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ABSTRACT
Despite the high accuracy of photometric redshifts (zphot) derived using machine learning
(ML) methods, the quantification of errors through reliable and accurate probability density
functions (PDFs) is still an open problem. First, because it is difficult to accurately assess the
contribution from different sources of errors, namely internal to the method itself and from the
photometric features defining the available parameter space. Secondly, because the problem
of defining a robust statistical method, always able to quantify and qualify the PDF estimation
validity, is still an open issue. We present a comparison among PDFs obtained using three
different methods on the same data set: two ML techniques, METAPHOR (Machine-learning
Estimation Tool for Accurate PHOtometric Redshifts) and ANNz2 , plus the spectral energy
distribution template-fitting method, BPZ (Bayesian photometric redshift). The photometric
data were extracted from the Kilo Degree Survey ESO Data Release 3, while the spectroscopy
was obtained from the Galaxy and Mass Assembly Data Release 2. The statistical evaluation
of both individual and stacked PDFs was done through quantitative and qualitative estimators,
including a dummy PDF, useful to verify whether different statistical estimators can correctly
assess PDF quality. We conclude that, in order to quantify the reliability and accuracy of any
zphot PDF method, a combined set of statistical estimators is required.

Key words: methods: data analysis – methods: statistical – galaxies: distances and redshifts –
galaxies: photometry.

1 IN T RO D U C T I O N

Redshifts, by allowing the calculation of distances for large samples
of galaxies, are at the core of most extragalactic and cosmological
studies and are needed for many purposes, such as, to quote just
a few, to constrain the dark matter and dark energy contents of
the Universe through weak gravitational lensing (Serjeant 2014;
Hildebrandt et al. 2017; Fu et al. 2018), to reconstruct the cosmic
large-scale structure (LSS; Aragon et al. 2015), to identify galaxy
clusters and groups (Capozzi et al. 2009; Annunziatella et al. 2016;
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Radovich et al. 2017), to disentangle the nature of astronomical
sources (Brescia et al. 2012; Tortora et al. 2016), to map the galaxy
colour–redshift relationships (Masters et al. 2015), and to measure
the baryonic acoustic oscillations spectrum (Gorecki et al. 2014;
Ross et al. 2017).

The last few years have seen a proliferation of multiband pho-
tometric galaxy surveys, either ongoing (see KiDS – Kilo-Degree
Survey, de Jong et al. 2015, 2017; DES – Dark Energy Survey, An-
nis et al. 2013) or planned (LSST, Ivezic 2009, LSST Science Book
2009 and Euclid, Laureijs et al. 2014, Euclid Red Book 2011). All
these surveys require redshift estimates for hundreds of millions or
billions of galaxies that cannot be observed spectroscopically and
therefore must be obtained via multiband photometry (photometric
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Statistical analysis of PDFs for the KiDS-DR3 3117

redshifts or zphot). This is possible due to the existence of a highly
non-linear correlation between photometry and redshift, caused by
the fact that the stretching introduced by the redshift induces the
main spectral features to move through the different filters of a
photometric system (Baum 1962; Connolly et al. 1995).

In a broad but widespread oversimplification, there are two main
classes of methods commonly used to derive zphot: the spectral
energy distribution (SED) template-fitting methods (e.g. Arnouts
et al. 1999; Bolzonella, Miralles & Pello 2000; Ilbert et al. 2006;
Tanaka 2015) and the empirical (or interpolative) methods (e.g.
Firth, Lahav & Somerville 2003; Ball et al. 2008; Carrasco &
Brunner 2013b; Brescia et al. 2014b; Graff et al. 2014; Cavuoti
et al. 2015a,b; Masters et al. 2015; Sadeh, Abdalla & Lahav 2016;
Soo et al. 2017; D’Isanto & Polsterer 2018), both characterized
by their advantages and shortcomings. There are also recent ex-
periments that try to combine these two zphot estimation classes,
in order to merge their respective capabilities (e.g. Cavuoti et al.
2017b; Duncan et al. 2017; Hoyle & Rau 2018).

SED template-fitting methods are based on a fit (generally a
χ2 minimization) to the multiband photometric observations of the
objects. The starting point is a set of template (either synthetic
or observed) spectra covering different morphological types and
physical properties. Each of these template SEDs is convolved with
the transmission functions of any given filters, in order to create
synthetic magnitudes as a function of the redshift.

SED fitting methods are capable to derive all at once the zphot, the
spectral type, and the probability density function (PDF) of the error
distribution of each source. However, these methods suffer from
several shortcomings: the potential mismatch between the templates
used for the fitting, the properties of the selected sample of galaxies
(Abdalla et al. 2011), colour/redshift degeneracies, and template
incompleteness. Such issues are stronger at high redshift, where
galaxies are fainter and photometric errors larger. Furthermore, at
high redshifts there are fewer or no empirical spectra available to
build a reliable template library.

Among empirical methods, those based on various Machine
Learning (ML) algorithms are the most frequently used. They infer
(not analytically) the complex relation existing between the input,
mainly multiband photometry (i.e. fluxes, magnitudes, and/or de-
rived colours) and the desired output (the spectroscopic redshift,
hereafter zspec). In supervised ML, the learning process is regu-
lated by the spectroscopic information (i.e. redshift) available for
a subsample of the objects, whereas in the unsupervised approach,
the spectroscopic information is not used in the training phase, but
only during the validation phase. There are many ML algorithms
that have been used for zphot estimation. To quote just a few: neural
networks (Tagliaferri et al. 2002; Collister & Lahav 2004; Brescia
et al. 2013; Sadeh, Abdalla & Lahav 2015), boosted decision trees
(Gerdes et al. 2010), random forests (Carrasco & Brunner 2013a),
and self-organized maps (Carrasco & Brunner 2014a; Masters et al.
2015). ML techniques are endowed with several advantages: (i)
high accuracy of predicted zphot within the limits imposed by the
spectroscopic knowledge base (hereafter KB); (ii) ability to easily
incorporate external information in the training, such as surface
brightness, angular sizes, or galaxy profiles (Tagliaferri et al. 2002;
Cavuoti et al. 2012; Soo et al. 2017; Bilicki et al. 2018).

On the other hand, ML methods have a very poor capability to
extrapolate information outside the regions of the parameter space
properly sampled by the training data that, for instance, implies that
they cannot be used to estimate redshifts for objects fainter than
those present in the spectroscopic sample. Furthermore, supervised

methods are viable only if accurate photometry and spectroscopy
are available for a quite large (few thousands of objects at least)
number of objects. See Hildebrandt et al. (2010), Abdalla et al.
(2011), Sánchez et al. (2014) for reviews about the zphot estimation
techniques.

Finally, due to their intrinsic nature of self-adaptive learning mod-
els, the ML based methods do not naturally provide a PDF estimate
of the predicted zphot, unless special procedures are implemented.

In recent years, it has been demonstrated in several studies that
PDFs can increase the accuracy of cosmological parameter mea-
surements. For example, Mandelbaum et al. (2008) have shown
that most common statistics (bias, outlier rate, standard deviation
etc.) are not sufficient to evaluate the accuracy of zphot required by
weak-lensing (WL) studies. In particular, the measurement of the
critical mass surface density requires a reliable PDF estimation to
remove any calibration bias effect.

