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The spatial discretization of convective terms in compressible flow equations is studied 
from an abstract viewpoint, for finite-difference methods and finite-volume type formu-
lations with cell-centered numerical fluxes. General conditions are sought for the local 
and global conservation of primary (mass and momentum) and secondary (kinetic en-
ergy) invariants on Cartesian meshes. The analysis, based on a matrix approach, shows 
that sharp criteria for global and local conservation can be obtained and that in many 
cases these two concepts are equivalent. Explicit numerical fluxes are derived in all finite-
difference formulations for which global conservation is guaranteed, even for non-uniform 
Cartesian meshes. The treatment reveals also an intimate relation between conservative 
finite-difference formulations and cell-centered finite-volume type approaches. This anal-
ogy suggests the design of wider classes of finite-difference discretizations locally preserv-
ing primary and secondary invariants.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The design of accurate and reliable numerical methods for the simulation of turbulent compressible flows is a chal-
lenging and active research topic [1,2]. Owing to the possible coexistence of several physical phenomena (e.g. shock waves, 
acoustic waves, turbulent fluctuations) the discretization procedure should satisfy different, and in some cases contrasting, 
requirements. Convergence toward a weak solution, essential for a correct shock capturing, needs a locally conservative spa-
tial discretization of advective terms, whereas acoustic waves require non dissipative and non dispersive schemes, usually of 
high order, e.g. [3]. Moreover, the accumulation of aliasing errors due to the spatial discretization of advective terms poses 
strong challenges to numerical schemes in terms of (in)stability of long-time integrations for turbulent flows. The current 
paper focuses on the influence of the discretized advective terms on the latter issue.

In incompressible flows this last issue is usually addressed by designing the numerical discretization in such a way 
that discrete advective terms do not contribute to the induced balance of kinetic energy, which in the limit of vanishing 
viscosity, is an invariant of the equations for incompressible flow [4–7]. The reproduction of this property at a discrete level 
furnishes an important nonlinear stability criterion, as well as a more faithful representation of energy transfer across the 
different scales of the flow field. In the case of inviscid compressible flows, global kinetic energy is not strictly conserved 
because of pressure-work contributions, but advection still does not spoil its global balance. As mentioned above, in the 

* Corresponding author.
E-mail address: a.e.p.veldman@rug.nl (A.E.P. Veldman).
https://doi.org/10.1016/j.jcp.2022.111879
0021-9991/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2022.111879
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111879&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.e.p.veldman@rug.nl
https://doi.org/10.1016/j.jcp.2022.111879
http://creativecommons.org/licenses/by/4.0/


G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879
paper we will focus on the discrete treatment of these advective terms, and leave the (complementary) treatment of the 
pressure gradient and other thermodynamic terms for later (for basic ideas we refer to [8–10]). The adoption of numerical 
discretization procedures that do not perturb the balance of secondary invariants has shown great benefits in terms of 
stability and reliability of the simulations also in the case of compressible flows [1,11–13].

In the finite-difference community this target is usually achieved by using a so-called split form, in which the advec-
tive term is written as a linear combination of different expressions obtained by applying the product rule of derivatives 
to the divergence of the flux. Although analytically equivalent, the different forms of the advective derivatives behave dif-
ferently when directly discretized. Selected energy-preserving forms were constructed by analogy with the incompressible 
skew-symmetric form [11,14]. Only recently a quite complete characterization of all the possible energy preserving forms 
for finite-difference central schemes has been derived [15] and an even more general criterion for (global) kinetic-energy 
preserving discretizations has been identified by [16]. In all cases the theory shows preservation of kinetic energy globally, 
which means that the total amount of kinetic energy is preserved by the discretization of the advective terms. The problem 
of the correct reproduction of local kinetic energy fluxes is usually not mentioned in purely finite-difference formulations.

The equations of motion can be discretized also within a finite-volume framework. Also in this case several energy-
preserving formulations have been proposed [3,13,17]. In many cases, starting from the specification of fluxes for primary 
variables, the procedures allow also the identification of a kinetic energy flux, the global balance following by means of 
the telescoping property. However, a systematic procedure to generate a locally energy-preserving method starting from a 
locally conservative formulation for primary variables seems to be lacking.

Note that in this paper we will use the term ‘finite-volume’ in a quite liberal way to refer to discrete formulations for 
which numerical fluxes are explicitly specified. In particular, we will consider cell-centered finite-volume formulations, in 
which the grid nodes are located in the ‘center’ (liberally interpreted) of the control volumes [18]. We will not (yet) make a 
link with the cell-vertex finite-volume formulations [19,20] in which the grid nodes coincide with the corners of the control 
volumes. Neither will we dwell on the interpretation of the discrete time derivative as the evolution of either a nodal value 
or of a cell average. Over the years this interpretation has led to much confusion in the literature; e.g., see the discussion 
on the order of accuracy of the QUICK method [21,22].

Even more important, for flows involving shocks, is the problem of local preservation of primary invariants. Locally 
conservative formulations require that the discretization of advective derivatives can be expressed as the difference between 
numerical fluxes evaluated at adjacent nodes. This property is naturally reproduced in finite-volume methods, which are 
focused exactly on the specification of the numerical flux at each face. In finite-difference methods the discretization is 
obtained by approximating derivative operators and whether a particular discretization can be cast as difference of fluxes 
is not evident in many cases, especially on non-uniform meshes. Surprisingly enough, only recently this problem has been 
solved for the case of central explicit schemes on uniform meshes [14], for which numerical fluxes corresponding to general 
split forms have been identified.

In this paper, the problem of local and global conservation of primary and secondary invariants of transport equations 
is studied with reference to both the finite-difference and finite-volume methods on non-uniform, rectangular (Carte-
sian) meshes. It is found that sharp criteria can be found for global conservation in general conditions and that in 
many cases the concepts of local and global conservation are actually equivalent, for both linear and quadratic invari-
ants. Explicit fluxes can be derived in all cases in which global conservation of these invariants is guaranteed (including 
non-uniform meshes). The treatment sheds also light on an intimate relation (almost an equivalence) between finite-
difference and finite-volume approaches, in the sense that any globally conservative finite-difference formulation of the 
advective derivatives (of arbitrary order) can be expressed as a difference of numerical fluxes, and (almost) any formula-
tion based on numerical fluxes built by using polynomial interpolations has a corresponding (generalized) finite-difference 
formulation. The complete equivalence is established, for the moment, for second-order formulations. This strict analogy 
suggests also the design of a wider class of finite-difference discretizations which locally preserve primary and sec-
ondary invariants. Our analysis is carried out for the semi-discretized equations, i.e. exact time integration is assumed 
in order not to interfere with the discrete conservation properties; for compressible flow this is not straightforward. For 
instance, Subbareddy and Candler [13] introduced special ‘square-root’ variables to construct an energy-preserving time-
integration scheme. These variables can also be used to achieve supraconservative space discretization [2,23–25], but here 
we will not explicitly study this form of the equations, though our theory can be reformulated for this change of vari-
ables.

A final mention has to be made on the notation we use for the derivation of the presented results. The analysis is carried 
out by employing a matrix representation of discrete operators, which we found an ideal tool for the derivation of all the 
connections between the various concepts exposed. Matrix formalism is useful because many global conservation properties 
can be easily derived by studying the schemes globally, and the connections between global and local conservation can 
be obtained by using decomposition theorems. The reasoning in terms of matrices is independent of the discretization 
method with which the discrete equations are obtained (finite volumes/differences/elements/...), and allows to derive sharp, 
necessary and sufficient, conditions for the desired properties to hold. In this respect our approach essentially differs from, 
and generalizes, the more analytical studies found in the literature mentioned above.

It would be interesting to perform a similar analysis to other, analytically equivalent, forms of the equations 
(streamfunction-vorticity [26], rotational [27], velocity-vorticity [28], weak formulations [29], etc.), which are conveniently 
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related to other secondary invariants (enstrophy [26], helicity [30], angular momentum [31], etc.). Ultimately, this may lead 
to guide lines on how to choose between these formulations and invariants, depending on the application envisaged.

Outline of paper

After an overview of analytical formulations of the transport equations the matrix-vector notation is introduced (Sec-
tion 2) (all technical proofs are gathered in an appendix). It is explained how conservation of linear invariants is equivalent 
to vanishing column sums of the relevant operators. Sections 3 and 4 study the conservation of the linear invariants mass 
and momentum, respectively. Conditions on the discretization are formulated and it is shown that a conservative finite-
difference method can be rewritten as a (cell-centered) finite-volume method. Section 5 studies the conservation of the 
quadratic invariant energy. More conditions have to be satisfied, yet there remains a large freedom in choosing the mass 
flux. The close relation between conservative finite-difference and finite-volume methods is analyzed in more detail in 
Section 5.4. Higher-order discretization schemes are shortly discussed in Section 6. Several numerical experiments with 
the discretized transport equations are presented in Section 7, to illustrate our theoretical considerations. Thereafter, in 
Section 8, we make a first step toward the compressible Euler equations, accompanied by some preliminary numerical 
demonstrations. Finally, in Section 9 our findings are summarized.

2. Setting the scene

2.1. Conservation laws

Consider a conservation law for a quantity φ which is transported by a flow with mass density ρ and velocity u:

∂ρ

∂t
+Mmass ≡ ∂ρ

∂t
+ ∇·(ρu) = 0 ; ∂ρφ

∂t
+ Cmomφ ≡ ∂ρφ

∂t
+ ∇·(ρuφ) = 0 . (1a,b)

These transport equations are used as a first step towards the compressible Euler equations. The main message of the paper 
can be explained using this simplified set of equations. A preliminary exploration of the Euler equations will follow near 
the end of the paper; for further explorations we refer to a recent paper by De Michele and Coppola [10].

In Eqs. (1a,b) the rate of variation in time of the quantities ρψ (ψ being 1 or φ), is driven by the divergence of a flux 
vector. Application of Gauss’ divergence theorem shows that the integral of ρψ over the entire domain � does not change 
in time in the case of periodic and/or homogeneous boundary conditions. In other words, the total amount of ρ and ρφ

inside the entire domain is preserved by advection (also termed convection, whence the notation C), i.e. these quantities 
are globally conserved. From a mathematical point of view, the function Mmass and the operator Cmom satisfy the following 
constraints:∫

�

Mmass d� = 0;
∫
�

Cmomφ d� = 0 ∀φ. (2a,b)

In fact, the structure of the operators at the right hand sides of Eqs. (1a,b) implies that the evolution of ρ and ρφ integrated 
over an arbitrary domain �h depends only on the flux at the boundary �h:∫

�h

∂ρψ

∂t
d�h = −

∫
�h

ρψu · n d�h (ψ ∈ {1, φ}). (3)

Global conservation (2) follows as a particular case. We will express this circumstance by saying that ρ and ρφ are also 
locally conserved. Owing to these properties, the quantities ρ and ρφ are called primary invariants.

Analytically, the equations (1) admit even more invariants, such as the ‘kinetic energy’ 1
2 ρφ2. By combining Eqs. (1a,b), 

an evolution equation for the energy can be obtained [16]:

d

dt

∫
�

1

2
ρφ2 d� = −

∫
�

(
φ Cmomφ − 1

2
φ2Mmass

)
d� = −

∫
�

φAkinφ d�, (4)

where the operator Akin is defined as

Akin : φ �→ (
Cmom − 1

2
Mmass

)
φ = ∇·(ρuφ) − 1

2
(∇·(ρu))φ . (5)

It follows that global energy conservation (left-hand side of Eq. (4) equal to zero) is equivalent to the skew symmetry 
of Akin (right-hand side of Eq. (4) equal to zero). It is easily verified that analytically the operator Akin from (5) indeed 
is skew-symmetric, hence the equations (1a,b) do globally conserve the secondary invariant energy, next to the primary 
invariants mass and momentum.
3
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Note that also in this case even more than global conservation can be inferred. Since the product φAkinφ can be ex-
pressed as the divergence of the quantity ρuφ2/2, the equation for the generalized local kinetic energy has the divergence 
structure

∂ρφ2/2

∂t
= φAkinφ = ∇ · (ρuφ2/2) ≡ Kkin(φ), (6)

where Kkin is a divergence-type operator as are occurring in Eq. (1). This implies that the evolution of ρφ2/2 integrated 
over an arbitrary domain depends on the flux at its boundary, i.e. ρφ2/2 is also locally conserved. We will express this 
circumstance by saying that the generalized kinetic energy ρφ2/2 is a secondary (quadratic) invariant.

