 2.75·SWIR 2) BLUE + 2.5·GREEN − 1.5·(NIR + SWIR 1)− 0.25·SWIR 2

In
de

x
Fo

rm
ul

a

Landsat
5-TM

7-ETM+
4·(B2 − B5)− 0.25·(B4 + 2.75·B7) B1 + 2.5·B2 −1.5·(B4 + B5)− 0.25·B7

Landsat
8-OLI 4·(B3 − B6)− 0.25·(B5 + 2.75·B7) B2 + 2.5·B3 − 1.5·(B5 + B6)− 0.25·B7

Sentinel-2
MSI 4·(B3 − B11)− 0.25·(B8 + 2.75·B12) B2 + 2.5·B3 − 1.5·(B8 + B11)− 0.25·B12

Terra–Aqua
MODIS 4·(B4 − B6)− 0.25·(B2 + 2.75·B7) B3 + 2.5·B4 − 1.5·(B2 + B6)− 0.25·B7
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In the following sections, a summary of the performances of each selected index
according to evidence derived from the literature review, as well as some indications about
their applicability in different land cover conditions, is reported. To provide an overview
of spectral index performances in quantitative terms, common error metrics used in image
classification accuracy assessment are briefly reviewed in the following.

3.1. Performance Assessment

Thematic maps obtained from remote sensing data need to be verified in terms of
quality, or accuracy, to check to which extent they correspond to reality. According to
Stehman and Czaplewski [108], accuracy assessment follows a detailed protocol that
includes three main components: (a) design of the reference sample, (b) response design to
determine the reference classification, and (c) analysis of the classification accuracy through
the estimation of error metrics.

The most common evaluation technique to perform an accuracy assessment of image
classification (component c) of the assessment protocol is the confusion or error matrix, to
be chosen as the standard method for checking the accuracy of remote sensing-derived
maps [109]. A confusion matrix is the starting point for evaluation purposes in which the
classified and reference maps are directly compared in a simple two-by-two table where
diagonal values represent the number of correctly classified pixels, either true-positive
(TP) or true-negative (TN) data, while off-diagonal values indicate misclassifications (i.e.,
false-positive (FP) and false-negative (FN) values). The confusion matrix allows several
descriptive metrics to be computed, including the overall accuracy (OA), which describes
the proportion of correctly classified pixels; the user’s accuracy (UA), also called reliability
or precision, which describes the number of pixels assigned to class i that in fact correspond
to that class in the reference image; and the producer’s accuracy (PA), also called sensitivity,
recall, or true-positive rate, which represents the number of pixels corresponding to class j
in the reference map and classified as class j in the classified image. In addition, the Kappa
coefficient, κ, can be derived from the confusion matrix considering the overall proportion
of agreement, p0, which corresponds to the overall accuracy, and the chance agreement, pc.
This coefficient expresses the proportion of agreement between the classified and reference
maps after removing the agreement that can occur by chance [110], and it also takes into
consideration off-diagonal values. It ranges between −1 and 1, respectively indicating no or
a perfect agreement, while a value equal to zero indicates agreement occurring by chance.

In general, surface water and flooded area delineation maps are in the form of binary
images, in which pixels are either marked as water/flooded or non-water/non-flooded.
Therefore, the confusion matrix is composed of two classes. Assuming that Table 4 is the
result of a classification process for surface water detection and that the aim is to assess the
accuracy of the derived water delineation map, the aforementioned descriptive statistics
for the water class are expressed according to the formula reported in Equations (1)–(5).

OA (%) = p0 =
TP + TN

T
·100, (1)

UA (%) =
TP

CNW
·100, (2)

PA (%) =
TP
RW

·100, (3)

pc(%) =
(RW ·CW) + (RNW ·CNW)

T2 ·100, (4)

κ =
p0 − pc

100 − pc
, (5)

where T is the total number of pixels in the image and CW and CNW represent the total
number of pixels respectively corresponding to water and non-water classes in the classified
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map, while RW and RNW represent the total number of pixels respectively corresponding
to water and non-water classes in the reference map.

Table 4. Example of a confusion matrix for water pixel classification. (CW and CNW represent the
total number of pixels respectively corresponding to water and non-water classes in the classified
map, while RW and RNW represent the total number of pixels respectively corresponding to water
and non-water classes in the reference map. T is the total number of pixels in the image.)