Over the last few years, particular attention has been paid to de-
velop techniques and procedures able to compute a full zphot PDF
for an astronomical source as well as for an entire galaxy sample
(Bonnet 2013; Carrasco & Brunner 2013a, 2014a,b). The PDF con-
tains more information than the single-redshift estimate, as it is also
confirmed by the improvement in the accuracy of cosmological and
WL measurements (Mandelbaum et al. 2008; Viola et al. 2015),
when PDFs are used rather than zphot point estimates. However,
to the best of our knowledge, the positive role played by the PDFs
has been demonstrated only for zphot obtained with SED fitting
methods.

In this paper, we perform a comparative analysis of zphot
and associated PDF performance among different methods. The
data used for this analysis were extracted from the KiDS
ESO (European Southern Observatory) Data Release 3 (hereafter,
KiDS-ESO-DR3), described in de Jong et al. (2017). In that work,
three different methods for photometric redshifts were used and the
corresponding catalogues made publicly available:1 two ML meth-
ods, respectively, Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts (METAPHOR; Cavuoti et al. 2017a) and
ANNz2 (Sadeh et al. 2016; Bilicki et al. 2018), plus one template-
fitting method, the Bayesian photometric redshifts (hereafter, BPZ,
Benitez 2000). For the purpose of this paper, we also build a dummy
PDF, independent of method errors and photometric uncertainties,
useful to compare and assess the statistical estimators used to eval-
uate the reliability of PDFs.

The paper is structured as follows: In Section 2, we present the
KiDS-ESO-DR3 data used for the analysis. In Section 3, we give
a general overview about the calculation of PDFs, and we describe
the methods as well as the statistical estimators involved in our
analysis. In Section 4, we perform the comparison among the PDF
methods and a critical discussion about the statistical estimators.
Finally, in Section 5 we draw our conclusions.

2 TH E DATA

The sample of galaxies used to estimate zphot and their individual
and stacked PDFs was extracted from the third data release of the
ESO Public Kilo-Degree Survey (KiDS-ESO-DR3, de Jong et al.
2017). When completed, the KiDS survey will cover 1500 deg2

(de Jong et al. 2017), distributed over two survey fields, in four
broad-band filters (u, g, r, i). Compared to the previous data releases

1Available at http://kids.strw.leidenuniv.nl/DR3/ml-photoz.php
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Table 1. Brighter and fainter limits imposed on the magnitudes and defining
the region of the parameter space used for training and test experiments.

Input magnitudes Brighter limit Fainter limit

MAG APER 20 U 16.84 28.55
MAG APER 30 U 16.81 28.14
MAG GAAP U 16.85 28.81
MAG APER 20 G 16.18 24.45
MAG APER 30 G 15.86 24.59
MAG GAAP G 16.02 24.49
MAG APER 20 R 15.28 23.24
MAG APER 30 R 14.98 23.30
MAG GAAP R 15.15 23.29
MAG APER 20 I 14.90 22.84
MAG APER 30 I 14.56 23.07
MAG GAAP I 14.75 22.96

(de Jong et al. 2015), the DR3 not only covers a larger area of
the sky, but it also relies on an improved photometric calibration
and provides photometric redshifts along with shear catalogues and
lensing-optimized image data. The total DR3 data set consists of
440 tiles for a total area covering approximately 450 deg2, with
respect to the 160 deg2 of the previous releases.

The DR3 provides also an aperture-matched multiband cata-
logue for more than 48 million sources, including homogenized
photometry based on Gaussian Aperture and point spread function
(hereafter GAaP) magnitudes (Kuijken 2008). All the measure-
ments (star/galaxy separation, source position, shape parameters)
are based on the r-band images due to their better quality (see
table A.2 of de Jong et al. 2017).

KiDS was primarily designed for WL studies, in order to recon-
struct the LSS of the Universe. Indeed, the first 148 tiles of the first
two data releases produced their first scientific results on WL for
galaxies and groups of galaxies in the Galaxy And Mass Assembly
(GAMA, Driver et al. 2011) fields (de Jong et al. 2015), as the
reader can find in Viola et al. (2015).

The photometry used in this work consists of the ugri GAaP
magnitudes, two aperture magnitudes, measured within circular
apertures of 4 and 6 arcsec diameter (20 and 30 pixels, referred
in Table 1 as MAG APER 20 X and MAG APER 30 X), re-
spectively, corrected for extinction and zero-point offsets and the
derived colours, for a total of 21 photometric parameters for each
object.

The original data set was cleaned by removing objects affected by
missing information (the performance of ML methods may degrade
if data are missing) and by clipping the tails of the magnitude
distributions in order to ensure a proper density of training points
in the sampled regions of the parameter space. The lower and upper
cuts, applied to exclude the tails of the distributions, are reported in
Table 1.

Furthermore, as we shall specify in Section 3.1, the fundamental
concept of the PDF estimation in METAPHOR is the perturbation
of the data photometry, based on a proper fitting function of the flux
errors in specifically defined bins of flux. Therefore, in the prepara-
tion phase, we excluded from the KB all entries with a photometric
error higher than a given threshold (e.g. 1 magnitude) in order to
provide a data set used for the polynomial fitting of the errors, as
prescribed by the mixture perturbation law (see Section 3.1).

In order to perform a zphot comparison through a common spec-
troscopic base in the work of de Jong et al. (2017), each of the

three zphot catalogues (obtained, respectively, by METAPHOR,2

ANNz2, and BPZ) has been cross-matched in coordinates with the
spectroscopic information extracted from the second data release
(DR2) of GAMA (Liske et al. 2015), containing spectroscopy in the
KiDS-North field (composed of 77 per cent objects from GAMA;
18 per cent from SDSS/BOSS, Ahn et al. 2014; and 5 per cent from
2dFGRS Colless et al. 2001). For what concerns this paper, since the
ANNz2 catalogue released with DR3 does not include individual
PDFs (Bilicki et al. 2018), these have been derived for the purposes
of this work, by uniforming the training and test sets with those
used by METAPHOR in de Jong et al. (2017). Finally, since in this
work we were interested in performing the zphot PDF comparison
among the two mentioned ML methods and BPZ using a uniform
data sample, we followed the same approach as de Jong et al. (2017),
based on the cross-matching between KiDS-DR3 photometry and
SDSS DR9 + GAMA DR2 + 2dFGRS spectroscopy. As described
in section 4.2 of de Jong et al. (2017), we performed a random
shuffling and split procedure, obtaining a training set of ∼71 000
and a blind validation set of ∼18 000 objects. The final comparison
test among methods has been done on a supplementary blind set
of ∼64 000 galaxies, as detailed in section 4.4 of de Jong et al.
(2017).

3 TH E M E T H O D S

In general terms, a PDF is a way to parametrize the uncertainty
on the zphot solution. In the context of zphot estimation, a PDF
is strictly dependent both on the measurement methods and on the
physical assumptions. This simple statistical consideration renders
the real meaning of PDFs quite complex to grasp in the case of
zphot error evaluation.

Furthermore, a PDF should provide a robust estimate of the relia-
bility of an individual redshift. The factors affecting such reliability
are photometric errors, intrinsic errors of the methods, and statisti-
cal biases. In fact, under the hypothesis that a perfect reconstruction
of the redshift is possible, the PDF would consist of a single Dirac
delta. However, since the zphot cannot be perfectly mapped to the
true redshift, the corresponding PDF represents the intrinsic uncer-
tainties of the estimate. In other words, as anticipated in Section 1,
PDFs are useful to characterize zphot estimates by providing more
information than the simple estimation of the error on the individual
measurements.