2.2. Various analytical formulations

The equations (1) can be written in other formulations, which analytically are equivalent, but where conservation is less 
obvious at first sight. We will study these formulations and their discretizations in the sequel. Coppola et al. [7,15] consider 
a large family of analytical formulations for Eq. (1), for which they study the conservation properties of central finite-
difference discretizations on uniform grids. In the continuity equation (1a) they write the mass-transport term ∇ · (ρu) in 
two ways as

MD
mass ≡ ∇ · (ρu); MA

mass ≡ u · ∇ρ + ρ∇ · u. (7a,b)

For the advective term ∇ · (ρuφ) in Eq. (1b), they consider the following analytical formulations (see Eqs. (7-11) from [15]):

CD
momφ ≡ ∇ · (ρuφ); Cφ

momφ ≡ φ∇ · (ρu) + ρu · ∇φ; Cu
momφ ≡ u · ∇(ρφ) + ρφ∇ · u;

Cρ
momφ ≡ ρ∇ · (uφ) + u · φ∇ρ; CL

momφ ≡ ρφ∇ · u + ρu · ∇φ + u · φ∇ρ. (8a-e)

In particular, Coppola et al. [7,15] consider weighted combinations of these formulations as

Mmass = ξMD
mass + (1 − ξ)MA

mass; (9a)

Cmom = αCD
mom + βCφ

mom + γ Cu
mom + δCρ

mom + εCL
mom, (9b)

with α + β + γ + δ + ε = 1. They investigate which of these combinations will result in discrete global energy conservation 
in combination with a central finite-difference discretization. Their analysis reveals the following conditions on the weights:

α − ε = β = 1

2
ξ and γ = δ = 1

2
(1 − ξ) − ε, (10a,b)

herewith defining a two-parameter family of formulations that globally preserve energy under central finite-difference dis-
cretization on uniform grids. As a special case, when ε = 0 the members of this family are also locally conservative and 
preserve mass and momentum, at least under central discretization on uniform grids. In this respect, an interesting relation, 
valid under slightly different conditions, is

Cmom1 = Mmass ⇔ α + β = ξ and γ + δ + ε = 1 − ξ. (11)

These conditions are compatible with the conditions Eq. (10) for energy preservation when ε = 0. We will encounter these 
conditions again in a discrete setting in Section 5.1.

The family of combinations satisfying Eq. (10) contains several special cases known from the literature. The case ξ =
1 corresponds with the classical Feiereisen form [11], whereas ξ = 1/2 gives the splitting introduced by Kennedy and 
Gruber [32] and shown to be energy preserving by Pirozzoli [14]. The case ξ = 0 correspond with a new splitting introduced 
by Coppola et al. [15]. They all satisfy ε = 0. Further, the case ξ = α = 1 with β = γ = δ = ε = 0 is the conservation 
form (1) which is the basis for finite-volume discretizations. In what follows, the mentioned results will be extended and 
reformulated in a more general setting. The analysis will also highlight important relations between discrete local and global 
conservation of linear and quadratic invariants and between finite-difference and finite-volume formulations.

2.3. Matrix-vector notation

To develop our discrete theory, we use matrix-vector notation to be explained next, which in principle is valid in any 
dimension. To simplify the mathematical formulations, it will be presented on a one-dimensional grid, but it can be gen-
eralized to more dimensions (although the notation then becomes somewhat cumbersome). General grid vectors (lower 
case) and matrices (upper case) are written in a sans-serif font. Quantities with a volume-consistent scaling (see below) are 
written in a Fraktur font. Unknowns like ρ , u and φ are represented by grid vectors and diagonal matrices:

R = diag(ρ), U = diag(u) and Φ= diag(φ). (12)
4



G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879
The various realizations of the derivative operator D that we are going to study will be defined in terms of the circulant 
permutation matrix

E ≡

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , (13)

which is the matrix version of the shift operator e acting on grid variables: eφi = φi+1. The powers of e (both positive 
and negative) are naturally defined through the composition rule as e±kφi = φi±k and constitute a group of transforma-
tions which allows the specification of all the ordinary finite-difference formulas. As an example, the usual second-order 
approximation for a first-order derivative on a uniform grid with mesh size h = 1 is given by

φ′
i = 1

2
(φi+1 − φi−1) = 1

2

(
e − e−1)φi .

In matrix notation the corresponding derivative operator on a periodic mesh is expressed as

Dφ = Dcenφ≡ 1

2
(E − E−1)φ,

where the inverse of E is readily seen to be its transpose (i.e. E is orthogonal)

E−1 = ET =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ .

From the obvious relations

φiψi+k = ek (φi−kψi
)

and (φψ)i+k = φi+kψi+k

one obtains the matrix identities

ΦEk = Ekdiag(E−kφ) and EkΦ= diag(Ekφ)Ek. (14a,b)

To better understand Eqs. (14a-b) and some other formulas in the subsequent sections, we explicitly note that the product 
between a diagonal matrix diag(φ) and a vector ψ is the matrix-vector expression for the Hadamard product (i.e. the 
componentwise product) between φ and ψ, giving as a result the vector with i-th component φiψi .

With these building blocks, any matrix can be expressed as a weighted sum of powers of E:

D =
L∑

k=−L

AkEk, (15)

where L is (larger or equal to) its semi-bandwidth. The Ak are diagonal matrices Ak = diag(ak), built from suitably chosen 
vectors ak , and each term AkEk in Eq. (15) is a matrix carrying the vector ak on its k-th diagonal. The components of ak
that are not used are assumed to be zero.

For matrices of the form (15), the row and column sums can be calculated as

row sum:
∑

k

AkEk1 =
∑

k

Ak1 =
∑

k

ak; (16a)

column sum:
∑

k

(
AkEk

)T
1 =

∑
k

E−kAk1 =
∑

k

E−kak, (16b)

where 1 is the grid vector consisting of only ones and the obvious properties Ek1 = 1 and Ak1 = ak have been used.
Note that the vectors ak do not need to be “scalar” vectors (i.e. such that ak = ak1 with ak scalar). This means that, 

although defined by using the circulant matrices Ek , the matrix D in Eq. (15) does not need to be circulant in general, and is 
completely arbitrary. The use of the circulant version of the shift matrix is useful because the theory we are going to develop 
will be detailed for the case of periodic boundary conditions. However, most results will be stated as global properties of 
the relevant operators involved, and the extension to the case of non-periodic boundary conditions can be carried out by 
5
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suitably defining the basic derivative operators, e.g., as in the summation-by-parts (SBP) discretizations [33,34]. Especially, 
Svärd and Nordström [34] give an extensive discussion of the effect of boundary conditions.

Special matrices that we will encounter in the sequel are:

skew-symmetric: D =
L∑

k=1

(AkEk − E−kAk); circulant: D=
L∑

k=−L

akEk.

It is remarked that the precise value of the upper index bounds of the summations is not used in our considerations, so 
often they will not be indicated. The usual case of central derivative schemes on a uniform periodic mesh leads to derivative 
matrices which are both circulant and skew-symmetric; i.e. they have the form

D =
L∑

k=1

ak

(
Ek − E−k

)
. (17)

Equation (17) is the matrix version of the more familiar formula φ′
i =∑L

k=1 ak
(
φi+k − φi−k

)
. The theory developed in [14,15]

can be rephrased in matrix notation by using derivative matrices of the form (17), whereas the more general theory here 
illustrated will be developed by using the general form in Eq. (15).

2.4. Discrete conservation

To obtain a discrete analogue of the reasoning in Section 2.1, a volume-consistent scaling [16] of the equations is required. 
This scaling takes care that a summation over the grid cells, as in Eq. (20) below, corresponds with a discrete approximation 
of a volume integral. It is noted that the SBP discretization [33,34] also employs this scaling.

A PDE in conservation form can be denoted as

∂φ

∂t
+ ∇ ·F(φ) = 0 discretized as H

dφ

dt
+ Cφ = 0, (18a,b)

where H is a diagonal matrix containing the sizes of the control volumes (positioned around the nodal points). The matrix 
C represents the discretization of the convective operator ∇ ·F(�), which could depend on φ itself. As an example, for the 
1D inviscid Burgers equation in divergence or advective forms:

∂φ

∂t
+ ∂

∂x

φ2

2
= 0,

∂φ

∂t
+ φ

∂φ

∂x
= 0

the matrix C is 1
2DΦ or ΦD, respectively.

A volume-consistent scaling implies that under grid refinement, i.e. |H|∞ → 0, the discretization (18b) is consistent with 
the analytic differential equation (18a):

∀φ and |H|∞ → 0 : 1TH
dφ̂

dt
→
∫
�

∂φ

∂t
d� and H−1Cφ̂ → ∇ ·F(φ), (19)

where φ̂ is the restriction of φ to the nodal grid points. We will also see that symmetries are directly expressed in such 
volume-consistent operators, thereby preventing ‘pollution’ of the equations by a frequent appearance of the local control 
volumes H. Below we will give some examples of volume-consistent discretizations; for instance in Eqs. (33)-(35).

Discrete linear invariants
A discrete analogue of the criterion for global conservation in Eq. (2) can be formed from a summation over grid cells:

1TH
dφ

dt
= −1TCφ = 0. (20)

With the volume-consistent scaling, the summation in the left-hand side of Eq. (20) corresponds with a discrete approxi-
mation of the volume integral in Eq. (19). It follows that discrete global conservation of primary invariants is associated with 
the matrix C having vanishing column sums.

Discrete local conservation of primary invariants as given in Eq. (3) is associated to a stricter property for C. We will 
consider here formulations (including finite differences and cell-centered finite volumes) for which local conservation is 
equivalent to the decomposition of C as a ‘difference of fluxes’, i.e. as the difference between a (flux) vector and its ‘shifted’ 
version. This automatically leads to a telescoping property when summing over the domain in Eq. (20).

For its discrete analogue we need the shift operator E as defined in Eq. (13), to distinguish between fluxes in i + 1/2
and i − 1/2 (in cell-centered finite-volume terms). With this matrix shift operator, local conservation amounts to write the 
discrete transport terms in Eq. (18b) in a flux-type format as
6



G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879
Cφ = (I − E−1)F(φ)φ, (21)

where F(φ)φ is a consistent approximation of the flux F(φ), carrying the flux in i + 1/2 at its i-th component. The 
difference of fluxes between the points i +1/2 and i −1/2 can be written as Fi+1/2 −Fi−1/2 = (1 −e−1)Fi+1/2, which is the 
indicial version of Eq. (21). Note that I − E−1 is not invertible, hence the flux F(φ)φ cannot be found by inversion. Finite-
volume discretizations automatically lead to this formulation, but for finite-difference discretizations this puts additional 
requirements. An important result in this respect is provided by Lemma A.1 (see the appendix): any matrix with vanishing 
column sums, i.e. a matrix which corresponds with global conservation, can be written in a local flux form (21). This result 
establishes a strong link between the concepts of discrete global and local conservation.

In the next sections we will discuss which consequences (global and local) discrete conservation has for the finite-volume 
and finite-difference discretizations of the family of split forms in (7) and (8). In particular we will show which relations 
have to exist between the discretizations of the individual terms in the split forms.

Remark 1. Note that Perot [35, p. 303] already observed that “any [discretization] method that is globally conservative, and 
that has weight functions with local support, must also be locally conservative”. Also, compare the observation in [36] “... 
some discrete split forms of conservative laws can be manipulated into an equivalent, consistent and telescoping form...”.

Remark 2. The matrix H does not need to be diagonal, although in a cell-centered finite-volume method this will be the 
case. For global conservation, the only property required is that the summation over the grid cells in Eq. (19) gives an 
approximation of a volume integral. For diagonal matrices H, as we are considering here, the discrete volume integral of 
the time derivative in the left-hand side of Eq. (20) corresponds with a (simple) midpoint rule. A non-diagonal H induces a 
more complex quadrature rule.

Consistency of fluxes
It has to be ensured that the flux Fφ in Eq. (21) describes physically-consistent (first- or higher-order) approximations 

related to the underlying PDE Eq. (18a). We would like to prove that for a PDE with a constant flux, conservation and 
(volume) consistency imply that the discrete flux from the decomposition (21) becomes equal to that constant flux value. 
However, at this stage of generality of the theory, we can not (yet) prove this; therefore we formulate it as an assumption 
postponing to Section 3 some considerations justifying this assumption. In particular, for a PDE in conservation form, and 
with a volume-consistent scaling, we assume the following consistency condition to hold for fluxes Fφ:

H
dφ

dt
+ (I − E−1)Fφ = 0 → ∂φ

∂t
+ ∇ ·F(φ) = 0 ⇒ Fφa1 = F(φa) ∀φa, (22a,b)

where φa is a (constant) scalar. This is the ‘classical’ Lax–Wendroff condition [37,38], which basically says that conservation 
and consistency imply that the numerical fluxes are a fair interpolation between the adjacent nodal values.

The above findings can be summarized as follows:

Observation 1. For volume-consistent discretizations of transport equations like (18a), or their analytical equivalents, the discrete 
concepts of global and local conservation are equivalent, and are characterized by vanishing column sums of the discrete transport 
term.