Reference Map

Class Water Non-Water Row Total

Classified Map Water TP FP CW
Non-water FN TN CNW

Column total RW RNW T

3.2. Investigation of Spectral Index Performances

In our investigation, we noticed that descriptive metrics are not always all used
simultaneously to assess the performances of multispectral indices, with OA being the most
commonly used. Therefore, to have a homogeneous and comparable metric among different
studies, a further screening of the literature was necessary to take into consideration
those that at least used OA as a performance metric. This was considered as a summary
statistic for assessing the ability of the selected spectral indices to detect water pixels.
The performance assessment was separately carried out for studies on flood mapping
and surface water detection (i.e., water body mapping) that employed either Landsat
5-TM, Landsat 7-ETM+, Landsat 8, Sentinel-2, or MODIS or presented a comparison of
more than one dataset. Among flooded area detection studies (42% of total studies), for
example, Boschetti et al. [30] proposed a comparative analysis of several spectral indices to
map flooded rice cropping systems using MODIS data. Validation on pure water pixels
showed that among 11 selected indices, the best mapping accuracy was achieved by those
based on the SWIR and visible bands, particularly the MNDWI (OA = 97%). Similarly,
Munasinghe et al. [32] compared different inundation mapping methodologies, including
supervised and unsupervised classification techniques, a change detection approach, and
two spectral indices, i.e., the MNDWI and NDWI, based on Landsat 8-OLI satellite imagery.
Despite the fact that other methods led to better performances, both indices achieved
satisfactory results (OA values equal to 77.3% and 77.1% for the MNDWI and NDWI,
respectively). Asmadin et al. [6] assessed the performances of seven water index algorithms,
including, among others, the MNDWI, NDWI, NDMI, NDVI, and AWEInsh, derived from
Sentinel-2A MSI and Landsat 8-OLI for coastal surface inundation mapping. In this case,
indices from both sensors showed good accuracy (OA values above 94%). Using Sentinel-2
MSI data, Li et al. [111] performed an MNDWI-based segmentation to separate water and
land features to ultimately characterize extreme flood impacts on the channel–floodplain
morphology and sediment regime of the river system. The classification accuracy achieved
96%. More recently, Li et al. [94] combined Landsat images with precipitation data and
high-resolution satellite imagery in the GEE environment to evaluate channel–floodplain
dynamics. The authors used the MNDWI to extract the flooding extent, based on visual
interpretation, achieving 93% of accuracy.

A higher number of studies that employed multispectral indices were found for
surface water body detection (58% of total studies). One of the most significant works is the
one proposed by Li et al. [112], in which Advanced Land Imagery (ALI) data and Landsat
5-TM and ETM+ images were selected to compare land surface water mapping based on
the MNDWI, NDWI, and MNDWI7 in three different study sites. Despite the aim of the
authors being to demonstrate the superiority of ALI data, Landsat imagery succeeded in
delineating water features in all three regions. In particular, the indices based on the SWIR
bands (i.e., the MNDWI and MNDWI7) showed very high and similar performances (OA
values equal to 94.6% and 93.9% on average, respectively), while the accuracy of the NDWI
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was slightly lower (OA = 92% on average). Zhou et al. [29] evaluated the performances
of six spectral indices, including the NDWI, MNDWI, AWEIsh, and AWEInsh, derived
from three different sensors, i.e., Landsat 7-TM+, Landsat 8-OLI, and Sentinel-2 MSI, for
water body mapping in Poyang Lake Basin, China. The authors showed the superiority of
Landsat 8 and Sentinel-2 over Landsat 7 data and the higher performance of the NDWI in
the selected study region (OA values equal to 95.7% and 95.6% for Landsat 8 and Sentinel-2,
respectively). Ogilvie et al. [5] applied the spectral index segmentation method using
Landsat imagery to map small lakes (from 1 to 30 ha) in Tunisia. The selected indices for
validation purposes using Landsat 8 scenes of six different lakes included the MNDWI,
NDWI, NDMI, and NDVI. The MNDWI had higher performances in four out of six cases
(OA values above 89%), while in the other two sites, the NDWI and NDVI performed better
(OA values equal to 80% and 88.1%, respectively).

To identify the best-performing spectral indices, we carefully analyzed the selected
literature. No distinction was made among different satellite sensors, while accuracy values
were evaluated separately for surface water detection and flooding extent delineation. The
selected spectral indices for the performance assessment were the MNDWI, NDWI, NDMI,
NDVI, AWEInsh, AWEIsh, WRI, and MNDWI7. We summarized the performances of each
index with the boxplots reported in Figures 3 and 4.
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As regards flood mapping studies, the most used spectral indices were the MNDWI,
NDWI, and NDMI (39.4%, 30.3%, and 9.1% of use among flood studies, respectively). Only
two studies were found that employed the WRI and NDVI (12.2%) and one study that used
the AWEInsh, AWEIsh, and MNDWI7 (9%). Figure 3 illustrates the performances of these
indices expressed in terms of OA. Among the MNDWI, NDWI, and NDMI, the former was
shown to be the best index both in terms of OA median value (93.03%), represented by the
horizontal blue line in the box, and the spread of the data. The NDMI had a median value
very close to that of the MNDWI (93%); however, the data were more spread out. The same
occurred for values of the NDWI, whose median was equal to 87.85%.
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Regarding surface water detection, the MNDWI and NDWI were the most common
indices (27.8% and 26.4% of use among open water studies, respectively), followed by the
AWEInsh (15.3%), NDVI (11.1%), AWEIsh (9.7%), WRI (4.2%), NDMI, and MNDWI7 (5.6%).
Figure 4 illustrates the performances of these indices expressed in terms of OA. In this case,
the MNDWI had an OA median value of 95.37% (horizontal blue line in the figure) and
a relatively small spread of the data. However, some outliers were observed. The NDWI
and AWEInsh had similar performances to those of the MNDWI, in terms of median value
(94.41% and 94.80%, respectively), data spreading, and outlier values. The NDMI showed
the lowest median value among all selected spectral indices (median OA value of 88.80%).
Although the highest OA median value was observed for the WRI, only five studies were
available, which may not be sufficient to satisfactory interpret its performance.