In the following paragraphs, we shortly summarize the char-
acteristics of the methods used in our study. Besides the already
mentioned ML methods (METAPHOR, ANNz2) and BPZ, we in-
troduce also a special way to assess the validity of the statistical
estimators used to measure the PDF reliability, called dummy PDF.

3.1 METAPHOR

The METAPHOR (Cavuoti et al. 2017a) method is a modular work-
flow, designed to produce both zphot and related PDFs. The inter-
nal zphot estimation engine is our model Multi Layer Perceptron
trained with Quasi Newton Algorithm (MLPQNA; Brescia et al.
2013, 2014a). METAPHOR makes available a series of functional
modules:

2In de Jong et al. (2017), it is referred to as MLPQNA, the internal zphot
estimation engine of METAPHOR.
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(i) Data pre-processing: data preparation, photometric evaluation
of the KB, followed by its perturbation based on the given magnitude
error distributions,

(ii) zphot prediction: single photometric redshift estimation,
based on training/test of the KB with the MLPQNA model;

(iii) PDF estimation: production of the individual zphot PDFs
and evaluation of their cumulative statistical properties.

As anticipated in the introduction, in the context of ML tech-
niques, the determination of individual PDFs is a challenging task.
This is because we would like to determine a PDF starting from
several estimates of zphot, embedding the information on the pho-
tometric uncertainties on those estimates. Therefore, we derived an
analytical law to perturb the photometry by taking into account the
magnitude errors provided in the catalogues.

Indeed, the procedure followed to determine individual source
PDFs consists of a single training of the MLPQNA model and the
perturbation of the photometry of the given blind test set in order
to obtain an arbitrary number N of test sets, each characterized by a
variable photometric noise contamination. The decision to perform
a single training is mainly motivated by the idea of excluding the
contribution of the intrinsic error of the method itself from the
PDF calculation. Appendix A is dedicated to the analysis of error
contributions.

With this goal in mind, we use in this work the following pertur-
bation law:

m̃ij = mij + αiFiju(μ=0,σ=1), (1)

where j denotes the jth object’s magnitude and i the reference band;
αi is a multiplicative constant, heuristically chosen by the user
(generally useful to take into account cases of heterogeneous pho-
tometry, i.e. derived from different surveys and in this particular
case fixed to 0.9 for all the bands); the term u(μ = 0, σ = 1) is a random
value from a standard normal distribution; finally, Fij is the function
used to perturb the magnitudes.

In this work, the selected perturbation function (Fij) is the mix-
ture, i.e. a function composed of a constant threshold (in this case
heuristically fixed to 0.03) and a polynomial fitting of the average
magnitude errors computed in several magnitude bins for each given
photometric band. The role of the constant function is to act as a
threshold under which the polynomial term is too low to provide a
significant noise contribution to the perturbation (see Cavuoti et al.
2017a for further details; in that paper the mixture function was
called bimodal). This choice was made in order to take into account
that there are very low average errors for the brighter objects within
the catalogues. These perturbations were applied to both GAaP and
aperture–magnitude types.

For the calculation of the individual PDFs, we submit the N + 1
test sets (i.e. N perturbed sets plus the original one) to the trained
model, thus obtaining N + 1 zphot estimates. Then, we perform a
binning in zphot, thus calculating the probability that a given zphot
value belongs to each bin. We selected a binning step of 0.01 for the
described experiments and a value of N equal to 1000. The same
binning step has been adopted by all three methods compared in
this work.

In Fig. 1, we can see the mixture functions Fij for the homogenized
magnitudes mag gaap x (with x = u,g,r,i).

Concerning the zphot production, the best-estimate zphot values
are not always corresponding to the given unperturbed catalogue
estimate of zphot (hereafter photo-z0), as calculated by MLPQNA.
In particular, it coincides with photo-z0 if this measurement falls
into the interval (or bin) representing the peak (maximum) of the

PDF; otherwise, it coincides with the zphot estimate (among the
N + 1 zphot estimates mentioned above) closest to photo-z0 and
falling in the bin to which corresponds the PDF peak.

3.2 ANNz2

ANNz2 (Sadeh et al. 2016) is a versatile ML package,3 designed
primarily for deriving zphot, but appropriate also for other ML ap-
plications such as automated classification. The main ML method
used by ANNz2 is based on artificial neural networks (ANNs), but
it is also possible to employ boosted decision and regression trees;
here we use the ANNs only. We work in the randomized regression
mode of ANNz2, in which a (preferably) large number of randomly
designed ANNs (100 in our case) are trained on the input spec-
troscopic calibration data. This ensemble of trained ANNs is used
for deriving both zphot point estimates and their PDFs. Here, we
provide a brief overview of the PDF generation procedure in the
software version employed for this work, referring the reader to
Sadeh et al. (2016) and to the online documentation of ANNz2 for
more details.4 Once the desired number of ANNs have been trained,
then in the validation phase (called ‘optimization’ in ANNz2) each
source from the spectroscopic validation set5 is assigned to a distri-
bution of zphot solutions from the individual ANNs. These solutions
are then ranked by their performance, and the top one is used to de-
rive the individual zphot estimate, Z BEST, which we use in this
paper as the zphot point estimation from ANNz2. In order to de-
rive PDFs, the various ANNs are first folded with their respective
single-value uncertainty estimates, derived via the k-nearest neigh-
bour method (Oyaizu et al. 2008). A subset of ranked solutions is
combined in different random ways to obtain a set of candidate
PDFs. In order to select the final PDF, these candidates are com-
pared using their cumulative distribution functions (CDFs), defined
as the integrated PDF for redshifts smaller than the reference value
of the true redshift, zspec:

C(zspec) =
∫ zspec

z0

preg(z) dz. (2)

The function preg(z) is the differential PDF for a given redshift and
z0 is the lower bound of the PDF (z0 = 0 in our case). The final
PDF is chosen as the candidate for which the distribution of C is the
closest to uniform (Bordoloi, Lilly & Amara 2010).

ANNz2 may generate two types of PDFs, depending on how the
C function is chosen. In the first case, denoted as PDF 0, the CDF
is based on zspec from the validation sample; in the second option,
PDF 1, the results of the best ML solution are used as reference.
In this work, we use the PDF 1 option as we found it to perform
generally better than the other one.

3.3 BPZ

The BPZ method (Benitez 2000), as usual for SED fitting tech-
niques, is able to provide a PDF estimation law, based on the equa-
tion

χ2(z, T , A) =
Nf∑
i=1

(
F

f

obs − A × F
f

pred(z, T )

σ
f

obs

)2

, (3)

3Available from https://github.com/IftachSadeh/ANNZ
4Here, we used version 2.2.2 of the ANNz2 software, while some significant
changes in the PDF estimation have been introduced since version 2.3.0.
5We used the ANNz2 option to randomly split the spectroscopic calibration
sample into disjoint training and validation sets in proportion 1:1.
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Figure 1. Mixture perturbation function Fij in equation (1) for the KiDS GAaP magnitudes, composed of a flat perturbation for magnitudes lower than a
selected threshold (black solid lines) and a polynomial perturbation pi(mij) for higher magnitude values (see Section 3.1). The switching thresholds between
the two functions are, respectively, 21.45 in u band, 22.05 in g, 22.08 in r, and 20.61 in i band. The black points are the average of the magnitude errors for
each magnitude bin. The red lines report the corresponding standard deviation.