2.5. The control volumes H

The size for the control volumes H is chosen such that on a non-uniform grid the discrete derivative of a linear function 
is exact. Thereto, assume that the x-grid is obtained from a smooth transformation x = f (η), where η is covered by a 
uniform grid (with grid size �η). Then we can write for a first-order derivative

dφ

dx
= dφ

dη

dη

dx
= dφ

dη

/ dx

dη
≈ diag(Dx)−1diag(Dφ) ⇒ H = diag(Dx). (23)

Both numerator and denominator can be discretized on a uniform η-grid, i.e. in computational space (see also [39]). Then 
the order of the discretization on the non-uniform x-grid follows from the discretization on the uniform η-grid. When the 
control volumes are chosen as H ≡ diag(Dx), the discrete derivative H−1D of a linear function is exact [40, p. 1885]. In this 
way, the choice of H influences the order of accuracy of a discretization with a given D. We will demonstrate the influence 
of this choice for the control volumes in Section 7.2.

Example. The usual 4th-order discretization of a first-order derivative reads

dψ = −ψi+2 + 8ψi+1 − 8ψi−1 + ψi−2 +O(�η4). (24)

dη 12�η

7
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Applying it with ψ = x and ψ = φ, respectively, gives (with f ′ the derivative of the transformation)

h4th−order ≡ 1

12
(−xi+2 + 8xi+1 − 8xi−1 + xi−2) = f ′�η +O(�η5), (25)

which leads to the 4th-order approximation (see Section 6)

dφ

dx
≈ −φi+2 + 8φi+1 − 8φi−1 + φi−2

−xi+2 + 8xi+1 − 8xi−1 + xi−2
. (26)

In contrast, when in Eq. (26) the grid size (25) is replaced by the ‘usual’ grid size we obtain

h2nd−order ≡ 1

2
(xi+1 − xi−1) = f ′�η +O(�η3),

suggesting a 2nd-order approximation of the derivative dφ/dx, which is confirmed in Section 7.2. �
The above lets us formulate

Observation 2 (Choice of control volumes). For a consistent discretization of linear functions, the control volumes are preferably chosen 
according to H = diag(Dx).

3. Conservation of mass

The various formulations of the transport equations will first be inspected for their potential to globally and locally 
conserve the linear (primary) invariants mass and momentum. We will first do so on hand of the conservation equation for 
mass (7). The conservation equation for momentum (8) can be handled in a similar way, and will be discussed in Section 4
in a more general setting.

We will start by studying finite-volume methods for the discrete form of the equation for mass conservation (1a):

H
dρ

dt
+ dmass = 0. (27)

The volume-consistent grid vector dmass corresponds with the discrete version of Mmass = ∇ · m ≡ ∇ · (ρu) in the nodal 
points. As local and global conservation for these methods holds by design, in particular we inventorize the freedom that 
is left in the details of the flux discretization. We will use this freedom when additionally requiring energy conservation 
(Section 5). Thereafter, finite-difference methods will be analyzed for both the divergence (7a) and advective (7b) forms 
of the equation for mass. Finally, the link between the presented finite-volume and finite-difference methods for mass 
conservation is analyzed.

3.1. Finite-volume methods

First, let us consider finite-volume discretizations of Eq. (1a). To distinguish them from finite-difference discretizations, 
finite-volume discretizations are indicated by the superscript (�)fv . In particular, we will consider cell-centered formulations 
[18], where the control volumes are located around the nodal grid points. The control faces are positioned between the 
nodal points; their precise position is not relevant for numerical stability.

A finite-volume formulation starts with the specification of the mass fluxes m ≡ ρu at cell faces which, in a one-
dimensional setting, allows to express the convective term of the mass equation as Mmass ≡ (mi+1/2 − mi−1/2). In matrix 
notation one has:

H
dρ

dt
= −dfv

mass ≡ −(I − E−1)mfv
f (u,ρ). (28)

Here, mfv
f is the vector containing the discrete mass fluxes mi+1/2 through the faces of control volumes, which can be 

written in terms of the values of u and ρ in neighboring grid nodes. It is noted that the local flux form (21), which leads 
to global and local conservation, comes out naturally. There exists a large freedom in choosing the mass fluxes mfv

f . In fact, 
consistency (22) of the flux is all we demand. Let us start exploring and exploiting this freedom.

Already within the three-point discretization stencils, i.e. two-point stencils for the mass flux, an interesting freedom can 
be recognized, which we will encounter again when discussing finite-difference methods. Anticipating that in the alternative 
formulations (7b) and (8b) the variables ρ and u are individually visible, the mass flux mi+1/2 ≡ (ρu)i+1/2 at the face i +1/2
can be built from values of ρ and u in the grid points i and i + 1. In this setting, the most general form of a bilinear mass 
flux using a two-point stencil reads

mfv(u,ρ) : mi+1/2 = c(1,1)
ρi+1ui+1 + c(1,0)

ρi+1ui + c(0,1)
ρiui+1 + c(0,0)

ρiui, (29)
f i+1/2 i+1/2 i+1/2 i+1/2

8
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where the c(p,q)

i+1/2 denotes the coefficient of ρi+pui+q in the flux at the face i + 1/2. For consistency with the physical flux 
m ≡ ρu, we let these coefficients add up to unity, which corresponds with Eq. (22b).

Thus, in this two-point flux setting, we have a three-parameter family of coefficients that all produce a valid, consistent 
finite-volume discretization. By varying these coefficients, a directional bias can be given to the mass flux which we will 
encounter again below when analyzing finite-difference discretizations. Even more so, the coefficients can be chosen grid-
point dependent and/or as more general functions of the neighboring nodal values.

Examples.

• A special case, which corresponds with the usual second-order central finite-volume discretization, is given by c(1,1) =
c(0,0) = 1

2 , leading to

mi+1/2 = 1

2
(ρi+1ui+1 + ρiui) ←→ mfv

f = 1

2
(I + E)Ru, (30)

and corresponds with the form used by Feiereisen [11] represented by ξ = 1 in Coppola’s family of split forms (9a). See 
Table 1 for more references of its use.

• Another popular choice for the mass flux is given by splitting m in ρ and u and choosing all four coefficients as 
c(�,�) = 1

4 :

mi+1/2 = 1

4
(ρi + ρi+1)(ui + ui+1) ←→ mfv

f = 1

4
diag

(
(I + E)ρ

)
(I + E)u. (31)

It is the choice by Kennedy–Gruber [32] and Pirozzoli [14] corresponding with ξ = 1/2 in Coppola’s family of split 
forms (9a). �

3.2. Finite-difference methods – divergence form

Our pursuit of locally and globally conservative discrete formulations is continued with a volume-consistent finite-
difference discretization of the divergence form (7a). Thus, as in the previous section, we will study the discrete setting 
from Eq. (27). Since local conservation implies also global conservation by means of the telescoping property, we start the 
analysis considering global conservation and move later towards local conservation.

Global mass conservation As we have seen in Section 2.4, for a discretization with volume-consistent scaling as in Eq. (27), 
global conservation (20) is equivalent to the vanishing of the column sums. For the discrete formulation (27) with the 
divergence form

H
dρ

dt
= −Dm, (32)

with D a scaled first-order derivative matrix, for which we will assume vanishing row sums. Global conservation boils down 
to 1TDm = 0, which implies that global mass conservation is associated with a derivative matrix having vanishing column 
sums.

Matrices D with vanishing row and column sums are sometimes called double-centered matrices [41,42]. Derivative 
matrices (having vanishing row sums) have also vanishing column sums if they are

1. symmetric or skew symmetric;
2. circulant or Toeplitz [43, Ch. 4.7].

For three-point stencils both classes coincide, but for wider stencils the two classes are not identical. As a particular case, 
apart from boundary effects, the summation-by-parts (SBP) matrices fit into the first class [33,34]. Obviously, also any linear 
combination of such matrices possesses zero row and column sums.

Examples. To make the above concrete, we present some examples:

• Any mesh-independent, volume-consistent numerical derivative formula (both central or unsymmetric) on a periodic 
mesh generates a circulant matrix D, which guarantees global conservation when used inside the divergence form, 
even on non-uniform meshes. Circulant examples are the central skew-symmetric discretization

1

2
(xi+1 − xi−1)

∂φ

∂x

∣∣∣∣
i
= 1

2
(φi+1 − φi−1) ←→ Dcenφ= 1

2
(E − E−1)φ, (33)

and a directionally biased discretization
9
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(xi − xi−1)
∂φ

∂x

∣∣∣∣
i
= (φi − φi−1) ←→ Dupwφ= (I − E−1)φ. (34)

Of course, the corresponding, non-scaled derivative matrices D = H−1D are not circulant in general for non-uniform 
meshes – the scaling of the equations is essential when studying conservation.

• The ‘classical’ second-order Lagrangian derivative, scaled with the volumes 1
2 (xi+1 − xi−1), is given by

Lagrangian: DLagφi ≡ 1

2

[
xi − xi−1

xi+1 − xi
(φi+1 − φi) + xi+1 − xi

xi − xi−1
(φi − φi−1)

]
, (35)

which can be written as

DLag = A1E + (A−1 − A1) − A−1E−1 with (a1)i = 1

2

xi − xi−1

xi+1 − xi
and (a−1)i = 1

2

xi+1 − xi

xi − xi−1
.

On a non-uniform grid, in general this volume-consistent discretization is not skew-symmetric nor circulant. It is well 
known that in these cases it does not globally conserve invariants. Therefore we will not consider this discretization 
any further. �

Local mass conservation In Lemma A.1 it is shown that any matrix D =∑k diag(ak)Ek with vanishing column sums can be 
written in a locally conservative form

D = (I − E−1)

L∑
k=−L

diag(bk)E
k ≡ (I − E−1)F, (36)

where

bk =
L∑

h=k

Ek−hah. (37)

This is our first explicit ‘difference of fluxes’ decomposition of a finite-difference discretization. We will introduce another 
such decomposition in the sequel associated to the advective form. Eq. (36) defines the flux associated to the divergence 
form as

Fm =
L∑

k=−L

diag(bk)E
km. (38)

Above we assumed that for a volume-consistent discretization Eq. (22b) holds, which in our case reads

F1 =
L∑

k=−L

bk = 1. (39)

It is remarked that the vectors bk defined in Eq. (36) play an essential role in the relation between finite-difference and 
finite-volume discretizations; see Section 3.4, especially Eq. (53). This relation is already emerging in Eq. (38), showing that 
these vectors are closely related to the fluxes.

Observation 3. With a volume-consistent scaling, the discrete divergence form (28) globally and locally conserves linear invariants if 
and only if it has vanishing column sums.

Note that, since the matrix D is a derivative matrix, it has vanishing row sums (D1 = 0) and Eq. (36) immediately shows 
that F1 = c1, with c an arbitrary constant. This result is close to the assumed consistency relation (39), although the value 
of the constant c is undetermined. This actually should not be surprising, since we only assumed vanishing row and column 
sums for the matrix D, whereas the consistency condition (39), which asserts that F is an interpolation operator, implies 
that D needs to be a first-order derivative matrix. Since the condition (39) turns out to be a consistency condition for the 
fluxes, we can actually use it as a characterization of D as a first-order derivative matrix. In fact, in the cases in which D is 
defined from the beginning as a first-order derivative matrix, as in the Example below, Eq. (39) is automatically satisfied.

Example. As a concrete example, in the common case in which the same numerical formula for a first-order derivative is used 
on all nodes of the mesh with periodic boundary conditions, the derivative matrix is circulant. In this last case, Eq. (39) can 
be rearranged to the consistency condition (see Corollary A.2)
10
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L∑
k=−L

kak = 1. (40)

This condition is always satisfied by a volume-consistent numerical scheme for a first-order derivative on a uniform grid. 
Furthermore, in Corollary A.2 it is shown that for circulant derivative matrices which are also skew-symmetric (i.e. associ-
ated to central schemes), the flux can be written as

Fm = 2
L∑

k=1

ak

k−1∑
h=0

E−h

[
I + Ek

2
m

]
. (41)

This is the matrix form of Eq. (A.1) in [15], with the interpolation operator (there defined in the first of Eqs. (A.2)) ex-
pressed by the term in the square brackets. This analysis also shows that the present treatment gives a generalization of 
the fluxes derived in [14]. In Section 3.4 we will show how the fluxes presented in this section relate to a finite-volume 
formulation. �
3.3. Finite-difference methods – advective form

To analyze the conservative properties of the advective form, we consider a general discretization of Eq. (7b) in which the 
two occurrences of the same derivative D are replaced by two, possibly different, scaled derivative matrices. In particular 
we consider the advective form with volume-consistent scaling

H
dρ

dt
= −(RDuu + UDρρ). (42)

Global mass conservation By applying the usual principle (20) that discrete global conservation is obtained when the sum 
over the grid cells of Eq. (42) vanishes, one obtains the condition

1TRDuu + 1TUDρρ = 0 ⇔ ρTDuu + uTDρρ = 0.