It is worthy to underline that the analyses presented herein did not consider the
potential impact of the specific processing workflow adopted by each author. Therefore,
there is a potential impact due to such methodologies that is hard to quantify, but we
do believe that the overall analysis provides an interesting picture of the performances
obtained by exploiting specific indices for the scope of interest.

3.3. Classification According to Land Cover

Multispectral remote sensing-derived indices allow flooded areas and water bodies to
be quickly and effectively recognized. However, their performances can vary according
to the land cover (i.e., crops, forests, and artificial surfaces), which influences the ability
to discriminate between water and other features. To achieve a better understanding of
multispectral applications and identify the spectral index that is best suited for a specific
land cover setting, we qualitatively analyzed spectral index performances by classifying
them according to different land cover types. In particular, the classification was carried
out using the selected literature on flooded area mapping, by reviewing case studies and
their land cover context, while land surface water detection studies clearly included only
one class, i.e., water bodies. In addition, the analyses were carried out on the two spectral
indices that showed the best performances in the previous assessment, i.e., the MNDWI
and NDWI.
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Most of the flood studies included regions in which agricultural areas constitute the
main land cover type (e.g., [7,30,32,113]). Other studies were focused on regions mainly
covered by forests (e.g., [94,111,114]), while only a few included urban areas or artificial
surfaces and wetlands (e.g., [6,115]). Finally, some studies were carried out on the watershed
scale (e.g., [8,29,116]); the performance metrics, thus, referred to the entire study area, and
it was not possible to discriminate among land covers. For this reason, we considered three
main classes to carry out a classification of the performances according to the land cover
settings, namely, crops, forests, and mixed land. The latter indicate heterogeneous areas that
include the contemporary presence of the first two classes, wetlands, urban areas, and/or
artificial surfaces. Figure 5 shows the results of the accuracy evaluation of the MNDWI
and NDWI for the three selected land cover categories. First, as highlighted above, the
MNDWI showed better performances than the NDWI, both in terms of median values and
data variation (left panel). Moreover, the MNDWI always showed the best performance in
all three land cover categories (upper-right panel) compared with the NDWI in the same
categories (lower-right panel). In terms of OA, the median values for the MNDWI were
always above 93% for both crops and mixed lands (94.30% and 93.36%, respectively) and
above 90% for forest areas (91.40%), while for the NDWI, values never exceeded 90%, with
the highest value being observed in forests (88.70%) and the lowest in mixed land (85.98%).
For croplands, the NDWI had an OA median value equal to 87%. As regards data variation,
MNDWI values showed the lowest spread, while higher variation was observed for NDWI
values, with the highest spread of mixed land data.
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different land cover settings, expressed in terms of overall accuracy (OA). The blue line represents
the median value of the general OA values of MNDWI and NDWI (left panel) and of the OA values
of the MNDWI and NDWI in each land cover category (right panels).

For comparison between MNDWI and NDWI performances in flooded area delin-
eation, in Figure 6, the overall accuracy values of the same indices for land surface water
detection are reported. As highlighted above, these two indices performed similarly in
delineating water bodies; however, some outliers could be detected, mainly due to spatial
resolution issues with respect to the water body surface area, turbidity of the water, mixed
pixels, or shadows.
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Figure 6. Results of the performances of the MNDWI and NDWI in detecting land surface water,
expressed in terms of overall accuracy (OA). The blue line represents the median value of the OA of
each index, while red crosses represent outliers.

4. Discussion

In this work, an up-to-date review of remote sensing applications for water mapping
was carried out focusing on satellite remote sensing programs that offer free-of-charge
optical data. Several documents were carefully screened, and the relevant literature on flood
mapping using multispectral imagery was included. To the authors’ knowledge, there is no
similar scientific study focusing specifically on optical satellite imagery for flood mapping
that also provides a review of spectral index performances in different flooded land cover
classes. The most recent literature, in fact, has either focused on reviewing the use of optical
data in the context of land cover classification [69] or on the application of radar data
for inundation extent mapping [117,118]. Others have focused on global remote sensing
satellites for land monitoring [70], Earth observations [34], and flood management [119].

The proposed review allowed us to summarize the actual knowledge on the use of
multispectral remote sensing for flood and water body delineation and to directly compare
the potential and limitations of different spectral indices adopted in water segmentation.