Table 2. Statistics of zphot estimation obtained with MLPQNA (zphot
estimation engine of METAPHOR), ANNz2, BPZ, on the GAMA DR2:
respectively, the bias, the standard deviation, the Normalized Median Abso-
lute deviation, the fraction of outliers outside the 0.15 range, kurtosis, and
skewness.

Estimator MLPQNA ANNz2 BPZ

bias − 0.004 − 0.008 − 0.020
σ 0.065 0.078 0.048
NMAD 0.023 0.019 0.028
outliers 0.98 % 1.60 % 1.13 %
Kurtosis 774.1 356.0 52.2
Skewness − 21.8 − 15.9 − 2.9

where F
f

pred(z, T ) is the flux predicted for a template T at redshift

z. F
f

obs is the observed flux, σ
f

obs the associated error, while A is a
normalization factor. From equation (3), it is clear that the spectro-
scopic information is not needed, thus implying the possibility to
estimate the zphot for all sources.

Individual PDFs are a natural by-product of every SED fitting
method. In the case of BPZ for the KiDS-DR3 data, the PDFs are
obtained by multiplying the probability by the used priors and then
performing a summation over all the templates, in order to obtain

the full posterior probability. The theory, implemented in the BPZ
code, is expressed by equations (6–12) in the paper of Benitez
(2000). This method has been used to obtain BPZ KiDS-DR3 zphot
and PDFs, by utilizing the priors specified in Hildebrandt et al.
(2012).

Finally, the reference to the selected re-calibrated template set
(Capak 2004), as well as more details about the use of BPZ, are
provided in de Jong et al. (2017).

3.4 Dummy PDF

In order to have a benchmark tool useful to analyse and compare
the statistical validity of previous methods, we set to zero the multi-
plicative constant parameter αi of equation (1) for all bands in order
to produce a dummy perturbation law.

The relative dummy PDF obtained by METAPHOR is made by
individual source PDFs, for which the one hundred per cent of the
zphot estimates (coincident with photo-z0, i.e. the unperturbed es-
timate of zphot) fall in the same redshift interval (by fixing the
binning step at 0.01, as described in Section 3.1).

The main goal in determining the dummy PDFs is to assess the
reliability of several statistical estimators used to evaluate an en-
semble of PDFs.
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Statistical analysis of PDFs for the KiDS-DR3 3121

Figure 2. Comparison between METAPHOR (red) and BPZ (blue). Upper row: scatter plot of photometric redshifts as function of spectroscopic redshifts
(left-hand panel) and scatter plot of the residuals as function of the spectroscopic redshifts (right-hand panel). Lower row: stacked representation of the residuals
of PDFs (with redshift bin equal to 0.01).

3.5 Statistical estimators

This section is dedicated to describing the set of statistical estimators
adopted to evaluate zphot estimates and relative PDFs performance.

The basic statistics are calculated on the residuals:

�z = (zspec − zphot)/(1 + zspec). (4)

As the individual zphot estimates, in all the presented statistics
the following quantities have been considered: the zphot best-
estimates for METAPHOR and ANNz2 (see, respectively, Sec-
tions 3.1 and 3.2); the zphot values Z B provided in the KiDS-DR3
catalogue for BPZ (de Jong et al. 2017); and the photo-z0 estimates
for the dummy PDF calculated via METAPHOR (see Section 3.4).

The most common estimators of the zphot accuracy, which we
use here, are the standard first four central moments of the residual
distribution, respectively, the mean (or bias), standard deviation σ ,
skewness and kurtosis, the fraction of catastrophic outliers, defined
as |�z| > 0.15, plus the normalized median absolute deviation

(NMAD), defined as

NMAD = 1.4826 × median(|�z − median(�z)|). (5)

The cumulative performance of the stacked PDF on the entire
sample is evaluated by means of the following three estimators:

(i) f0.05: the percentage of residuals �z within ±0.05;
(ii) f0.15: the percentage of residuals �z within ±0.15;
(iii) 〈�z〉: the average of all the residuals �z of the stacked PDFs.

Here, by stacked PDFs we mean the individual zphot PDFs trans-
formed into the PDFs of scaled residuals �z defined in equation (4),
and then stacked for the entire sample.

Furthermore, the quality of the individual PDFs is evaluated
against the single corresponding zspec from the test set, by defining
five categories of occurrences:

(i) zspecClass = 0: the zspec is within the bin (see Section 3.1)
containing the peak of the PDF;
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3122 V. Amaro et al.

Figure 3. Comparison between METAPHOR (red) and ANNz2 (blue). Upper row: scatter plot of photometric redshifts as function of spectroscopic redshifts
(left-hand panel) and scatter plot of the residuals as function of the spectroscopic redshifts (right-hand panel). Lower row: stacked representation of the residuals
of PDFs (with redshift bin equal to 0.01).

Table 3. Statistics of the zphot error stacked PDFs for METAPHOR,
ANNz2, BPZ, and dummy obtained by METAPHOR, for the sources cross-
matched between KiDS-DR3 photometry and GAMA spectroscopy.

Estimator METAPHOR ANNz2 BPZ dummy

f0.05 65.6 % 76.9 % 46.9 % 93.1 %
f0.15 91.0 % 97.7 % 92.6 % 99.0 %
〈�z〉 − 0.057 0.009 − 0.038 − 0.006

(ii) zspecClass = 1: the zspec falls in one bin from the peak of
the PDF;

(iii) zspecClass = 2: the zspec falls into the PDF, e.g. in a bin in
which the PDF is different from zero;

(iv) zspecClass = 3: the zspec falls in the first bin outside the
limits of the PDF;

(v) zspecClass = 4: the zspec falls out of the first bin outside the
limits of the PDF.

By definition, the zspecClass term depends on the chosen bin
amplitude (see Section 3.1), which also determines the accuracy
level of PDFs. The quality evaluation of the entire PDF can be
hence measured in terms of fractions of occurrences of these five
categories within the test data set. In particular, these quantities
should be regarded as complementary statistical information, use-
ful to complete the PDF reliability analysis. For example, classes
3 and 4 could quantify the amount of objects falling outside the
PDF. The distinction between the two classes gives the supplemen-
tary information about how far from the PDFs is their zspec, thus
contributing to evaluate their reliability.

Finally, we use two additional diagnostics to analyse the cumula-
tive performance of the PDFs: the credibility analysis presented in
Wittman, Bhaskar & Tobin (2016) and the probability integral trans-
form (PIT), described in Gneiting, Balabdaoui & Raftery (2007).

The credibility test should assess if PDFs have the correct width
or, in other words, it is a test of the confidence of any method used to
calculate the PDFs. In particular, the method is considered overcon-
fident if the produced PDFs are too narrow, i.e. too sharply peaked;
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Statistical analysis of PDFs for the KiDS-DR3 3123

Figure 4. Top panels: comparison between METAPHOR (red) and BPZ (blue); bottom panels: comparison between METAPHOR (red) and ANNz2 (blue).
Left-hand panels show the histograms of residual distributions, zoomed in the right-hand panels in order to make more visible the skewness effect. The values
are expressed in percentage, after normalizing the distributions to the total number of objects of the blind test set (see Section 2).