Since each term is a scalar quantity, the second term can be transposed, leading to

ρT(Du +DρT
)u = 0 ∀ρ and u ⇔ Dρ = −DuT

. (43)

This duality condition is the most general necessary and sufficient condition for global conservation of linear invariants for 
the advective form (42). Observe that Du corresponds with a divergence operator and Dρ with a gradient operator, together 
forming a discrete product rule; see for example Lemma A.3. In our applications we will usually consider derivative matrices 
with strictly vanishing row sums. In that case both Du and Dρ have vanishing row and column sums: they can be either 
(skew-)symmetric or circulant (or a linear combination). In case one of the discrete operators possesses a directional bias, 
the dual operator should possess the opposite directional bias; we call such discretizations dual-sided. When we demand 
that the matrix operators are equal, i.e. Dρ = Du , the duality condition (43) implies that they are skew-symmetric.

Local mass conservation Under the necessary condition (43) for global conservation, Lemma A.3 shows that the advective 
form can be cast in a local conservation format (21);

RDuu + UDρρ = (I − E−1)m f , (44)

with mass flux m f . When Du =∑k Au
k Ek and Dρ =∑k A

ρ
k Ek satisfying (43), i.e. Aρ

k Ek = −EkAu
−k , the flux vector is given by

m f =
∑
k>0

(
k−1∑
h=0

E−h

)(
RAu

k Eku − UEkAu
−kρ
)

(43)=
∑
k>0

(
k−1∑
h=0

E−h

)(
RAu

k Eku + UA
ρ
k Ekρ

)
. (45)

Consistency (22) of the flux amounts to

∑
k>0

(
k−1∑
h=0

E−h

)(
au

k − Ekau
−k

)
(43)=
∑
k>0

(
k−1∑
h=0

E−h

)(
au

k + a
ρ
k

)
= 1. (46)

We will encounter this (rather complicated) expression again when making the comparison with finite-volume discretiza-
tions in Section 3.4.

For the moment we conclude:

Observation 4. With a volume-consistent scaling, the discrete advective form (42) globally and locally conserves linear invariants if 
and only if the two discrete derivative operators satisfy the duality relation (43), which implies that they have both vanishing row and 
column sums.
11
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Combining Observations 3 and 4 inspires to study the following generalized discrete version of the analytic mass trans-
port operator from Eq. (9a):

dmass = ξDρuRu + (1 − ξ)(UDρρ+ RDuu). (47)

Examples.

• As an illustration of the flux decomposition corresponding with Eq. (45), the second-order central discretization of the 
advective form can be rewritten as

1

2
ρi(ui+1 − ui−1) + 1

2
ui(ρi+1 − ρi−1) = 1

2
(ρiui+1 + ρi+1ui) − 1

2
(ρi−1ui + ρiui−1),

where we recognize a discrete product rule. In matrix-vector notation it has the form (44) with mass flux m f = 1
2 (REu +

UEρ). It corresponds with the case ξ = 0 of Coppola’s family of split forms (9).
• A simple illustration of a directionally-biased discretization of the advective form can be re-formulated in finite-volume 

flux form as

ui(ρi − ρi−1) + ρi(ui+1 − ui) = ρiui+1 − ρi−1ui ↔ m f = REu.

• In the common case in which the derivative matrices Dρ and Du are the same (skew-symmetric) circulant matrix, 
Eq. (45) can be rewritten as

m f = 2
∑
k>0

ak

(
k−1∑
h=0

E−h

)[
REku + UEkρ

2

]
, (48)

which is again the matrix form of Eq. (A.1) in [15], with the interpolation operator (there defined in the second of 
Eqs. (A.2)) expressed in Eq. (48) by the term in the square brackets. Under the same hypotheses, Eq. (46) can be written 
as ∑

k>0

2kak = 1, (49)

which is the skew-symmetric case of Eq. (40) and is satisfied by all central schemes for first-order derivatives on 
uniform grids.

• Another interesting case is obtained by averaging the above divergence and advective forms. For a circulant discretiza-
tion, it admits a flux given by the average of Eqs. (41) and (48):

m f =
∑
k>0

ak

(
k−1∑
h=0

E−h

)
diag

[
(I + Ek)ρ

]
(I + Ek)u.

It gives the matrix form of Eq. (A.1) in [15], with the interpolant from Eq. (A.4). Compare Eq. (69) below. �
3.4. Link between finite-volume and finite-difference discretizations

The above finite-difference discretizations Eq. (32) for the divergence form and Eq. (42) for the advective form can be 
recast in a cell-centered finite-volume form. In particular, a link can be made with the general mass fluxes introduced in 
Eq. (29).

When ‘translated’ into grid-point notation, the discretization of the divergence form corresponds with a mass flux (38)
through a face i + 1/2 given by

mi+1/2 =
L∑

k=−L

L∑
h=k

(aρu
h )i+k−h(ρu)i+k, (50)

where aρu
h are the vectors defining the matrix Dρu as in Eq. (15) and 

∑L
h=k(a

ρu
h )i+k−h is the i-th component of the as-

sociated vector bk (cf. Eq. (37)). The flux mi+1/2 is built from factors (ρu) j = ρ ju j in the neighboring grid points, thereby 
generalizing the two-point flux family (29) to larger stencils. On the other hand, the discretization of the advective form 
corresponds with a mass flux (45) given by

mi+1/2 =
L∑ k−1∑[

(au
k)i−hρi−hui+k−h + (aρk )i−hui−hρi+k−h

]
. (51)
k=1 h=0

12
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It is observed that this flux consists of products ρi+p ui+q with factors evaluated in different neighboring grid points i + p
and i + q where p �= q (since k > 0). More precise, au

k corresponds with p < q, whereas aρk corresponds with p > q. Hence, 
in this respect the advective form (51) is complementary to the divergence form (50) where ρi+p and ui+q are evaluated in 
the same points (ı.e. p = q).

Thus, these fluxes fit in the formulation

mi+1/2 =
∑

p

∑
q

c(p,q)

i+1/2ρi+pui+q with
∑

p

∑
q

c(p,q)

i+1/2 = 1, (52a,b)

which generalizes Eq. (29). In particular, the relations between the two types of notation are (compare Eq. (36))

c(k,k) =
L∑

h=k

Ek−haρu
h = bk, c(−h,−h+k) = E−hau

k and c(−h+k,−h) = E−haρk . (53)

Combining these relations with the finite-volume consistency condition (52b), shows that the consistency conditions (39)
and (46) imply that the coefficients of the products of ρ and u add up to unity. We will come back to this correspondence 
in Section 5.4, and for now conclude:

Observation 5 (Finite-difference versus finite-volume). Any finite-difference discretization with volume-consistent scaling, constructed 
as a combination of divergence and advective forms, that globally conserves mass is also locally conservative. In particular, it can be 
reformulated as a (cell-centered) finite-volume discretization.

Whether the opposite is also true, i.e. can any finite-volume discretization be reformulated as a locally conservative finite-
difference discretization constructed as a combination of divergence and advective forms, is still not clear. In Section 5.4 we 
will further investigate this aspect.

4. Conservation of momentum

Turning next to the discrete conservation of the momentum transport equation, we again first investigate finite-volume 
discretizations. Inspired by this inventory, thereafter we will design a wider class of finite-difference discretizations. The 
discretizations studied have the generic form

H
dRφ

dt
+ Cmomφ= 0. (54)

As argued above, global conservation of momentum boils down to vanishing column sums

1TCmom = 0T.

Recalling that the advective operator Cmom can be built from various split forms (8), this condition puts constraints on the 
discretization of the individual terms. In this section we will focus on these constraints.

It is emphasized that the factor ρ , discretized as R, is absorbed in the operator Cmom. As we will explain below, the 
advective argument is split according to ρuφ = ρu ∗ φ = m ∗ φ, in contrast with u ∗ ρφ which is the more usual way. 
The discretizations in [8,32,44] belong to the few that explicitly recognize the importance of this type of splitting of the 
advective argument.

4.1. Finite-volume methods

The advective fluxes in a finite-volume discretization are built from the product mφ, to be interpolated from the neigh-
boring nodal values. In general, a discretization of the advective term will look like (compare Eq. (28))

Cfv
momφ= (I − E−1)Ffvφ with flux Ffvφ≡ (diag(mfv)φ

)
f . (55)

A choice has to be made whether the product mφ in the facial fluxes are formed from the interpolation of the product 
(mφ) f , from the product of the interpolations m f φ f or from a more complicated expression. For the conservation of mo-
mentum all choices are fine. The freedom for mfv that we encountered in choosing the mass fluxes in Section 3 is still 
available here; moreover, there is freedom in choosing φ f . Any consistent interpolation between the neighboring nodal 
points is acceptable for discrete momentum conservation. However, we will see in Section 5 that for discrete energy con-
servation the choice does matter.
13
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4.2. Generalized finite-difference methods

For finite-difference methods conservation is not immediate. Inspired by the freedom in the finite-volume discretizations 
and in the formulation of the equation for mass conservation (Section 3) we will generalize the discretization of the mo-
mentum transport equation. In a similar way as the discrete mass operator in Eq. (47), the discrete version of the advective 
transport operator (9b) is generalized as

Cmom = αDρuRU + βRUD0 + γ UDρR + δRDuU + εRUD0

+ diag
[
βDρuRu + γ RDuu + δUDρρ+ ε(RDuu + UDρρ)

]
, (56)

with α +β +γ + δ +ε = 1. The discrete matrices in (47) and (56) are chosen the same to provide the necessary consistency 
for obtaining discrete energy conservation, as we will see below in Section 5.3.

In many of the preceding sections, the finite-difference matrices D(�) were equal to the central discretization Dcen =
1
2 (E − E−1), but now we do allow different (consistent) discrete approximations of the various ∇-operators. Thus, let us 
analyze the requirements that have to be invoked to ensure discrete preservation of momentum of such a generalized 
finite-difference approach.

Global momentum conservation Global momentum conservation boils down to 1TCmom = 0T; see Eq. (20). Using 1TDρu = 0T

(see above) and uTR = ρTU (as products of diagonal matrices), this amounts to:

1TCmom = α1TDρuRU + β1T[RUD0 + diag(DρuRu)
]+ γ 1T[UDρR + diag(RDuu)

]+
+ δ1T[RDuU + diag(UDρρ)

]+ ε1T[RUD0 + diag(RDuu + UDρρ)]
= β

[
ρTUD0 + (DρuRu)T]+ γ

[
uTDρρ+ (RDuu)T]+

+ δ
[
ρTDuU + (UDρρ)T]+ ε[ρTUD0 + (RDuu)T + (UDρρ)T ]

= βρTU[D0 +DρuT]+ γ uT[Dρ +DuT]R + δρT[Du +DρT]U+
+ ε[ρTUD0 + uTDuTR + ρTDρTU]. (57)

When ε = 0, it can be seen that this expression vanishes for all ρ and u, i.e. it admits global momentum conservation, if 
and only if

D0 = −DρuT and Dρ = −DuT
. (58)

The second duality condition we have seen before in Eq. (43) when studying mass conservation of the advective form of 
mass transport. For derivative matrices, the duality conditions (58) imply that all four matrices D(�) have vanishing row 
and column sums. In this case with ε = 0, there are no special conditions (yet) on the weights α, β, γ and δ. In the case 
ε �= 0 it can be shown (not presented here) that discrete conservation of momentum requires all matrices D(�) to be the 
same, and to satisfy the discrete product rule DUρ = RDu + UDρ. Because such a D �= 0 does not exist, discrete advective 
momentum conservation requires ε = 0.

Local momentum conservation As already used in Section 2.4, in Lemma A.1 it is proven that any matrix with vanishing 
column sums can be factorized in a local flux form. This implies that under the duality conditions (58) the matrix Cmom
studied in Eq. (57) contains a factor I − E−1. A volume-consistent scaling invokes that the flux is consistent; see Section 2.4.

Observation 6 (Discrete conservation of momentum). With a volume-consistent scaling, finite-difference discretizations for the split 
forms of the momentum equation in (9) with ε = 0 advectively conserve momentum, globally and locally, if and only if the difference 
operators satisfy the duality relations (58). In that case, the resulting discretization can be written as a finite-volume discretization.