First, we analyzed the literature on flooded area and wetland inundation mapping
with Landsat, MODIS, and Sentinel-2 satellite sensors in the period from 2002 to 2021. As
expected, images from the Landsat program were the most used, since it constitutes the
longest-running land monitoring program, offering a large dataset and allowing analyses
to be conducted over several years. In addition, it offers medium–high resolution images
(30–100 m spatial resolution), especially after the launch of the Landsat 7-ETM+ sensor.
However, the revisit time is 16 days, thus limiting the possibility to have a frame of the
flooded area at the exact moment of the event. Joining the Landsat 8 in orbit, the recent
launch of the Landsat 9 satellite ensures a revisit coverage and data collection every 8 days.
Sentinel-2 also belongs to the medium–high resolution class of satellite sensors (10 to 60 m
spatial resolution) and has the advantage of having a 5-day revisit time; however, data are
only available from 2015. Indeed, we found a relatively low number of studies that used
Sentinel-2 images. Similarly, relevant studies that used data from the MODIS satellite were
only found from 2008. Despite the coarse spatial resolution of the MODIS sensor (250 to
1000 m), it has the great advantage of a daily revisit time.
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An in-depth investigation of the water index method for flooded area mapping and
water body delineation was carried out, from which it was possible to identify the most used
multispectral indices and assess their performances. The performance metric considered for
the analysis was the overall accuracy, while the selected spectral indices were the MNDWI,
NDWI, NDVI, NDMI, AWEInsh, AWEIsh, WRI, and MNDWI7. The results showed that
the best-performing index for flooded area mapping was the MNDWI, thanks to its ability
to better recognize mixed pixels and turbid water (i.e., algae and vegetation). As regards
surface water detection, both the MNDWI and NDWI showed good performances; however,
few outliers were detected. These were mainly found in study areas in which shadows
represented a major issue, influencing MNDWI accuracy, while turbidity problems affected
NDWI performance [2,26,84]. In addition, issues were also related to the spatial resolution
of the sensor used to map the water bodies, which sometimes may have a limited size
that is not easily visible with the current low spatial resolution of sensors (e.g., [5]). Other
sources of errors were also represented by snow presence in the study area [27,120].

Difficulties in water segmentation can largely be connected to the presence of cloud
cover and shadows, but this is not the only limiting factor. In fact, the ability of multispectral
indices to reliably identify water features, especially flooded areas, can also be related to the
land cover. Considering changes in land and vegetation coverage due to dynamic processes
occurring during and after floods, the surface spectral reflectance can be affected. For this
reason, we analyzed the overall accuracy values of the spectral indices according to three
different land cover classes, i.e., crops, forests, and mixed areas. The results showed that for
flood mapping, the MNDWI was found to be the best index in all the land cover settings,
outperforming other indices especially in mixed lands, confirming its ability to discriminate
mixed pixels. The comparison of the accuracy metrics from different research studies had
the general purpose of providing further insight into the sensitivity of multispectral indices
in detecting water features in different flooded land cover types. We are aware that such a
comparison may suffer from some shortcomings, including the fact that validation methods
of satellite-derived flood maps can vary from study to study and be based on different
reference data (e.g., retrieved from satellite products themselves or ground-based), thus
introducing a further source of error. Despite such limitations, the outcomes represent a
potential reference to discriminate between different methods.

Our analyses included all the spectral indices used in flood mapping studies; however,
good performances for detecting water areas could also be achieved using other vege-
tation indices, such as the Water-Adjusted Vegetation Index (WAVI). It was introduced
by Villa [121] to retrieve information about aquatic vegetation and distinguish it from
the terrestrial one. Applications also included the classification of macrophyte commu-
nity types [122] and the detection of vegetation overgrowth processes in reservoirs [123].
Since aquatic vegetation relies on the presence of water, the application of WAVI for flood
mapping studies can have some good potential, not yet explored in the literature.

The accuracy of water extraction methods, the thresholds for image classification,
and the interpretation of results may differ based on the pre-processing chain adopted
to solve issues related, for example, to sensor, atmospheric, and geometric noises [2,105].
Optical imagery, in fact, needs a proper pre-processing stage prior the calculation of water
indices, especially if the available products are in the form of raw DN values. A typical
workflow to pre-process remote sensing data includes radiometric calibration (to convert
DNs to at-sensor spectral radiance, i.e., Top Of Atmosphere - TOA) and atmospheric correc-
tions (to convert at-sensor radiance to at-surface reflectance, i.e., Bottom of Atmosphere
- BOA). In particular, radiometrically and atmospherically corrected Landsat images are
frequently obtained by applying tools available in ENVI image analysis software, such
as the Radiometric Calibration tool and the Fast Line-of-Sight Atmospheric Analysis of
Spectral Hyper-cube (FLAASH) module (e.g., [4,31,67,105,124]), while for Sentinel-2 data
water detection approaches are directly applied to level 1C (TOA products, e.g., [125])
or 2A (BOA products, e.g., [111]). It is worth noting that the investigation of the specific
pre-processing workflow adopted in each work considered in our analyses was not within
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the scope of the present manuscript. Nevertheless, the influence of such methods on the
water index accuracy values requires more in-depth investigations.