Table 4. zspecClass fractions for METAPHOR, ANNz2 and BPZ on the GAMA field.

zspecClass METAPHOR ANNz2 BPZ

0 9042 (14.2 %) 12426 (19.4 %) 4889 (7.7 %)
1 16758 (26.3 %) 19040 (29.9 %) 9650 (15.1 %)
2 37233 (58.4 %) 31927 (50.1 %) 49170 (77.15 %)
3 200 (0.3 %) 8 (0.01 %) 0 (0 %)
4 516 (0.8 %) 324 (0.5 %) 31 (0.05 )

underconfident otherwise. In order to measure the credibility, rather
than the Confidence Intervals (hereafter CI), the highest probabil-
ity density confidence intervals (HPDCI) are used (Wittman et al.
2016).

The implementation of the credibility method is very straightfor-
ward, and it involves the computation of the threshold credibility ci

for the ith galaxy with

ci =
∑

z∈pi≥pi (zspec,i )

pi(z), (6)

where pi is the normalized PDF for the ith galaxy.
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3124 V. Amaro et al.

Figure 5. Superposition of the stacked PDF (red) and estimated zphot (grey) distributions obtained by METAPHOR, ANNz2, BPZ, and for the dummy (in
this last case the zphot distribution corresponds to that of the photo-z0 estimates, Section 3.4) to the zspec distribution (in blue) of the GAMA field.

The credibility is then tested by calculating the cumulative dis-
tribution F(c), which should be equal to c. F(c) resembles a q–q
plot, (a typical quantile–quantile plot used for comparing two dis-
tributions), in which F is expected to match c, i.e. it follows the
bisector in the F and c ranges equal to [0,1]. Therefore, the over-
confidence corresponds to F(c) falling below the bisector, otherwise
the underconfidence occurs. In both cases, this method indicates the
inaccuracy of the error budget (Wittman et al. 2016).

The PIT histogram measures the predictive capability of a fore-
cast, which is generally probabilistic for continuous or mixed
discrete–continuous random variables (Gneiting et al. 2007) and
that has been already used to assess the reliability of PDFs in the
case of photometric redshifts (see for instance D’Isanto & Polsterer
2018). We can define the PIT as the histogram of the various pi:

pi = Fi(xi), (7)

where in our case Fi is the CDF of the ith object and xi = zspeci
. Ideal

forecasts produce continuous Fi and PIT with a uniform distribution
on the interval (0,1). In other words, we can check the forecast by

investigating the uniformity of the PIT: the closer the histogram to
the uniform distribution, the better the calibration, i.e. the statistical
consistency between the predictive distributions and the validating
observations (Baran & Lerch 2016). Nevertheless, it is possible to
show that the uniformity of a PIT is a necessary but not sufficient
condition for having an ideal forecast (Gneiting et al. 2007).

A strongly U-shaped PIT histogram indicates a highly under-
dispersive character of the predictive distribution (Baran & Lerch
2016).

4 C O M PA R I S O N A M O N G M E T H O D S

A preliminary comparison among the three methods METAPHOR,
ANNz2, and BPZ, only in terms of zphot prediction performance,
has been already given in de Jong et al. (2017). That comparison
was based on statistics applied to the residuals defined by the equa-
tion (4), reported in table 8 and fig. 11 of de Jong et al. (2017).
In that figure, the upper panel shows the plots of zphot versus
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Statistical analysis of PDFs for the KiDS-DR3 3125

Figure 6. Credibility analysis (see Section 3.5) obtained for METAPHOR, ANNz2, BPZ, and the dummy PDF.

GAMA-DR2 spectroscopy, while in the bottom panel residuals ver-
sus r-magnitude are shown for the three methods.

More recently, in Bilicki et al. (2018) a comparison among the
three methods has also been presented on KiDS-DR3 data, more
in terms of zphot estimation quality at the full spectroscopic depth
available, confirming the better behaviour of ML methods at bright
end of KiDS data sample (z < 0.5), as well as comparable quality
of ML methods and BPZ at higher redshift (z ∼ 1).

4.1 Statistics on zphot and stacked PDFs

The statistical comparison among the three methods on the data
set obtained by cross-matching KiDS-DR3 and GAMA data (see
Section 2) summarized in Table 2. It shows a better performance in
terms of bias and fraction of outliers for METAPHOR, while BPZ
and ANNz2 obtain, respectively, a lower σ and NMAD of the errors.

In Figs 2 and 3, we show the comparison on the GAMA field
between METAPHOR and, respectively, BPZ and ANNz2, in terms
of graphical distributions of predicted zphot and stacked PDFs of
the residuals.

From Fig. 2, it is apparent that the correlation between zphot and
zspec is tighter for METAPHOR than for BPZ. In terms of stacked
PDF, the distributions are in agreement with statistics of Table 3
since the BPZ PDF is more enclosed within the ±0.15 residual
range.

Fig. 3 shows a tighter photospectro redshift correlation for
ANNz2 as well as a better symmetry of the stacked PDF.

The effects of kurtosis and skewness are evident from Fig. 4.
The kurtosis is a measure of the shape of the residual distribution,
particularly suitable for characterizing its tails. From Fig. 4 and Ta-
ble 2, all three methods show a leptokurtic behaviour. This means
that the distributions asymptotically approach zero faster than the
Gaussian distribution therefore indicating a small amount of out-
liers with respect to the Gaussian limit at 2σ (∼0.2 per cent for
METAPHOR, ∼0.0005 per cent for BPZ, and ∼1.5 per cent in the
case of ANNz2). This also implies that in this case the standard de-
viation could be considered a poor estimator for the zphot prediction
performance.

The skewness is a measure of the symmetry around zero of the
�z distribution. All the three compared methods show a negative
value (see Table 2), mostly due to a longer tail towards negative than
to positive �z. This is more pronounced in the case of METAPHOR
and ANNz2 (right-hand panels of Fig. 4), but a negative skewness
is expected in zphot residual distributions because of an inherent
tendency to overestimate the redshift. By calculating the residuals
through equation (4), all methods naturally tend towards negative
zspec−zphot in the low-redshift regime because negative photo-
metric redshifts are removed (meaningless), introducing the above
negative bias in zspec−zphot.

In Table 3, we report the fraction of residuals in the two ranges
[−0.05, 0.05] and [−0.15, 0.15] and the average of residuals for all
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3126 V. Amaro et al.

Figure 7. PIT obtained for METAPHOR (top left-hand panel), ANNz2 (top right-hand panel), BPZ (bottom left-hand panel), and for the dummy PDF (bottom
right-hand panel).

Table 5. Tomographic analysis of the stacked PDFs for METAPHOR, ANNz2, BPZ, and dummy PDF calculated by METAPHOR, respectively, in 10 bins of
the homogenized magnitude mag gaap r .