5. Conservation of kinetic energy

5.1. General criteria

Finally, we turn to the discrete advective conservation of kinetic energy. For our discrete transport equations, the discrete 
evolution of the quadratic invariant kinetic energy can be obtained by combining the discrete conservation equations for 
mass and momentum, and results in

H
d

dt

(
1

2
RΦφ

)
= H

(
Φ

dRφ

dt
− 1

2
Φ2 dρ

dt

)
= −Φ

(
Cmom − 1

2
diag(dmass)

)
φ. (59)

It follows, as in Section 2.1, that discrete global energy conservation is guaranteed if and only if [9,16]
14
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Akin ≡ Cmom − 1

2
diag(dmass) is skew symmetric, (60a)

which can be reformulated as

diag(dmass) = Cmom + CT
mom. (60b)

This necessary and sufficient condition shows that outside its diagonal a discrete advective operator Cmom must be skew-
symmetric, while at its diagonal a discrete mass vector dmass must be recognized.

The diagonal relation between the discrete mass and momentum equations has been noticed before. E.g., Pirozzoli [45, 
p. 2999] writes that kinetic energy preservation is only achieved “when both the continuity and the momentum equations 
are split [in the same way]”, while Morinishi [46, p. 278] writes “... as long as the [diagonal] terms in [the momentum 
equation] are discretized in the same manner as that in the discrete continuity”. Our analysis gives the mathematical proof 
of the necessity of this relation.

As a special case, multiplying condition (60b) with the all-ones vector 1, discrete energy preservation implies that

dmass = diag(dmass)1 = (Cmom + CT
mom)1. (61)

Hence, under energy preservation the mass transport term is fixed as soon as the advective operator Cmom has been chosen. 
When also momentum is conserved, i.e. when the column sums of Cmom vanish implying CT

mom1 = (1TCmom)T = 0, this 
expression for the mass transport term can be simplified to

dmass = Cmom1 ⇒ 1Tdmass = (1TCmom
)
1 = 0, (62a,b)

showing discrete mass conservation. The conditions under which our forms for mass and momentum transport do satisfy 
relation (62a) can be found starting from Eq. (56):

Cmom1 = (α + β)DρuRu + (γ + δ + ε)(UDρρ+ RDuu).

A comparison with dmass in Eq. (47) shows that Eq. (62a) is satisfied if and only if

α + β = ξ and γ + δ + ε = 1 − ξ. (63)

These are conditions that we have seen earlier in Eq. (11) for the analytic case.
In the next (sub)sections we study how the freedom in discretization choices that is still open after requiring conserva-

tion of mass and momentum can be exploited to achieve conservation of energy. We will first restrict ourselves to two-point 
fluxes, i.e. three-point stencils for the discrete difference operators.

Staggered grid
In the above formulation of (59) it has been assumed that both conservation equations, i.e. for mass and for momen-

tum, use the same control volume H. For a staggered positioning both control volumes are different, and the density and 
mass flux are defined at other positions than in a centered grid. To bring the two terms in (59) together will require 
an interpolation between the staggered and centered versions of the quantities involved. For example, an equal-weighted 
1
2 - 1

2 interpolation I1/2 of the product Hρ and of the components of m suffices to generate staggered quantities for the 
momentum equation that leave the above reasoning intact [9,47]:

(Hρ)mom = I1/2(Hρ)mass and mmom = I1/2mmass

(the subscripts refer to the equation concerned). Obviously, the notation for staggered grids becomes more complex, but the 
notation from [47] has been designed sufficiently general to allow application to (collocated and staggered) unstructured 
grids.

5.2. Finite-volume methods

Global energy conservation
While studying advective momentum conservation in the previous section, still a choice had to be made for the compu-

tation of the fluxes mφ: interpolation of the product, product of the interpolations or a more complicated expression. The 
condition (60) to assure global energy conservation will determine this choice, as we will see now.

The former option, in which (mφ) f is found from an interpolation of the product mφ in the adjacent nodes, corresponds 
with a flux given by (compare Eq. (30))

(mφ)i+1/2 = 1

2
(miφi + mi+1φi+1) ↔ (Mφ) f = 1

2
(I + E)Mφ. (64)

It leads to a discretization for which the advection matrix has a zero diagonal, as in the usual central finite-difference 
discretizations. Hence, it cannot cancel the contribution from the mass transport in Afv as required by Eq. (60). Of course, 
kin

15



G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879
in incompressible flow, where dmass = 0, this discretization is fine and does satisfy Eq. (60), i.e. it conserves (kinetic) energy. 
But for compressible flow the fluxes must be computed in a different way.

Thus, we consider the second interpolation option m f φ f , leading to

Cfv
momφ≡ (I − E−1)Ffvφ with flux Ffvφ= Mfv

f φ f , (65)

where Mfv
f = diag(mfv

f ). Outside the diagonal the operator Cfv
mom has to be skew symmetric according to Eq. (60). This is 

only possible when in the interpolation the coefficients of neighboring nodes contain some symmetry. The simplest (linear) 
option is to choose the face values of φ as

φi+1/2 = 1

2
(φi + φi+1) ↔ φ f ≡ 1

2
(I + E)φ. (66)

For three-point discretization stencils this is the only possible choice leading to skew-symmetry [16], and is in line with the 
interpretation of the nodal values as averages over the control volumes [18]. Observe that this interpolation also allows for 
a discrete product rule:

Φ f (E − I)ψ+Ψ f (E − I)φ = (E − I)Φψ.

Interpolations with larger and more complicated stencils to build higher-order approximations are discussed in Section 6.
The choices (65) and (66) result in the advection operator

Cfv
mom = 1

2
(I − E−1)Mfv

f (I + E) = 1

2
(Mfv

f E − E−1Mfv
f ) + 1

2
diag

(
(I − E−1)mfv

f

)
, (67)

where the identity (14b) has been used. Observe the term on the diagonal which equals half the mass transport (28). The 
importance of the equal-weighted 1

2 - 1
2 interpolation in Eq. (66) is clearly visible, independent of the geometric position 

of the face i + 1/2 in between the nodes i and i + 1 (see also [48, Th. 2.2]). The operator Afv
kin governing discrete energy 

conservation now follows as

Afv
kin = Cfv

mom − 1

2
diag(dfv

mass) = 1

2
(Mfv

f E − E−1Mfv
f ). (68)

Its obvious skew-symmetry satisfies the condition (60) for global energy conservation.

Example. As an example, an appropriate central finite-volume discretization uses the mass flux

mi+1/2 ≡ 1

2
(mi + mi+1)

(66)↔ Mfv
f φ f = 1

4
diag

(
(I + E)m

)
(I + E)φ. (69)

In more familiar grid-point terminology, this discretization reads

∇ · (mφ)|i ≈ (mi+1 + mi)φi+1 + (mi+1 − mi−1)φi − (mi + mi−1)φi−1

2(xi+1 − xi−1)
.

On the diagonal one recognizes half the discrete mass transport. �
Remark. It is emphasized that an unequal-weighted average in the interpolation (66) would lead to an upwind/downwind-
biased discretization of the advective term. As is well-known, this influences the kinetic energy; consistent herewith, the 
skew-symmetry of the operator Akin is lost and condition (60) for energy preservation is not satisfied.

Local energy conservation
Local conservation of energy can be studied by rewriting the evolution of kinetic energy, starting from Eq. (68) and using 

Eq. (14b), as

H
d

dt
(

1

2
RΦφ) = −ΦAfv

kinφ= −1

2
(I − E−1)Mfv

f ΦEφ, (70)

which constitutes a further decomposition from which the ‘difference of fluxes’ term (I − E−1) emerges. This decomposition 
shows that, next to global energy conservation, discrete energy is also locally conserved. As a special case, with the above 
choice (66), at the face i + 1/2 it has the energy flux function 

( 1
2 ρuφ2

)
i+/2 = 1

2 mi+1/2φiφi+1. This choice for the kinetic 
energy flux equals the one used by e.g. Subbareddy and Candler [13, Eq. (6)], Chandrashekar [17, Section 4.7(1)] and Kuya 
et al. [8, Eqs. (32, 33)].

A comparison of the finite-volume discretizations for mass Eq. (28), momentum Eq. (65) and energy Eq. (70) reveals that 
their advective terms all fit in the same discrete framework:
16
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∇ · (mψ) ↔ (I − E−1)Mfv
f ψ with ψ ∈ {1,

1

2
(I + E)φ,

1

2
ΦEφ}. (71)

In fact, this framework describes all three-point energy-preserving finite-volume discretizations. The mass flux mi±1/2 =
(ρu)i±1/2 ↔ Mfv

f may be chosen completely arbitrary without loosing (local and global) discrete conservation, as long as 
it is done consistently over all conservation equations. For instance, a directional upwind-like bias of the mass flux as in 
Eq. (34) is allowed without jeopardizing discrete energy conservation. Also, this freedom can be used to achieve other 
properties, for example to induce entropy conservation [17, Section 4.7(2)]. Note that, as a finite-volume method, mass and 
momentum are always locally conserved from the start, although possibly in an nonphysical way when ‘exotic’ choices for 
the mass flux are made.

Observation 7 (Discrete conservation of energy - finite-volume). Finite-volume methods for transport equations, which by design 
preserve mass and momentum, also globally and locally preserve kinetic energy if and only if in the discrete momentum equation the 
advective operator is skew-symmetric outside its diagonal. On the diagonal a consistency with the mass transport operator is required. 
In particular, the latter must satisfy Eq. (61). For second-order three-point stencils, i.e. two-point fluxes, these properties require that:

1) the two-point advective flux in Eq. (65) is written as the product of the mass flux m in Eq. (28) and the flux of the transported 
quantity φ, or as a more complicated expression.

2) the flux of the transported quantity φ is found from an interpolation which is symmetric in the neighboring nodal values, as in 
Eq. (66).

As already mentioned in Section 3, there exists a large freedom in choosing the mass flux m while maintaining energy 
(and mass and momentum) conservation. This was explicitly observed earlier in [13, p. 1350] and [16]. We will explore this 
freedom below in Section 6.

5.3. Generalized finite-difference methods

Global energy conservation The conservation of the quadratic invariant kinetic energy is governed by the discrete matrix 
Akin. For global conservation of energy it has to satisfy the condition (60). Starting from the discrete flow equations (47)
and (56), and with some rearrangement, we can write this discrete matrix for the family of analytic formulations (9) as

Akin = αDρuRU + (β + ε)RUD0 + γ UDρR + δ RDuU + (β − 1

2
ξ)diag(DρuRu)

+ (γ + ε − 1

2
(1 − ξ)

)
diag(RDuu) + (δ + ε − 1

2
(1 − ξ)

)
diag(UDρρ

)
.

At the diagonal of Akin, the last three terms cancel for all R and U if and only if

α − ε = β = 1

2
ξ and γ = δ = 1

2
(1 − ξ) − ε, (72)

where the value of α follows from α + β + γ + δ + ε = 1. These are the same conditions as found by Coppola et al. [15]
for central finite-difference methods of split forms; see Eq. (10). Further, it is observed that these conditions are compatible 
with the conditions (63) for satisfying Cmom1 = dmass if and only if ε = 0.

Using UR = RU, one now can write

Akin +AT
kin = (

1

2
ξ + ε)

[(
Dρu +D0T)

RU + RU
(
DρuT +D0)]+

+ [1

2
(1 − ξ) − ε]

[
U
(
Dρ +DuT)R + R

(
DρT +Du)U] .

The duality conditions (58) are necessary and sufficient to make this expression for the symmetric part of Akin vanish for 
all R and U. In combination with condition (72), these conditions ensure global conservation of energy.

Whether or not also momentum is conserved depends on satisfying Eq. (62), which is satisfied under the conditions in 
Eq. (63). As mentioned above, these conditions imply Eq. (72) when ε = 0, in which case both discrete energy and momen-
tum are preserved. Thus, for the split forms (9) with ε = 0, discrete energy conservation implies discrete conservation of 
mass and momentum, while for ε �= 0 momentum is not conserved as we saw earlier.

We explicitly note that the conditions in Eq. (72) have been derived in [15] under the (restrictive) assumption of skew 
symmetry of the derivative matrices and uniform mesh. The derivation here exposed extends the relevance of these condi-
tions to a more general formulation on non-uniform grids in which the skew symmetry is replaced by the duality conditions 
(58).
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Table 1
Overview of some popular and recent energy-preserving discretizations for split forms. 
The discretization of momentum transport is given by (mφ)i+1/2 = 1

2 mi+1/2(φi+1 +φi).