5. Conclusions

Optical satellites represent a straightforward instrument for flooded area and water
body mapping. In fact, the multi-band sensors allow the spectral signatures of different
objects to be exploited and information to be derived through a direct visual interpretation
of scenes of specific bands or color composites. In addition, multispectral imagery allows
information about river morphology dynamics and land cover changes to be integrated in
flood risk modelling and provides good spatial resolution for flood management applica-
tions, although with some limitations. The proposed analyses had the more general aims
of identifying sensors and methods most used and best suited for monitoring water-related
processes, highlighting the potentials of spectral indices, and providing some general
practical guidance for targeted applications in different contexts. We believe that this could
be beneficial not only for satellite-based remote sensing but also for UAS-based environ-
mental monitoring, which in addition allows the cloud cover issue that affects optical
remote sensing to be overcome. The analyses presented here can, indeed, be transferred
to airborne-based applications to identify the best methodology that can ensure a reliable
flood-prone area delineation using multispectral sensors. The opportunities offered by
UAS technology are not only related to the possibility of flying below cloud cover layers
and vegetation canopies, as it also enables submeter-level spatial resolution acquisition
necessary for a detailed understanding of flood processes (see [9]). On the other hand, UASs
have the limitation of not being able to survey vast areas. Although this issue could be
overcome with multipleUASs flying simultaneously over the same area, proper regulations
that allow multi-UAS flight to be performed are still lacking. Nevertheless, the potentiality
offered by such a system represents a versatile support to satellite imagery.

Promising applications of passive remote sensing under cloud conditions are also
those from the CYGNSS constellation, which presents the advantages of similar microwave
sensors (such as Synthetic Aperture Radar (SAR)) of seeing through clouds but at higher
temporal resolutions. New-generation passive satellites are, in fact, characterized by a
higher revisit time over land and ocean, which increases the chance to have closer post-flood
observations. The aforementioned CYGNSS is one example, but valuable applications,
still at their dawn, are also those offered, for example, by the family of small satellites of
CubeSat. Although suffering from cloud cover problems, as with optical data, it provides
both high-temporal (nearly daily)- and -spatial-resolution (~3 m) multispectral imagery on
the global scale [126–128].

Future research directions should expand the unprecedent opportunities offered by
the new generation of passive satellites, which could be enhanced by merging data from
multiple sources, thus combining the potential of multispectral imagery at high temporal
resolution (e.g., CubeSat data) with the capabilities of radar data (e.g., CYGNSS). Moreover,
hybrid approaches, also including NOAA AVHRR data, which increase the possibility of ob-
taining cloud-free data, could also be explored. Finally, the advent of emerging technologies
such as hyperspectral imagery (e.g., the recently launched Environmental Mapping and
Analysis Program (EnMAP) German satellite) offers the possibility to better discriminate
the spectral signature of different surfaces (thanks to the many different spectral bands)
and to be used in conjunction with multispectral data, allowing detailed information to be
retrieved, which is not achievable with multispectral data alone. Regarding multispectral
indices, future opportunities can be represented by the application of the WAVI in flood
mapping studies.

In conclusion, both optical and passive microwave satellite sensors will likely continue
to represent a reference for Earth imaging applications, enabling a better understanding
of surface water dynamics. Indeed, European Union’s Earth Observation Copernicus Pro-
gramme makes a large use of these remote sensing technologies for monitoring the Earth’s
surface and supply operational products (e.g., the free-of-charge flood maps produced by
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the Rapid Mapping module of Copernicus Emergency Management Service (CEMS)) to the
end-user community [129].

Author Contributions: Writing—original draft preparation, C.A.; writing—review and editing, C.A.,
S.M., A.G. and V.I.; supervision, S.M., A.G. and V.I. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the COST Action CA16219 “HARMONIOUS—Harmonization
of UAS techniques for agricultural and natural ecosystems monitoring”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schumann, G.J.-P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth

Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230. [CrossRef]
2. Buma, W.G.; Lee, S.-I.; Seo, J.Y. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors 2018,

18, 2082. [CrossRef] [PubMed]
3. Liu, D.; Li, Y. Extraction of Water-Body in Remote Sensing Image Based on Logic Operation. In Proceedings of the 2011 19th

International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–4.
4. Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat

Imagery. Remote Sens. 2014, 6, 4173–4189. [CrossRef]
5. Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface Water Monitoring in Small Water Bodies:

Potential and Limits of Multi-Sensor Landsat Time Series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [CrossRef]
6. Asmadin; Siregar, V.P.; Sofian, I.; Jaya, I.; Wijanarto, A.B. Feature Extraction of Coastal Surface Inundation via Water Index

Algorithms Using Multispectral Satellite on North Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2018, 176, 12032. [CrossRef]
7. Ireland, G.; Volpi, M.; Petropoulos, G.P. Examining the Capability of Supervised Machine Learning Classifiers in Extracting

Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sens. 2015, 7, 3372–3399. [CrossRef]
8. Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood Monitoring and Damage Assessment Using Water Indices: A Case

Study of Pakistan Flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [CrossRef]
9. Manfreda, S.; Ben Dor, E. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, Earth Observation

Series, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323852838.
10. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al.