Bin r band Amount METAPHOR ANNz2 BPZ dummy
f0.05 (%) f0.15 (%) 〈�z〉 f0.05 (%) f0.15 (%) 〈�z〉 f0.05 (%) f0.15 (%) 〈�z〉 f0.05 (%) f0.15 (%) 〈�z〉

1 ]16.0,16.5] 122 16.3 37.2 −0.330 80.9 99.5 −0.016 26.5 87.0 −0.080 97.5 100 −0.015
2 ]16.5,17.0] 290 23.9 49.0 −0.249 81.7 99.2 −0.015 28.5 86.7 −0.080 97.9 99.3 −0.009
3 ]17.0,17.5] 858 34.2 62.4 −0.185 82.0 98.4 −0.016 36.4 89.7 −0.068 95.1 98.7 −0.006
4 ]17.5,18.0] 1,873 48.0 75.7 −0.132 81.6 97.4 −0.017 41.0 90.7 −0.060 94.2 97.8 −0.010
5 ]18.0,18.5] 4,427 59.0 84.6 −0.086 82.2 98.2 −0.011 45.4 92.5 −0.050 95.3 98.7 −0.006
6 ]18.5,19.0] 8,230 64.9 89.4 −0.067 81.1 98.0 −0.008 47.6 93.1 −0.043 94.3 98.8 −0.008
7 ]19.0,19.5] 15,388 68.9 92.6 −0.051 79.2 97.9 −0.008 48.5 93.2 −0.037 93.7 98.9 −0.007
8 ]19.5,20.0] 22,952 68.5 93.8 −0.043 75.9 98.0 −0.006 47.8 92.9 −0.033 93.4 99.2 −0.003
9 ]20.0,20.5] 9,178 65.8 94.2 −0.040 61.4 97.0 −0.010 45.4 91.6 −0.033 89.9 98.9 −0.007
10 ]20.5,21.0] 367 55.5 88.4 −0.061 44.5 80.4 −0.104 43.1 88.9 −0.033 74.6 94.0 −0.025

the probed methods. The last column shows such statistics also for
the dummy PDF. Table 4 summarizes the distribution of fractions of
samples among the five categories of individual PDFs, obtained by
the evaluation of their spectroscopic redshift position with respect
to the PDF.

From Table 3, it appears evident that in terms of PDFs, ANNz2
performs quantitatively better than the other two methods, while the
dummy PDF, derived from METAPHOR, obtains the best estimates.
This demonstrates that the statistical estimators adopted for the

stacked PDF show low robustness in terms of quality assessment of
zphot errors and that there is a need for a deeper understanding of
the real meaning of a PDF in the context of zphot quality estimation
as well as a careful investigation of the statistical evaluation criteria.

The former statement about ANNz2 performance is also
supported by Table 4, where ANNz2 shows a percentage of
49.4 per cent of samples falling within one bin from the PDF peak
(the sum of fractions for zspecClass 0 and 1) against, respectively,
the 40.5 per cent and 22.8 per cent, of the other two methods.
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Statistical analysis of PDFs for the KiDS-DR3 3127

Figure 8. Residuals fraction in the range [−0.05, 0.05] of the PDFs versus
magnitude mag gaap r in the range [16.0, 21.0], used for the tomographic
analysis shown in Table. 5 From top to bottom, dummy (blue), ANNz2
(violet), METAPHOR (red), and BPZ (green).

However, for all the stacked PDF estimators, the dummy PDF
obtains better statistical results than all other methods. By construc-
tion, the dummy PDFs are non-zero only at a single value therefore it
is not worth to report its statistics regarding the zspecClass estimator
(see Section 3.5) since, as expected, most of the spectroscopic red-
shifts fall outside the PDF. Furthermore, the zspecClass estimator
for the dummy PDF is equal to 0 and 4, i.e. the zspec falls either in
the bin which corresponds to the PDF peak or outside the PDF. The
dummy PDF method is then particularly suitable to verify that the
residual fractions reported in Table 3 are not sufficient to quantify
the performance of a PDF. In Fig. 5, we superimpose the stacked
distribution of PDFs, derived by the three methods plus the dummy
PDF, on the photometric and spectroscopic redshift distributions.
The stacked trend of the dummy PDF method reproduces the pho-
tometric distribution since it does not take into account the redshift
error contribution arising from the photometric uncertainties intro-
duced through the perturbation law in equation (1). Very close to
the spectroscopic redshift distribution is the stacked PDF of dummy
and ANNz2, while BPZ and METAPHOR, although still able to
follow the spectroscopic distribution, differ from the first two meth-
ods. Nevertheless, METAPHOR and ANNz2 PDFs show a better
agreement with the individual photometric redshift distributions.

4.2 Credibility analysis and PIT

We also show in a graphical form the two estimators introduced in
Section 3.5, namely the credibility analysis on the cumulative PDFs
and the PIT. Figs 6 and 7 show these two respective diagrams for the
three methods and the dummy PDF. The credibility analysis trend of
METAPHOR (top left-hand panel of Fig. 6) reveals a higher degree
of credibility with respect to ANNz2 and BPZ (respectively, top
right-hand and bottom left-hand panels of Fig. 6), the latter being
characterized by a higher underconfidence. However, the credibility
diagram of the dummy PDF (bottom right-hand panel of Fig. 6) is
identically unitary for each galaxy of the data set. This is evidence

of the inability to evaluate the credibility of a zphot error PDF in
an objective way. In other words, according to the construction of
the HPDCI for the credibility analysis (see Section 3.5), the dummy
PDF method shows that the 100 per cent of the photo-z0’s fall in
the 100 per cent of the HPDCI, thus the predictions are entirely
overconfident.

The statistical evaluation of the three methods and the dummy
PDF based on the PIT diagram is shown in Fig. 7. We observe a
better behaviour of ANNz2 (top right-hand panel) than the two other
methods, METAPHOR (top left-hand panel) and BPZ (bottom left-
hand panel). For ANNz2, the overdispersive and underdispersive
trends appear less pronounced than for the other cases, especially
BPZ. However, the PIT histogram for dummy PDFs shows an en-
tirely degraded (i.e. underdispersive) behaviour of the zphot distri-
bution (bottom right-hand panel of Fig. 7). This result was expected
since by definition its CDF is a step function, thus allowing only
values 0 or 1, corresponding to the two bars in Fig. 7. This is in
some contradiction to the previous statistics, shown for the quanti-
tative estimators for the dummy PDFs (Tables 3 and 5), which were
indicating the best behaviour for the dummy stacked PDF.

4.3 PDF tomography

Finally, in order to analyse the stacked PDFs obtained by the four
estimation methods in different ranges of magnitude, we performed
a binning in mag gaap r in the range [16.0, 21.0] with a step
�mag = 0.5, resulting in a tomography of 10 bins. The range has
been chosen in order to ensure a minimum amount of objects per
bin to calculate the statistics. The results in terms of the fraction of
residuals and the overall average for the stacked PDFs are reported
in Table 5, while the fraction of residuals f0.05 is shown as a function
of r-band magnitude in Fig. 8.

Given the statistics in Tables 5 and 6, we observe that for BPZ the
zspec falls within the PDF in practically all bins and that the highest
concentration of PDFs is within f0.15. This behaviour indicates a
broad shape of the PDFs, also confirmed by the underconfidence
shown in Fig. 6 and by the overdispersion in Fig. 7. The latter figure
also shows the presence of a high bias, visible from the unbal-
anced trend. Furthermore, the PIT tomography, reported in Figs 9
and 10, shows a high variability and confirms the general overdis-
persion and bias of the PDFs. Turning to the HPDCI tomography,
the overall trend of Fig. 6 indicates a general underconfidence, but
Figs 11 and 12 show an inversion, from a high underconfidence to
a lower overconfidence, compatible with the general variability of
BPZ PDFs.

ANNz2 shows a similar behaviour as BPZ for f0.15 but has a
higher percentage of f0.05, which indicates PDFs more centred
around zspec. Furthermore, the values of zspecClass equal to 3
and 4 show that zspec mostly falls within the PDFs, thus indicating
that also in the case of ANNz2 the PDFs have a broad shape, albeit
to a lesser extent. This is also confirmed by the overdispersive trend
of the PIT diagram in Fig. 7 as well as by the underconfidence in
Fig. 6. In terms of PIT and HPDCI tomography, ANNz2 shows a
more regular behaviour than BPZ.