ξ mass flux mi+1/2

Feiereisen [11]; Kok [3]; Kuya [8, DQ] 1 1
2 (ρi+1ui+1 + ρi ui)

KGP [14,32]; Kuya [8, QC]; Singh [44, mKEP] 1
2

1
4 (ρi+1 + ρi)(ui+1 + ui)

Coppola [15] 0 1
2 (ρi ui+1 + ρi+1ui)

Local energy conservation Similar to our study of conservation of linear invariants, a globally energy-preserving finite-
difference method also locally conserves energy. This is a direct consequence of the skew symmetry of Afv

kin as we will show 
next. In Section 2.3 it was mentioned that any skew-symmetric matrix Akin can be written as Akin =∑k>0(AkEk − E−kAk). 
Then, using Corollary A.4, the total energy can be written in a local flux formulation

ΦAfv
kinφ =

∑
k>0

Φ
(
AkEk − E−kAk

)
φ = (I − E−1)

∑
k>0

(k−1∑
h=0

E−h
)

AkΦEkφ,

herewith generalizing Eq. (70) and revealing local conservation.

5.4. Relation between finite-difference and finite-volume discretizations

When ε = 0, the above energy-preserving finite-difference methods form a one-parameter family, parameterized with ξ , 
while α = β = 1

2 ξ and γ = δ = 1
2 (1 − ξ). Taking the duality relations (58) into account, the most general supraconservative, 

i.e. also preserving mass and momentum [9], family of finite-difference methods reads

H
dρ

dt
+ ξDρuRu + (1 − ξ)

(
RDuu − UDuT

ρ
)= 0;

H
dRφ

dt
+ 1

2
ξ
(
DρuRU − RUDρuT + diag(DρuRu)

)
φ+

+ 1

2
(1 − ξ)

(
RDuU − UDuTR + diag(RDuu − UDuT

ρ)
)
φ = 0.

(73)

Effectively, there is freedom to design two derivative operators (Dρu and Du), and to choose one parameter (ξ ). In 
Section 3.4 we have already seen that any finite-difference discretization globally preserving linear invariants can be for-
mulated as a cell-centered finite-volume discretization with linear fluxes, but the converse is doubtful. For instance, for 
the non-linear logarithmic fluxes of Chandrashekar [17] and Ranocha et al. [49,50] no finite-difference equivalent has been 
reported yet.

All second-order central finite-difference discretizations of the convective formulations as given in e.g. [7,15,46,51], fit 
into this framework. Table 1 shows a more specific relation with these existing split forms.

Three-point stencils For linear three-point stencils we can prove equivalence. The discrete operators involved start with three 
free coefficients, which have to satisfy two conditions: i) their row sums vanish; ii) their scaling is volume consistent. This 
leaves one degree of freedom per operator, with which an amount of directionality can be built in: central vs. directionally 
biased. With two discrete operators and one parameter (ξ) to choose, this gives a three-parameter family of three-point 
finite-difference discretizations which satisfy our requirements. On the other hand, in Section 4.1 we have seen that the 
three-point finite-volume discretizations with linear fluxes also form a three-parameter family spanned by the coefficients 
c(�,�) . The two three-parameter families are the same, and the mapping between them is given in Eq. (53) in Section 3.4. 
Note that in principle the three free parameters may be grid-point dependent, thus in fact we have a 3N-parameter family.

For, possibly higher-order, methods with larger stencils we can again refer to Eqs. (51) and (53). It is clear that for any 
choice of the vectors aρu

k , au
k and aρk , corresponding vectors c(�,�) can be constructed. But the opposite does not need to 

hold. Eq. (51) shows that not all the possible products ρi+p ui+q with p �= q are admissible in the mass flux, if a corre-
sponding generalized advective form is sought. Only products of the variables at nodes xi−h and xi+k−h , with 0 ≤ h < k, are 
allowed; the latter inequalities form a severe restriction on the possible index combinations. As an example, a numerical 
flux calculated at node i + 1/2 with a polynomial interpolation including products of the type e.g. ρi−2ui−1 or ρi+3ui+1 do 
not have a corresponding finite-difference formulation within the family of advective discretizations (42). Thus, for larger 
stencils it seems that the finite-volume framework is able to produce more general methods, not achievable within the 
finite-difference framework we considered (i.e. built from divergence and advective forms).

Observation 8 (Discrete conservation of energy - general finite-difference). When scaled in a volume-consistent way, the split family 
of (possibly directionally-biased) finite-difference methods (47) and (56) for the transport equations for mass and momentum, respec-
tively, globally and locally conserve
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1) mass, if and only if the duality condition (43) is satisfied;
2) momentum, if and only if ε = 0 and the extended duality conditions (58) are satisfied;
3) energy, if and only if next to the duality conditions (58) also Coppola’s conditions (10) for the weights are satisfied.

When ε = 0, the above three conditions for the split forms are nested in the sense that 3) ⇒ 2) ⇒ 1). For more general discretizations, 
given discrete energy conservation, satisfying (62) is necessary and sufficient for discrete conservation of mass and momentum. In 
particular, in the case ε �= 0, discrete energy conservation does not imply momentum conservation. The freedom in the choice of the 
mass flux which is present in the finite-volume formulation corresponds to the freedom in the choice of the derivative matrices Dρu

and Du and of the weights in the split forms.

Remark. In all existing studies of the conservation properties for the split convective formulations, e.g. [7,8,15,46,51,52], 
central discretization is assumed beforehand. Our analysis shows that also directionally-biased discretizations are allowed, 
provided they satisfy the duality relations (58).

6. Higher-order fluxes

6.1. Product of interpolations

In Section 5.2 we have already seen that central fluxes of the form (mφ)i+1/2 =∑q γq(mφ)i+q =∑q γqmi+qφi+q will not 
be energy-preserving for compressible flow, as the flux difference (mφ)i+1/2 − (mφ)i−1/2 gives a skew-symmetric discretiza-
tion of a first-order derivative, as in Eq. (64). This makes the central coefficient (of φi ) vanish, hence it cannot cancel the 
discrete mass equation as required by the skew-symmetry condition (60). Only for incompressible flow these discretizations 
may preserve energy. Pirozzoli [45] calls these DFD (divergence finite difference) schemes, and writes “It is well known 
that in most cases the DFD scheme leads to rapid nonlinear numerical divergence, and it requires some form of artificial 
stabilization.” This observation is consistent with our theoretical conclusions.

So for higher-order discretizations we have to resort to more intricate expressions for the flux, like (mφ)i+1/2 =
mi+1/2φi+1/2 as in Eq. (65). With the freedom in the mass flux, mi+1/2 can be constructed to arbitrary order by including 
an arbitrary number of neighboring points. But the choice for φi+1/2 is determined by the skew-symmetry requirement of 
the discrete convective operator. In Section 5.2 we used an equal-weight interpolation (66) between the two adjacent nodal 
points, limiting the accuracy to second order. A higher-order extension could be attempted by generalizing the interpolation 
(66) using more neighboring nodes. For example, we can consider a momentum flux of the form

(mφ)i+1/2 = mi+1/2φi+1/2 = mi+1/2

∑
q

αqφi+q with
∑

q

αq = 1. (74)

The diagonal of Cfv
mom = (I −E−1)Mfv

f , i.e. the coefficient of φi , becomes mi+1/2α0 −mi−1/2α1. Demanding energy conservation 
this expression has to be half a consistent discretization of the mass transport term (29), i.e. 1

2 (mi+1/2 − mi−1/2). Hence 
α0 = α1 = 1/2, while all other αq ’s sum up to zero. As there does not exist a higher-order (> 2) interpolation for φ in 
which the coefficients satisfy the just-mentioned criteria, using the momentum flux format of product type (74) a second-
order accuracy is the most that can be achieved.

Thus, to achieve higher-order accuracy even more complicated forms of the momentum flux have to be sought. The split 
forms which have been studied and reviewed by various authors [7,8,14,15,45,51,52] fall in this category, and are the ones 
considered here. The mentioned papers pay particular attention to the split forms of the mass flux. Our theory shows that 
this mass splitting is not relevant for discrete energy preservation, as long as it is done consistently in both the mass and 
momentum equations. Of course these splittings may influence accuracy, but that is a separate study.

6.2. Richardson extrapolation

A particular example of a higher-order discretization has been proposed by Verstappen and Veldman [5,6], thus far 
limited to incompressible flow. They construct the flux by a Richardson extrapolation in combination with a two- or three-
times coarser grid (for collocated and staggered grids, respectively). We generalize this approach for compressible flow. It 
starts with the standard energy-preserving central finite-volume discretization (69) on the basic fine grid, to be combined 
with the same discretization on a, here two-times, coarser grid. In our matrix-vector notation:

fine grid: Hfine dRφ

dt
= − Cfine

momφ = −1

2
(I − E−1)Mfine

f (I + E)φ; (75a)

coarse grid: Hcrse dRφ

dt
= − Ccrse

momφ = −1

2
(I − E−2)Mcrse

f (I + E2)φ, (75b)

where the M(�) are coarse and fine mass fluxes which are free to choose, for example the second-order choices
f
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Mfine
f = 1

2
diag[(I + E)m] and Mcrse

f = 1

2
diag[(I + E2)m]. (76a,b)

The final discretization is formed by a Richardson extrapolation that cancels the leading terms in the truncation error (which 
is of third-order, hence the power 3 below):[

23 ∗ Eq. (75a) - Eq. (75b)
]
/6. (77)

In the left-hand side, the above extrapolation is similar to turning a trapezoidal quadrature rule into Simpson’s quadrature, 
which makes also the volume integration of the time derivative 4th order. We obtain a finite-volume method over an 
effective control volume of size

H4th = (8Hfine −Hcrse)/6, (78)

which shows fourth-order accuracy on smooth grids [6]. Observe that this size of the control volume, found from a Richard-
son extrapolation, equals (25) found from defining H = diag(Dx). Because I − E−2 = (I − E−1)(I + E−1), the ‘coarse’ flux 
(75b)+(76b) can also be written as a ‘fine’ flux. Taking the combination (77), this results in a flux of the 4th-order finite-
volume method as

(mφ)4th
i+1/2 = 1

3
(mi+1 + mi)(φi+1 + φi) − 1

24
(mi+2 + mi)(φi+2 + φi) − 1

24
(mi+1 + mi−1)(φi+1 + φi−1).

This flux equals Pirozzoli’s [14] flux in his Eq. (13) with L = 2, a1 = 2/3 and a2 = −1/12. The difference is that the latter 
flux is used in a finite-difference context, hence the treatment of the time derivative differs (but this opens up another 
discussion [21,22]).

Observation 9 (Higher-order fluxes). With fluxes of the form (mφ)i+1/2 = mi+1/2φi+1/2 energy-preserving discretizations are at most 
second-order accurate. Higher-order finite-volume discretizations require more complicated expressions for the flux.

7. Numerical examples for the transport equations

7.1. The test problem

To illustrate and further study the above theoretical considerations we present a simple model problem. The governing 
equations are given by (1) with φ = u. When not otherwise indicated, in the analytical formulations (9) we set ξ = 1/2
where all four operators D(�) are involved, whereas the parameters α, · · · , δ are chosen according to (10).

A periodic domain x ∈ [0, 1] is selected, during a time interval t ∈ [0, 1.0] unless indicated otherwise. Initial conditions 
are given by

u(x,0) = 1 + 0.1 sin(2πx) and (ρu)(x,0) = 2 + sin(2πx),

which leads to a smooth, oscillating solution in space and time. The grids in the examples are either uniform or smoothly 
stretched, based on the transformation

x = 0.5 + 0.5
tanh(s(σ − 0.5))

tanh(0.5 s)
,

where the computational coordinate σ ∈ [0, 1] is discretized uniformly and the parameter s controls the stretching. When 
s > 0 the grids have refinement regions near the boundaries x = 0 and x = 1. This is to keep the grid consistent with 
periodic boundary conditions; in particular, we do not want an abrupt change in mesh size when switching from one side 
boundary to the other side. In the simulations shown we used s = 5, to illustrate the influence of a non-uniformity of a 
grid. In these grids the coarsest mesh is up to 37 times larger than the smallest one. The time integration is a 4th-order 
Runge–Kutta method, with a very small time step (typically below 10−5), to make sure that the time-integration error is 
smaller than the spatial discretization error we are focusing on.

In the examples to follow, several energy-preserving discretizations have been studied that satisfy the duality conditions 
in Eq. (58):

central: Dρu =Dρ = 1

2
(E − E−1); (79a)

4th-order central: Dρu =Dρ = 1

12
(−E2 + 8E − 8E−1 + E−2); (79b)

dual-sided: Dρu =Dρ = I − E−1; (79c)

2nd-order dual-sided: Dρu =Dρ = 1

2
(3I − 4E−1 + E−2), (79d)

with D0 = Du = −(Dρu)T. Also, we will discuss the behavior of the traditional upwind discretization, which does not satisfy 
the duality relations Eq. (58).
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Fig. 1. Grid-refinement study for the density of various discretization methods on smoothly-stretched grids with N grid points. In (a) the control volumes 
are chosen according to Eq. (23), confirming the theoretical predictions. In (b) the control volumes are taken equal to the local grid size h, indicated by the 
extension “h”, which leads to much poorer convergence behavior.