On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [CrossRef]
11. Chew, C.; Reager, J.T.; Small, E. CYGNSS Data Map Flood Inundation during the 2017 Atlantic Hurricane Season. Sci. Rep. 2018,

8, 9336. [CrossRef]
12. Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation

during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. [CrossRef]
13. Gerlein-Safdi, C.; Ruf, C.S. A CYGNSS-Based Algorithm for the Detection of Inland Waterbodies. Geophys. Res. Lett. 2019, 46,

12065–12072. [CrossRef]
14. Chew, C.; Small, E. Estimating Inundation Extent Using CYGNSS Data: A Conceptual Modeling Study. Remote Sens. Environ.

2020, 246, 111869. [CrossRef]
15. Rajabi, M.; Nahavandchi, H.; Hoseini, M. Evaluation of CYGNSS Observations for Flood Detection and Mapping during Sistan

and Baluchestan Torrential Rain in 2020. Water 2020, 12, 2047. [CrossRef]
16. Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood

Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [CrossRef]
17. Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental

Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [CrossRef]
18. Boothroyd, R.J.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to

Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [CrossRef]
19. Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An Assessment of the Degree to Which Landsat TM Data Can Support

the Assessment of Fluvial Dynamics, as Revealed by Changes in Vegetation Extent and Channel Position, along a Large River.
Geomorphology 2013, 202, 74–85. [CrossRef]

20. Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous Monitoring of the Flooding Dynamics
in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 Datasets. Remote Sens. 2021, 13, 3525. [CrossRef]

21. Soomro, S.; Hu, C.; Boota, M.W.; Soomro, M.H.A.A.; Jian, S.; Zafar, Z.; Li, X. Mapping Flood Extend and Its Impact on Land
Use/Land Cover and Settlements Variations: A Case Study of Layyah District, Punjab, Pakistan. Acta Geophys. 2021, 69, 2291–2304.
[CrossRef]

22. Radice, A.; Rosatti, G.; Ballio, F.; Franzetti, S.; Mauri, M.; Spagnolatti, M.; Garegnani, G. Management of Flood Hazard via
Hydro-Morphological River Modelling. The Case of the Mallero in Italian Alps. J. Flood Risk Manag. 2013, 6, 197–209. [CrossRef]

http://doi.org/10.3390/rs10081230
http://doi.org/10.3390/s18072082
http://www.ncbi.nlm.nih.gov/pubmed/29958481
http://doi.org/10.3390/rs6054173
http://doi.org/10.5194/hess-22-4349-2018
http://doi.org/10.1088/1755-1315/176/1/012032
http://doi.org/10.3390/rs70303372
http://doi.org/10.1016/j.ejrs.2015.03.003
http://doi.org/10.3390/rs10040641
http://doi.org/10.1038/s41598-018-27673-x
http://doi.org/10.3390/rs11070854
http://doi.org/10.1029/2019GL085134
http://doi.org/10.1016/j.rse.2020.111869
http://doi.org/10.3390/w12072047
http://doi.org/10.3390/rs13245181
http://doi.org/10.1038/s41598-018-27127-4
http://doi.org/10.3389/fenvs.2021.657354
http://doi.org/10.1016/j.geomorph.2013.01.011
http://doi.org/10.3390/rs13173525
http://doi.org/10.1007/s11600-021-00677-4
http://doi.org/10.1111/j.1753-318X.2012.01170.x


Remote Sens. 2022, 14, 6005 19 of 22

23. Bertoldi, W.; Drake, N.A.; Gurnell, A.M. Interactions between River Flows and Colonizing Vegetation on a Braided River:
Exploring Spatial and Temporal Dynamics in Riparian Vegetation Cover Using Satellite Data. Earth Surf. Process. Landf. 2011, 36,
1474–1486. [CrossRef]

24. Gurnell, A.M. Trees, Wood and River Morphodynamics: Results from 15 Years Research on the Tagliamento River, Italy. In River
Science: Research and Management for the 21st Century; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; John Wiley &
Sons: Chichester, UK, 2016; pp. 132–155. [CrossRef]

25. Masocha, M.; Dube, T.; Makore, M.; Shekede, M.D.; Funani, J. Surface Water Bodies Mapping in Zimbabwe Using Landsat 8 OLI
Multispectral Imagery: A Comparison of Multiple Water Indices. Phys. Chem. Earth Parts A/B/C 2018, 106, 63–67. [CrossRef]

26. Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

27. Khalid, H.W.; Khalil, R.M.Z.; Qureshi, M.A. Evaluating Spectral Indices for Water Bodies Extraction in Western Tibetan Plateau.
Egypt. J. Remote Sens. Space Sci. 2021, 24, 619–634. [CrossRef]

28. Parihar, S.K.; Borana, S.L.; Yadav, S.K. Comparative Evaluation of Spectral Indices and Sensors for Mapping of Urban Surface
Water Bodies in Jodhpur Area: Smart & Sustainable Growth. In Proceedings of the 2019 International Conference on Computing,
Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 484–489. [CrossRef]

29. Zhou, S.L.; Zhang, W.C. Flood Monitoring and Damage Assessment in Thailand Using Multi-Temporal HJ-1A/1B and MODIS
Images. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 57, p. 12016.
[CrossRef]

30. Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices
Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [CrossRef]
[PubMed]

31. Chiloane, C.; Dube, T.; Shoko, C. Monitoring and Assessment of the Seasonal and Inter-Annual Pan Inundation Dynamics in the
Kgalagadi Transfrontier Park, Southern Africa. Phys. Chem. Earth Parts A/B/C 2020, 118, 102905. [CrossRef]

32. Munasinghe, D.; Cohen, S.; Huang, Y.; Tsang, Y.; Zhang, J.; Fang, Z. Intercomparison of Satellite Remote Sensing-Based Flood
Inundation Mapping Techniques. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 834–846. [CrossRef]

33. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources
Technology Satellite). In Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada,
10–14 December 1973; Volume SP-351, pp. 309–317.

34. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

35. Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping.
Remote Sens. 2018, 10, 1673. [CrossRef]

36. U.S. Geological Survey (USGS) EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 4 February 2022).
37. Sentinel Scientific Data Hub. Available online: https://scihub.copernicus.eu/ (accessed on 4 February 2022).
38. Earthdata Search—NASA. Available online: https://search.earthdata.nasa.gov/search (accessed on 4 February 2022).
39. LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 4 February 2022).
40. Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite

Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [CrossRef]
41. Chignell, S.M.; Anderson, R.S.; Evangelista, P.H.; Laituri, M.J.; Merritt, D.M. Multi-Temporal Independent Component Analysis

and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sens. 2015, 7, 9822–9843.
[CrossRef]

42. Ghansah, B.; Nyamekye, C.; Owusu, S.; Agyapong, E. Mapping Flood Prone and Hazards Areas in Rural Landscape Using
Landsat Images and Random Forest Classification: Case Study of Nasia Watershed in Ghana. Cogent Eng. 2021, 8, 1923384.
[CrossRef]

43. Hudson, P.F.; Colditz, R.R. Flood Delineation in a Large and Complex Alluvial Valley, Lower Panuco Basin, Mexico. J. Hydrol.
2003, 280, 229–245. [CrossRef]

44. Jung, H.C.; Alsdorf, D.; Moritz, M.; Lee, H.; Vassolo, S. Analysis of the Relationship between Flooding Area and Water Height in
the Logone Floodplain. Phys. Chem. Earth Parts A/B/C 2011, 36, 232–240. [CrossRef]

45. Nandi, I.; Srivastava, P.K.; Shah, K. Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from
Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi. Water Resour. Manag. 2017, 31, 1157–1171. [CrossRef]

46. Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Hunter, S.J. Landsat Mapping of Annual Inundation (1979–2006) of the Macquarie Marshes
in Semi-Arid Australia. Int. J. Remote Sens. 2011, 32, 4545–4569. [CrossRef]

47. Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Cox, S.J.; Sims, N.C.; Hunter, S.J. Mapping Inundation in the Heterogeneous Floodplain
Wetlands of the Macquarie Marshes, Using Landsat Thematic Mapper. J. Hydrol. 2015, 524, 194–213. [CrossRef]

48. Thito, K.; Wolski, P.; Murray-Hudson, M. Mapping Inundation Extent, Frequency and Duration in the Okavango Delta from 2001
to 2012. Afr. J. Aquat. Sci. 2016, 41, 267–277. [CrossRef]

http://doi.org/10.1002/esp.2166
http://doi.org/10.1002/9781118643525.ch7
http://doi.org/10.1016/j.pce.2018.05.005
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/j.ejrs.2021.09.003
http://doi.org/10.1109/ICCCIS48478.2019.8974505
http://doi.org/10.1088/1755-1315/57/1/012016
http://doi.org/10.1371/journal.pone.0088741
http://www.ncbi.nlm.nih.gov/pubmed/24586381
http://doi.org/10.1016/j.pce.2020.102905
http://doi.org/10.1111/1752-1688.12626
http://doi.org/10.1080/01431169608948714
http://doi.org/10.3390/rs10111673
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://search.earthdata.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/
http://doi.org/10.3390/rs14081863
http://doi.org/10.3390/rs70809822
http://doi.org/10.1080/23311916.2021.1923384
http://doi.org/10.1016/S0022-1694(03)00227-0
http://doi.org/10.1016/j.pce.2011.01.010
http://doi.org/10.1007/s11269-017-1568-y
http://doi.org/10.1080/01431161.2010.489064
http://doi.org/10.1016/j.jhydrol.2015.02.029
http://doi.org/10.2989/16085914.2016.1173009


Remote Sens. 2022, 14, 6005 20 of 22

49. Amarnath, G.; Ameer, M.; Aggarwal, P.; Smakhtin, V. Detecting Spatio-Temporal Changes in the Extent of Seasonal and Annual
Flooding in South Asia Using Multi-Resolution Satellite Data. In Earth Resources and Environmental Remote Sensing/GIS Applications
III: Proceedings of the International Society for Optics and Photonics (SPIE), Volume 8538, Amsterdam, The Netherland, 1–6 July 2012;
International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2012; p. 853818. [CrossRef]