METAPHOR shows a stacked PDF with a more pronounced
average 〈�z〉 than BPZ and ANNz2 in Table 5, due to the larger tails
of its �z distribution. Moreover, both Tables 5 and 6 indicate that
the METAPHOR and especially the BPZ PDFs have a broader shape
than those of ANNz2, for example by looking at the percentages
for zspecClass = 2. This is also reflected by the PIT diagram of
Fig. 7, which reveals highly biased and overdispersive PDFs. In
contrast with previous statistics, the HPDCI diagram indicates that
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3128 V. Amaro et al.

Table 6. zspecClass fractions for METAPHOR, ANNz2, and BPZ in tomographic bins of the homogenized magnitude mag gaap r .

Bin r-band Amount METAPHOR (%) ANNz2 (%) BPZ (%)
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1 ]16.0,16.5] 122 4.9 13.9 80.3 0.8 0.0 38.5 29.5 32.0 0.0 0.0 0.0 1.6 98.4 0.0 0.0
2 ]16.5,17.0] 290 10.3 22.7 66.5 0.3 0.0 38.4 22.1 39.4 0.0 0.0 0.7 1.7 97.6 0.0 0.0
3 ]17.0,17.5] 858 19.0 32.3 47.8 0.6 0.3 31.3 27.9 40.5 0.0 0.3 1.2 3.4 95.3 0.0 0.1
4 ]17.5,18.0] 1,873 18.7 33.4 46.1 0.6 1.2 29.6 31.0 38.9 0.0 0.5 1.9 6.0 92.0 0.0 0.05
5 ]18.0,18.5] 4,427 16.7 31.0 50.3 0.5 0.8 24.9 35.2 39.2 0.0 0.6 4.0 10.0 86.0 0.0 0.09
6 ]18.5,19.0] 8,230 18.6 30.9 49.2 0.2 1.0 23.3 33.7 42.3 0.0 0.7 6.5 14.7 78.7 0.0 0.1
7 ]19.0,19.5] 15,388 14.7 27.6 56.7 0.2 0.8 19.5 31.3 48.6 0.02 0.6 8.4 16.3 75.2 0.0 0.07
8 ]19.5,20.0] 22,952 12.7 24.3 66.5 0.4 0.9 17.3 28.6 53.7 0.01 0.4 9.0 16.9 74.2 0.0 0.03
9 ]20.0,20.5] 9,178 10.7 21.2 66.5 0.4 0.9 15.4 25.5 58.6 0.02 0.4 8.4 15.3 76.3 0.0 0.0
10 ]20.5,21.0] 367 10.3 16.3 70.3 0.8 2.2 10.9 17.4 70.3 0.0 1.4 9.0 12.8 77.9 0.0 0.0

Figure 9. PIT obtained for METAPHOR (first column panels), ANNz2 (second column panels), BPZ (third column panels), and for the dummy PDF (fourth
column panels) in the first five magnitude tomographic bins from Table 5.
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Statistical analysis of PDFs for the KiDS-DR3 3129

Figure 10. PIT obtained for METAPHOR (first column panels), ANNz2 (second column panels), BPZ (third column panels), and for the dummy PDF,
calculated by METAPHOR (fourth column panels) in the second five magnitude tomographic bins from Table 5.

METAPHOR is less underconfident than BPZ and ANNz2. The
tomographic analysis of the PIT diagram reports highly biased PDFs
for the bins of Fig. 9, while in the other bins of Fig. 10 METAPHOR
shows similar characteristics as ANNz2, albeit with different types
of defects. Finally, in terms of HPDCI tomography, Figs 11 and 12
reveal a general coherence in the behaviour of METAPHOR, except
in the first and last bin, which are least populated.

5 C O N C L U S I O N S

Due to the increasing demand for reliable zphot and the intrinsic
difficulty to provide reliable error PDF estimation for ML methods,
a plethora of solutions has been proposed. The derivation of PDFs
with ML models is in fact conditioned by the mechanism used to
infer the hidden flux–redshift relationship. In fact, this mechanism

imposes the necessity to disentangle the contributions to the zphot
estimation error budget, by distinguishing the intrinsic method error
from the photometric uncertainties. Furthermore, due to the large
variety of methods proposed, there is also the problem of finding ob-
jective and robust statistical estimators of the quality and reliability
of the derived PDFs.

We believe that it is extremely useful to estimate the zphot error
through the intrinsic photometric uncertainties, by considering that
the observable photometry cannot be perfectly mapped to the true
redshift. Furthermore, the evaluation of a statistically meaningful
PDF should consider the effective contribution of the intrinsic error
of the method.

In Cavuoti et al. (2017a), we presented METAPHOR, a method
designed to provide a PDF of photometric redshifts calculated by
ML methods. METAPHOR has already been successfully tested on
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3130 V. Amaro et al.

Figure 11. Credibility analysis (see Section 3.5) obtained for METAPHOR, ANNz2, and BPZ for the first five magnitude tomographic bins from Table 5. The
credibility plots for the dummy PDF are the same as the bottom right-hand panel of Fig. 6 in all the bins.

SDSS (Cavuoti et al. 2017a) and KiDS-DR3 (de Jong et al. 2017)
data, and uses the neural network MLPQNA (Brescia et al. 2013,
2014a) as the internal zphot estimation engine.

Main goal of this work is a deeper analysis of zphot PDFs ob-
tained by different methods: two ML models (METAPHOR and
ANNz2) and one based on SED fitting techniques (BPZ), through a

direct comparison among such methods. The investigation was fo-
cused on both cumulative (stacked) and individual PDF reliability.
Moreover, the methods were subjected to a comparative analysis us-
ing different kinds of statistical estimators to evaluate their degree of
coherence. Exactly for this reason, by modifying the METAPHOR
internal mechanism, we also derived a dummy PDF method (see
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Statistical analysis of PDFs for the KiDS-DR3 3131

Figure 12. Credibility analysis (see Section 3.5) obtained for METAPHOR, ANNz2 and BPZ for the second five magnitude tomographic bins from Table 5.
The credibility plots for the dummy PDF are the same as the bottom right-hand panel of Fig. 6 in all the bins.

Section 3.4), helpful to obtain a benchmark tool to evaluate the ob-
jectivity of the various statistical estimators applied on the presented
methods.

Regarding the dummy PDF (Table 3), the more the PDF is rep-
resentative of an almost perfect mapping of the parameter space on

the true redshifts, the better are the performances in terms of stacked
PDF estimators. However, we have shown that the PIT histogram
and the credibility analysis provide important complementary statis-
tical information, the first showing the total underdispersive trend
of the reconstructed photometric redshift distribution; the second
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3132 V. Amaro et al.

reporting an overconfidence of all zphot estimates. Both the un-
derdispersion and the overconfidence are related to the narrowness
of the PDFs: the narrower they are, the more the PIT histogram
is underdispersed and the results, as determined by the credibility
analysis, overconfident.

Thus, it appears clear that the statistical estimators used for
the stacked PDF (for instance f0.05, f0.15, and 〈�z〉), are not
self-consistent and should be combined with other statistical es-
timators, such as the PIT diagrams and credibility analysis.

Although the credibility analyses of the different methods, based
on the Wittman diagram (Fig. 6) and the PIT diagram (Fig. 7),
appear comparable in terms of overall results, their tomography
(Figs 9, 10, 11, and 12) shows different behaviours at different
redshift regimes.