7.2. Grid-refinement study

Before focusing on the conservation properties, we first show a (traditional) grid-refinement study to show that the order 
of convergence of the methods discussed behaves as expected. Fig. 1 presents such a grid refinement study of the various 
discretizations in (79) for the smoothly-stretched non-uniform grid described above, with N the number of grid points. The 
equations are solved until t = T = 0.1, after which the solution ρ(x, T ) is compared in the L2-norm with the solution on a 
very fine similarly-stretched grid with 5000 grid points.

In the simulations, the control volumes H are first taken equal to Eq. (23), H = diag(Dx), making sure that the dis-
cretization is exact for linear functions. Fig. 1(a) shows results for central discretizations of 2nd order (79a) and 4th order 
(79b), and 1st-order (79c) and 2nd-order (79d) dual-sided discretizations. The graphs show that the convergence behavior 
of energy-preserving discretizations on smooth non-uniform grids is similar to the behavior on uniform grids. This matches 
our discussion in Section 2.5, and is in line with the (underappreciated) theory of Manteuffel and White [53].

On non-uniform grids, the choice of H is essential, as shown in Fig. 1(b) where H is chosen according to the local grid 
size H ↔ h = 1

2 (xi+1 − xi−1). The convergence rate for the higher-order methods considered, a 4th-order central discretiza-
tion and a 2nd-order dual-sided discretization, deteriorates to roughly first order when the grid is non-uniform. This can be 
explained from Eq. (23), as dx/dξ uses a lower-order discretization than dφ/dξ . As referred to in Section 6.2, this difference 
is related to the different formal accuracy when interpreting a higher-order discretization as finite volume (where H is given 
by (78)) or as finite difference (where H equals the local grid size) [21,22].

7.3. Duality relations

Our next examples study the relevance of the duality relations featuring in Observations 4, 6 and 8, where it is stated 
that discretizations should satisfy them in order to be conservative. More specifically, for mass conservation (43) needs to 
be satisfied, while for momentum and energy conservation additionally (58) is required.

The figures below show the discrete evolution of the invariants mass, momentum and energy of the transport equation 
(1) for special members of the ξ -family (9), on a grid with N = 21 grid points, over the time interval until T = 1. The global 
invariants have been normalized with respect to the initial value:

〈 f (t)〉 = f (t) − f (0)

f (0)
, (80)

where the overbar indicates spatial integration over the domain.

Central discretization Skew-symmetric central discretizations for all derivatives in the split forms (9) with ε = 0 satisfy both 
duality conditions, hence they lead to mass and momentum conservation for all values of α, · · · , δ. For energy conservation 
additionally the conditions (10) need to be satisfied. Fig. 2(a) shows the discrete evolution of mass, momentum and energy 
for the special split forms ξ ∈ {0, 1/2, 1}, with the parameters α, · · · , δ chosen according to (10), The graphs show that 
these analytic invariants are discretely preserved within machine accuracy.
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Fig. 2. Evolution of the invariants mass, momentum and energy for central discretization, at varying values of the parameters α, . . . , δ. (a) The parameters 
are chosen according to (10) for several values of ξ . (b) When these parameters do not satisfy (10), energy preservation is no longer guaranteed.

Fig. 3. Evolution of mass, momentum and energy for directionally-biased discretizations at various values of ξ . (a) The discretization satisfies the duality 
conditions (58): all invariants are preserved. (b) All derivatives are chosen equal to the traditional upwind discretization (79c) and do not satisfy the duality 
conditions: most invariants are no longer discretely preserved.

In Fig. 2(b) the weight parameters have been chosen not to satisfy (10): {α = 1, β = γ = δ = 0}, {β = 1, α = γ = δ = 0}
and {γ = 1, α = β = δ = 0}, respectively. The case δ = 1 turned out not always to be stable over the time interval considered. 
As predicted theoretically, mass and momentum are preserved discretely. But as these parameter choices do not satisfy the 
conditions (10), energy preservation is not guaranteed anymore. Also a discretization promoted by Kennedy and Gruber [32]
has been added with a non-zero value of ε. In this case, called KG1, the parameters are chosen as ε = 0.5, ξ = 0.0, with 
the other parameters satisfying the conditions for energy preservation (10). It clearly does not preserve momentum.

Directionally-biased discretization Directionally-biased discretizations, like the well-known upwind discretization, in general 
will not satisfy the duality conditions (58) and discrete conservation is not guaranteed. However, we should not confuse 
upwind discretization with the dual-sided discretization that does satisfy these duality relations. The latter discretization 
does preserve kinetic energy. We will next demonstrate this essential difference for our test problem.

To start with, Fig. 3(a) shows results obtained with the dual-sided discretization (79c) which does satisfy the duality 
relations (58); the whole ξ -family is considered. As predicted by Observation 8, all invariants, including kinetic energy, are 
preserved discretely.

The situation changes when all four discrete first-order derivative operators D(�) are chosen equal to the traditional up-
wind discretization (79c), as these do not satisfy the duality relations. Fig. 3(b) shows the resulting evolution of the primary 
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and secondary invariants: most of them are no longer preserved. This is to be expected as it is well-known that upwind 
discretizations generate artificial diffusion. Only the Feiereisen case ξ = 1 conserves mass, which can be understood since 
then the mass equation is in pure divergence form (7a), for which the upwind derivative gives a conservative discretization.

But when a dual-sided discretization is used, both positive and negative diffusion are generated which neutralize each 
other. In the mass equation such dual-sided discretizations are not unusual in the study of the reduced Navier–Stokes equa-
tions. When accompanied by dual (adjoint) one-sided discretizations of the pressure gradient [54,55], they do not disturb 
the energy balance. In fact, such dual discretizations are used to avoid the odd-even decoupling of collocated schemes in 
the pressure Poisson stencil, while at the same time preserving kinetic energy [24].

8. Euler equations

As a ‘proof-of-the-pudding’, we will now demonstrate the performance of our energy-preserving discretizations when 
solving the compressible Euler equations under subsonic, shock-free conditions. The combination with shock-capturing dis-
cretizations is not yet pursued in this paper, but rather postponed to future publications. The simple test proposed in this 
section is to be intended as a preliminary application of the present theory to the full system of compressible flow equa-
tions. The treatment of the thermodynamic terms will follow the guide lines set out in the Requirements in [9] and the 
Analytical Relations in [8]. Further, we adhere to the principle of non-interference [16], with advective terms and thermody-
namic terms each having their own energy-preserving role. In particular, we do not consider special combinations of these 
terms satisfying energy preservation as discussed in Remark 4.1 of [49].

The test case demonstrates that locally conservative and (locally) kinetic energy-preserving discretizations of the com-
pressible flow equations can be obtained in a more general setting by using non skew-symmetric derivative operators. A 
complete study of the possibilities opened by the general theory developed in the previous sections is out of the scope of 
the present treatment and will constitute the object of future investigations; see e.g. [10,56]. Also, solution methods for the 
closely-related shallow-water equations fit in our theoretical framework [57,58].

8.1. Discrete formulation

There exist several ways to formulate the thermodynamic terms in the compressible Euler equations [10,56]; we choose 
the formulation based on the direct discretization of the internal energy, as used by, e.g., Moin et al. [59], Blaisdell et al. [60], 
Veldman [9] and De Michele and Coppola [10]

∂ρ

∂t
= −∇ · (ρu) ; ∂ρu

∂t
= −∇ · (ρuu) − ∇p; ∂ρe

∂t
= −∇ · (ρue) − p∇ · u. (81)

Here e is the internal energy per unit mass and p is the pressure, obtained from the equation of state p = (γ − 1)ρe. Upon 
semi-discretization, the 1D version of the system (81) can be written as

H
dρ

dt
= −d; H

dRu

dt
= −Cu −Dpp; H

dRe

dt
= −Ce − PDeu (82)

with the usual meaning of the symbols. Although directly discretizing internal energy, this formulation can be easily shown 
to preserve also total energy, when a kinetic energy-preserving discretization for mass and momentum has been adopted 
and the additional duality relation for the pressure terms Dp = −(De)T is satisfied [9,10]. In fact, the convective terms are 
treated by assuming a finite-difference kinetic energy-preserving discretization for d and C:

d = ξ dD + (1 − ξ)dA; C= 1

2
ξ
(
CD + Cφ

)+ 1

2
(1 − ξ)

(
Cu + Cρ

)
, (83)

where d(�) and C(�) are the discretizations of the terms defined in Eqs. (7, 8) (cf. also Eq. (73)) and the value ξ = 1/2 is 
used.

In the test shown below, we use the simple dual-sided discretization obtained by using the derivative matrices 
Dρ = Dρu = Dupw, Du = D0 = −(Dupw)T in the formulation defined by Eq. (83), where Dupw is the classical first-order 
upwind derivative matrix Dupw = I − E−1 (see also Eq. (34)). According to the general criteria exposed in Section 3–5, this 
discretization locally and globally preserves both primary invariants and kinetic energy. To assess the performance of this 
formulation, we compare our results with two standard discretizations which are analogous to some of the ones consid-
ered in the previous sections. In particular, we will use: (i) 2nd-order central discretization according to Eq. (79a), and (ii)
1st-order upwind discretization in which the upwind derivative matrix Dupw is used in all the terms in Eq. (83). The first 
one is the canonical discretization based on a skew-symmetric derivative matrix, which is known to preserve both linear 
invariants and kinetic energy, whereas the second one is the standard diffusive upwind method which does not preserve 
kinetic energy, and is also non conservative of primary invariants when an advective form is used inside the discretization 
of the convective terms.

To complete the method, the pressure terms have to be discretized. In these preliminary tests we always use the 2nd-
order central discretization from Eq. (79a), for both Dp and De , for which the duality relation Dp = −(De)T is trivially 
23



G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879
Fig. 4. Discretization of the 1D Euler equations for the acoustic wave on uniform mesh with N = 32. Dots (black lines): 2nd-order central discretization, 
circles (red lines): dual-sided discretization, plus symbols (blue lines): 1st-order upwind discretization. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

satisfied. Note that the use of the 2nd-order central discretization in the dual-sided case is coherent with the general 
guidelines given by the Requirements in [9]. According to this theory, in the limit of incompressible flow, the discrete gradient 
operator acting on p should be equal to minus the transposed divergence in the continuity equation [9, Req. 3.2]. This gives:

Dp = −[ξDρu + (1 − ξ)Du]T = ξD0 + (1 − ξ)Dρ,

As ∇p does not depend on ρ , we can use it also for compressible flow. In the dual-sided case with ξ = 1/2 this immediately 
gives Dp = De =Dcen.

8.2. Numerical test

The numerical tests are performed on a simple one-dimensional acoustic wave experiencing steepening and nonlinear 
breakdown. The initial conditions are given by

ρ(x,0) = ρ0(1 + 0.2 sin x), u(x,0) = u0 + 0.2c0 sin x, p = p0 + 0.2ρ0c2
0 sin x (84)

with u0 = 1.5 and ρ0 = p0 = 1, from which c2
0 = γ = 1.4. The equations are spatially discretized on the domain [0,2π ]

with a uniform mesh and periodic boundary conditions. The semi-discretized equations are integrated in time by using the 
classical 4th order Runge-Kutta scheme. The Courant number, calculated by using the maximum initial velocity, is set to 
10−3, which leads to a time step δt = 1.17 × 10−4. This value has been checked to be sufficiently small such that the com-
putations are not affected by temporal errors. The numerical solutions are compared with a high-accuracy reference solution 
computed with a fifth-order weighted essentially-non-oscillatory (WENO) scheme on a very fine mesh (1024 points).

In Fig. 4 the results of the computations with N = 32 grid points are shown. Fig. 4(a) shows the time evolution of 
the linear global invariants and of the global kinetic energy. The linear invariants mass, momentum and total energy are 
conserved up to machine precision by both the central and dual-sided discretizations. The conservation properties of the 
central discretization are well known, the plots in Fig. 4(a) show that also the newly proposed dual-sided discretization 
exactly conserves the primary invariants.

In Fig. 4 also some results from the standard 1st-order upwind discretization are presented, in which all derivatives 
are chosen equal to Dupw as given in Eq. (34): Dρu = D0 = Dρ = Du = Dupw. For the formulation adopted, i.e. ξ = 1/2, 
this discretization neither preserves primary invariants nor global kinetic energy. Therefore the discrete evolution of the 
invariants corresponding to the upwind discretization are not shown, as their values are out of the scale. At time t = 5
the upwind discretization exhibits values of the normalized global mass, momentum and total energy given by −4.5 ×
10−3, −1.2 × 10−2 and −1.5 × 10−2, respectively. Note that, since the formulation employed directly discretizes the internal 
energy equation, strictly speaking total energy is not a primary invariant. It is a secondary quantity whose induced discrete 
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balance equation can be calculated for exact time integration from Eqs. (82) (cf. for example [10]). That the central and the 
dual-sided discretizations preserve total energy to machine accuracy with a kinetic energy-preserving formulation, as clearly 
visible in Fig. 4(a), indirectly shows that both discretizations preserve also internal energy. The evolution of global kinetic 
energy for the proposed schemes is shown in the last panel in Fig. 4(a), where the performance of the dissipative upwind 
method is also reported.