50. Islam, A.S.; Bala, S.K.; Haque, M.A. Flood Inundation Map of Bangladesh Using MODIS Time-series Images. J. Flood Risk Manag.
2010, 3, 210–222. [CrossRef]

51. Ogilvie, A.; Belaud, G.; Delenne, C.; Bailly, J.-S.; Bader, J.-C.; Oleksiak, A.; Ferry, L.; Martin, D. Decadal Monitoring of the Niger
Inner Delta Flood Dynamics Using MODIS Optical Data. J. Hydrol. 2015, 523, 368–383. [CrossRef]

52. Timár, G.; Székely, B.; Molnár, G.; Ferencz, C.; Kern, A.; Galambos, C.; Gercsák, G.; Zentai, L. Combination of Historical Maps and
Satellite Images of the Banat Region—Re-Appearance of an Old Wetland Area. Glob. Planet. Chang. 2008, 62, 29–38. [CrossRef]

53. Kordelas, G.A.; Manakos, I.; Aragonés, D.; Díaz-Delgado, R.; Bustamante, J. Fast and Automatic Data-Driven Thresholding for
Inundation Mapping with Sentinel-2 Data. Remote Sens. 2018, 10, 910. [CrossRef]

54. Kordelas, G.A.; Manakos, I.; Lefebvre, G.; Poulin, B. Automatic Inundation Mapping Using Sentinel-2 Data Applicable to Both
Camargue and Doñana Biosphere Reserves. Remote Sens. 2019, 11, 2251. [CrossRef]

55. Ludwig, C.; Walli, A.; Schleicher, C.; Weichselbaum, J.; Riffler, M. A Highly Automated Algorithm for Wetland Detection Using
Multi-Temporal Optical Satellite Data. Remote Sens. Environ. 2019, 224, 333–351. [CrossRef]

56. Solovey, T. Flooded Wetlands Mapping from Sentinel-2 Imagery with Spectral Water Index: A Case Study of Kampinos National
Park in Central Poland. Geol. Q. 2020, 64, 492–505. [CrossRef]

57. Li, L.; Xu, T.; Chen, Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural
Network-Based Super-Resolution Algorithm. Remote Sens. 2016, 8, 625. [CrossRef]

58. Li, L.; Chen, Y.; Xu, T.; Meng, L.; Huang, C.; Shi, K. Spatial Attraction Models Coupled with Elman Neural Networks for
Enhancing Sub-Pixel Urban Inundation Mapping. Remote Sens. 2020, 12, 2068. [CrossRef]

59. Colditz, R.R.; Souza, C.T.; Vazquez, B.; Wickel, A.J.; Ressl, R. Analysis of Optimal Thresholds for Identification of Open Water
Using MODIS-Derived Spectral Indices for Two Coastal Wetland Systems in Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 13–24.
[CrossRef]

60. Yan, Y.-E.; Ouyang, Z.-T.; Guo, H.-Q.; Jin, S.-S.; Zhao, B. Detecting the Spatiotemporal Changes of Tidal Flood in the Estuarine
Wetland by Using MODIS Time Series Data. J. Hydrol. 2010, 384, 156–163. [CrossRef]

61. Wang, Y. Using Landsat 7 TM Data Acquired Days after a Flood Event to Delineate the Maximum Flood Extent on a Coastal
Floodplain. Int. J. Remote Sens. 2004, 25, 959–974. [CrossRef]

62. Wang, Y.; Colby, J.D.; Mulcahy, K.A. An Efficient Method for Mapping Flood Extent in a Coastal Floodplain Using Landsat TM
and DEM Data. Int. J. Remote Sens. 2002, 23, 3681–3696. [CrossRef]

63. Atif, I.; Mahboob, M.A.; Waheed, A. Spatio-Temporal Mapping and Multi-Sector Damage Assessment of 2014 Flood in Pakistan
Using Remote Sensing and GIS. Indian J. Sci. Technol. 2015, 8, 1–9. [CrossRef]

64. Cuca, B.; Barazzetti, L. Damages from Extreme Flooding Events to Cultural Heritage and Landscapes: Water Component
Estimation for Centa River (Albenga, Italy). Adv. Geosci. 2018, 45, 389–395. [CrossRef]

65. Gianinetto, M.; Villa, P.; Lechi, G. Postflood Damage Evaluation Using Landsat TM and ETM+ Data Integrated with DEM. IEEE
Trans. Geosci. Remote Sens. 2005, 44, 236–243. [CrossRef]

66. Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques of Remote Sensing and GIS for Flood Monitoring and
Damage Assessment: A Case Study of Sindh Province, Pakistan. Egypt. J. Remote Sens. Space Sci. 2012, 15, 135–141. [CrossRef]

67. Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational Monitoring and Damage Assessment of Riverine
Flood-2014 in the Lower Chenab Plain, Punjab, Pakistan, Using Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 714.
[CrossRef]

68. Villa, P.; Gianinetto, M. Multispectral Transform and Spline Interpolation for Mapping Flood Damages. In Proceedings of the
2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 275–278.
[CrossRef]

69. Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS
J. Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]
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