Summarizing the results for the three PDF estimation meth-
ods analysed, considering the combination of statistical estimators,
ANNz2 is favoured by the f0.05, f0.15, 〈�z〉, and the PIT diagram.
However, METAPHOR is more competitive, in particular when
considering the confidence analysis. BPZ has the best PDFs in the
faintest magnitude bin. Moreover, all three methods show a gen-
erally broad shape of their PDFs, albeit to a different extent, with
also a bias in the case of BPZ and METAPHOR. However, they
show occasional fluctuations in their tomographic analysis. For in-
stance, BPZ reverses its overconfidence trend at fainter magnitudes,
while METAPHOR and BPZ show a high level of variability along
the magnitude bins in terms of underdispersion and bias. In the
specific case of our method METAPHOR, all mentioned defects re-
quire further investigation in terms of the photometric perturbation
function.

It should be noted that the current comparison is preliminary
since the methods explored in this paper deal with different sources
of errors. In fact, ANNz2 takes into account only the internal errors
of the method, METAPHOR only those induced by the photometry,
BPZ includes both these error sources and, finally, the benchmark
(dummy PDF) does not include either of these two.

All considerations together lead us to affirm that a detailed anal-
ysis of the performances, based on a combination of independent
statistical estimators, is key to unraveling the nature of the estimated
zphot PDFs and to assess the objective validity of the method em-
ployed to derive them.
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Bonnet C., 2013, MNRAS, 449, 1043
Bordoloi R., Lilly S. J., Amara A., 2010, MNRAS, 406, 881
Brescia M., Cavuoti S., Paolillo M., Longo G., Puzia T., 2012, MNRAS,

421, 1155
Brescia M., Cavuoti S., D’Abrusco R., Mercurio A., Longo G., 2013, ApJ,

772, 140
Brescia M. et al., 2014a, PASP, 126, 783
Brescia M., Cavuoti S., Longo G., De Stefano V., 2014b, A&A, 568, A126
Capak P. L., 2004, PhD thesis, Univ. Hawai’i
Capozzi D., de Filippis E., Paolillo M., D’Abrusco R., Longo G., 2009,

MNRAS, 396, 900
Carrasco K., Brunner R. J., 2013a, MNRAS, 432, 1483
Carrasco K., Brunner R. J., 2013b, ASP Conf. Ser., Astronomical Data

Analysis Software and Systems XXII. Vol. 475. Astron. Soc. Pac., San
Francisco, p. 69

Carrasco K., Brunner R. J., 2014a, MNRAS, 438, 3409
Carrasco K., Brunner R. J., 2014b, MNRAS, 442, 3380
Cavuoti S., Brescia M., Longo G., Mercurio A., 2012, A&A, 546, 13
Cavuoti S. et al., 2015a, MNRAS, 452, 3100
Cavuoti S., Brescia M., De Stefano V., Longo G., 2015b, Exp. Astron., 39,

45
Cavuoti S. et al., 2017a, MNRAS, 465, 1959
Cavuoti S. et al., 2017b, MNRAS, 466, 2039
Colless M. et al., 2001, MNRAS, 328, 1039
Collister A. A., Lahav O., 2004, PASP, 116, 345
Connolly A. J., Csabai I., Szalay A. S., Koo D. C., Kron R. G., Munn J. A.,

1995, AJ, 110, 2655
D’Isanto A., Polsterer K. L., 2018, A&A, 609, A111
de Jong J. T. A. et al., 2015, A&A, 582, A62
de Jong J. T. A. et al., 2017, A&A, 604, A134
Driver S. P. et al., 2011, MNRAS, 413, 971
Duncan K. J., Jarvis M. J., Brown M. J. I., Röttgering H. J. A., 2017,
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APPENDIX A : A NA LY SIS O F METAPHOR
E R RO R SO U R C E S

In this appendix, we investigated the possibility to quantify the con-
tribution of the method error to the zphot estimation. For instance,
such error, in the case of METAPHOR, mostly depends on the ran-
dom initialization of the neural connection weights in the MLPQNA
neural network, used as internal engine to determine the zphot point
estimates.

Through a test performed on the SDSS DR9 data (Cavuoti et al.
2017a), we already showed that N different trainings did not de-
grade the PDF performance: de facto the error introduced by the
method appears negligible. On the other hand, N network trainings
are very time consuming. Here, we deepened this exercise with
METAPHOR pipeline for the KiDS-DR3 data, by performing two
different experiments described next.

We created 100 training samples, namely 100 random extractions
from the training set used to obtain the KiDS-DR3 PDFs (see Sec-
tion 2). Each of the 100 training sets contains 10 000 objects. The
experiments are the following:

(1) Experiment (i): 100 training + test executions by keeping
unchanged both training and test sets. The single training set has
been randomly selected from among the 100 sets available and
the test set corresponds to the sample obtained by cross-matching
the KiDS-DR3 photometry with GAMA DR2 spectroscopy (see
Section 2);

Table A1. Statistics of the zphot error stacked PDFs obtained by
METAPHOR, for the experiments (i) and (ii).

Estimator exp (i) exp (ii)

f0.05 92.2 % 92.1 %
f0.15 98.4 % 98.4 %
〈�z〉 − 0.008 − 0.008

Figure A1. Credibility analysis obtained for the experiments (i) (blue) and
(ii) (red).

(2) Experiment (ii): 100 training + test executions by varying the
training set each time and by keeping unchanged the test set (same
set as previous experiment).

In both experiments, all other set-up parameters of the full
METAPHOR pipeline have been left unchanged. Therefore, the
difference between the two experiments is only the training set-up
of the internal engine MLPQNA (weights initialization is left ran-
dom and photometry is fixed at each training of the experiment (i),
while weights initialization is left random and training photometry
is variable in the experiment (ii). In other words, in the experiment
(i) we isolated the effect of the random weights initialization, while
in the second experiment we kept the sum of the two effects (weights
initialization and variable training photometry). Both experiments
lasted ∼11 on a 8-core pentium i7.

In Table A1, we report the stacked PDF statistics for the two
experiments, while the credibility and PIT analyses are shown in
Figs A1 and A2, respectively. The results, as expected, are compa-
rable to those obtained for the dummy PDF (see Table 3) since in
both cases we did not introduce any photometry perturbation. The
degradation of the stacked PDF performance (compared to that of
the dummy PDF) is of the order of 1 per cent and 0.6 per cent for the
residual fractions, respectively, f0.05 and f0.15, while 0.002 for 〈�z〉.
Also, the comparison with the credibility and PIT diagrams of the
dummy PDF (right-bottom diagrams of Figs 6 and 7, respectively)
reveals only the small differences induced by the 100 trainings in
experiments (i) and (ii), instead of the single training in the dummy
case. Such statistical variations can be considered negligible if com-
pared to those obtained by the photometry perturbation of the test
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Figure A2. PIT obtained for the experiments (i) (blue) and (ii) (red).

set (see Section 4 and Table 3), where instead the computational
cost for experiments (i) and (ii) becomes prohibitive (increasing
computing time by ∼70 per cent).

A comparison between experiments (i) and (ii) in terms of cred-
ibility and PIT diagrams shows very similar results. In particular,
by overlapping the two kinds of diagrams (Figs A1 and A2), it
appears evident that the sum of contributions of the variable pho-
tometry within the training set plus the random weights initializa-
tion differ very little from the case in which the photometry is kept
unchanged.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 482, 3116–3134 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/482/3/3116/5149510 by FAC
O

LTA' D
I LETTER

E E FILO
SO

FIA user on 09 N
ovem

ber 2022