In Fig. 4(b) the density distribution is shown at selected time instants. After an initial smooth evolution, a discontinu-
ity develops at around t = 3.5. The numerical solution computed with the 2nd-order central discretization exhibits large 
oscillations, as expected, whereas the diffusive 1st-order upwind method smears the discontinuity over a large region. The 
dual-sided discretization, although being formally 1st order, nicely fits in between the dissipative upwind method and the 
highly oscillating 2nd-order discretization. Note that the dual-sided discretization illustrated preserves (both locally and 
globally) primary invariants (mass, momentum and total and internal energies) and kinetic energy, and that in the simula-
tion presented no artificial dissipation has been added. Hence, it could be a good starting point for future research directed 
to adding special shock operators.

9. Conclusions

In the preceding sections a general framework for supraconservative finite-volume and finite-difference discretizations of 
transport equations has been presented. The framework is formulated using discrete forms of the equations, in contrast with 
the usual formulations in analytical split forms. This point of view allows a more abstract and more general study of the 
(global and local) conservation properties of the equations. In this vein, it generalizes many studies from the literature on 
conservative split formulations, e.g. [7,8,14,15]. The matrix-vector formulation, enabling decomposition theorems, is a key 
tool in our analysis. The emphasis is on the (primary and secondary) conservation properties of the advective (transport) 
terms, and we showed some preliminary results for the full Euler equations. The theoretical study has been carried out 
under the assumption of exact time integration.

Global versus local With a volume-consistent scaling, the conservation properties can be immediately linked to the discrete 
matrix operators: global conservation of linear invariants is equivalent with vanishing column sums. Such discrete matrices 
also can be written in a local flux form by means of a flux-decomposition. This means that every globally conservative 
discretization is also locally conservative. For split forms to be conservative requires divergence-gradient type duality rela-
tions between the discrete differential operators. Skew-symmetric central discretizations satisfy this requirement, and so do 
dual-sided discretizations. The latter are not to be confused with the traditional upwind discretizations of advection, which 
do dissipate energy.

Energy preservation As a secondary invariant, to be preserved next to the primary invariants, we have focused on the 
discrete kinetic energy. Its preservation requires a relation between the discrete advective operator and the discrete equation 
for mass conservation. In particular, outside its diagonal the advective coefficient matrix should be skew-symmetric, whereas 
its diagonal defines half the discrete mass transport. This requires that the momentum flux through the faces of the control 
volume is formulated as the product of the mass flux times the flux of the transported quantity. The latter has to be 
calculated, independent of the actual geometry, from a 1

2 - 1
2 arithmetic average of the adjacent nodal values.

In order to achieve energy preservation, the duality relations leading to the preservation of the primary invariants are 
found necessary. Doing so, the additional conditions for the weights in the split forms (9), derived earlier in [7,15], have 
been confirmed. Together, these necessary conditions are also sufficient for energy preservation. For the split forms with 
ε = 0, discrete energy preservation implies discrete conservation of mass and momentum, with the discrete mass operator 
uniquely defined by the advective operator. Thus, for three-point stencils the discrete advective terms fit in the framework 
(71). The restrictions put by our supraconservative discretizations are relatively mild. Outside its diagonal the coefficient 
matrix must be skew-symmetric, while its diagonal should equal half the discrete mass flux which may be completely 
arbitrary. This leaves a large amount of freedom to obtain additional properties of the discretization, like preserving a 
dispersion relation [3], and/or achieving accuracy on highly-irregular grids [3,61].

Higher-order Further, it has been demonstrated that extensions to higher-order methods also fit within our theoretical 
matrix framework; for example the methods obtained from Richardson extrapolation [6]. Moreover, we have shown that a 
construction of an advective flux as the product of interpolations can at most be second order. To achieve the theoretical 
order of accuracy, the size of the control volume is found essential: it has to be chosen consistent with the discrete first-
order derivative.

Euler equations An application of the proposed theory to the full system of Euler equations, which was the initial motivating 
reason for this research, is also presented. The transport equations have been extended with thermodynamic effects, by 
adding a pressure gradient and an equation for the evolution of internal energy; total energy is now a secondary invariant. 
The discretization of the thermodynamic terms has been chosen to match our supraconservative approach, along the guide 
lines of [8,9], and directly follows from the discretization of the transport of mass and momentum. Both central and dual-
sided discretizations have been explored. We found a correct discrete energy exchange between kinetic and internal energy, 
25



G. Coppola and A.E.P. Veldman Journal of Computational Physics 475 (2023) 111879

 

such that total energy is discretely preserved. Moreover, without adding numerical diffusion, the newly developed dual-sided 
discretizations do a good job in describing the formation of shocks in situations where a central discretization is prone to 
oscillations.

Generality The described conditions, most of them being necessary and sufficient, have been formulated in matrix prop-
erties, and hold irrespective of the discretization method with which the discrete matrices have been created, like finite-
differences or finite-elements. As a special consequence, any (linear) conservative discretization of the considered family 
of split formulations can be re-formulated as a (linear) cell-centered finite-volume discretization. In particular, there ex-
ists an equivalence between energy-preserving three-point finite-difference discretizations and three-point finite-volume 
discretizations with a linear flux: they form a three-parameter family. When solving the Navier–Stokes equations, the 
energy-preserving methods studied in this paper do not require any numerical diffusion to remain stable. This makes them 
a popular method in turbulent-flow simulations, where the subtle balance between turbulence production and viscous dis-
sipation is critical [2].
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Appendix A. Flux decomposition of matrices

In this appendix we will prove some properties of matrices with vanishing column (and row) sums. In particular, it is 
shown how these matrices can be reformulated in a finite-volume format with a local flux function.

A.1. Local conservation

In a finite-volume method, the discretization is formed by the difference of fluxes through faces halfway between the 
nodal points, thus it is locally conservative. The next lemma proves that vanishing column sums are a necessary and suffi-
cient condition for local conservation.

Lemma A.1 (Local conservation). A matrix D =∑L
k=−L diag(ak)E

k is locally conservative if and only if all column sums vanish. The 
flux decomposition is given by

D = (I − E−1)F with F =
L∑

k=−L

L∑
h=k

diag(Ek−hah)E
k. (A.1)

Proof. The proof has two directions:

⇐ When the column sums vanish, we first define new vectors bk as

bk =
L∑

h=k

Ek−hah (k = −L, . . . , L + 1). (A.2)

Observe that bL+1 = 0 by construction, whereas b−L = 0 because of the vanishing column sums, as b−L = −E−L∑L
h=−L E−hah;

see (16). These vectors have been constructed to allow discrete summation by parts, as we will see. Now, Eq. (A.2) can be 
inverted to give
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ak = (bk − E−1bk+1
)

(k = −L, . . . , L). (A.3)

Next, substitution of Eq. (A.3) in the expression for D, and introduction of Bk = diag(bk), gives

D =
L∑

k=−L

(
Bk − diag(E−1bk+1)

)
Ek =

L∑
k=−L

BkEk −
L∑

k=−L

E−1Bk+1Ek+1

=
L∑

k=−L

BkEk − E−1
L+1∑

j=−L+1

B jE
j = (I − E−1)

L∑
k=−L

BkEk ≡ (I − E−1)F, (A.4)

where in the last step we used that B−L = 0 = BL+1. Thus D has a locally conservative form with flux given by (A.1).

⇒ When a matrix can be written in flux form (A.1), then its column sums satisfy

1TD = 1T(I − E−1)F = 0,

because E is circulant. �
Remark. Equation (A.3) is a discrete relative of the Main Theorem of calculus: d

dx

∫ x1
x a(η) dη = −a(x).

Corollary A.2 (Circulant matrices). For circulant matrices with vanishing column and row sums, the flux matrix can be written as

F =
L∑

k=−L

L∑
h=k

ahEk, leading to F1 =
⎛⎝ L∑

k=−L

kak

⎞⎠1. (A.5)

When the circulant matrix is also skew-symmetric, the flux can be rewritten as

F =
L∑

k=1

ak

k−1∑
h=0

E−h
(

I + Ek
)

. (A.6)

Proof. For circulant matrices, the flux matrix F given in Eq. (A.1) can be written as

F =
L∑

k=−L

L∑
h=k

ahEk =
L∑

k=−L

ak

k∑
h=−L

Eh, (A.7)

where in the last step the order of the summations has been changed (and the indices renamed). From the middle expres-
sion in (A.7) we obtain

F1 =
L∑

k=−L

L∑
h=k

ah1 ≡ α1.

Written out this equals

a−L + 2a−L+1 + . . . + (L + 1)a0 + . . . + 2LaL−1 + (2L + 1)aL = α.

Because of the vanishing column sums one has a0 = −(a−L +a−L+1 + . . .+a−1 +a1 + . . .+aL). When substituted, this leads 
to

−La−L + (1 − L)a−L+1 + . . . + 0a0 + . . . + (L − 1)aL−1 + LaL = α,

which is the stated condition (A.5).
When the matrix is also skew-symmetric (i.e. a−k = −ak), by splitting the k-sum in the right-hand side of (A.7) one 

obtains:

F =
L∑

k=1

ak

⎛⎝−
−k∑

h=−L

Eh +
k∑

h=−L

Eh

⎞⎠=
L∑

k=1

ak

(
k−1∑
h=0

E−h

)(
I + Ek

)
, (A.8)

where the identity (for k > 0)

k∑
h=−L

Eh −
−k∑

h=−L

Eh =
k−1∑

�=−k

E−� =
(

k−1∑
h=0

E−h

)(
I + Ek

)
has been used. �
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A.2. Quadratic conservation

We will next derive a discrete product rule, valid for any operator D, not just derivative operators. Also, vanishing column 
and/or row sums are not required. This product rule can be used to study advective forms of the equations, but it also plays 
a role in discrete conservation of quadratic forms as we will see below.

Lemma A.3 (Discrete product rule). For any matrix D =∑k AkEk and for any diagonal matrices Φ ≡ diag(φ) and Ψ ≡ diag(ψ), one 
can write

ΦDψ−ΨDTφ = (I − E−1)f with flux f =
∑
k>0

(
k−1∑
h=0

E−h

)(
ΦAkEkψ−ΨEkA−kφ

)
. (A.9)

Proof. Firstly, it is noted that for any diagonal matrices X ≡ diag(x) and Y ≡ diag(y)

XE−ky
(14)= E−kdiag(Ekx)y = E−kYEkx. (A.10)

Next, we can rewrite the left-hand side of (A.9) by splitting the k-summation in D in a positive and a negative range (note 
that k = 0 does not contribute):

ΦDψ−ΨDTφ =
∑
k>0

[
ΦAkEkψ−ΨE−kAkφ

]+∑
k<0

[
ΦAkEkψ−ΨE−kAkφ

]
(A.10)=

∑
k>0

[
ΦAkEkψ− E−kAkΦEkψ

]+∑
k<0

[
EkΨE−kAkφ−ΨE−kAkφ

]
=
∑
k>0

(I − E−k)AkΦEkψ−
∑
k<0

(I − Ek)ΨE−kAkφ

=
∑
k>0

(I − E−k)
[
ΦAkEkψ−ΨEkA−kφ

]
,

where in the last step the summation index has been changed k → −k. Finally, noting the decomposition (valid for k > 0) 
(I − E−k) = (I − E−1) 

∑k−1
h=0 E−h , the decomposition (A.9) is obtained. �

Next we show that skew-symmetry of a matrix directly leads to local conservation of quadratic forms. Again, there is no 
need for vanishing column and/or row sums. Note that global conservation of quadratic quantities is immediate: when D is 
skew-symmetric, then φTDφ = 0 for any φ. Local conservation follows from the next corollary.

Corollary A.4 (Quadratic conservation). For any skew-symmetric matrix G =∑k>0(AkEk − E−kAk) and any � = diag(φ) one can 
write

ΦGφ = (I − E−1)f, with flux f =
∑
k>0

(
k−1∑
h=0

E−h

)
AkΦEkφ.

Proof. We can write the skew-symmetric matrix G = D − DT with D =∑k>0 AkEk , where only positive values of the sum-
mation index occur. Then Lemma A.3 with Ψ =Φ, and realizing that Ak = 0 for k < 0, concludes the proof. �
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