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Abstract
Weconjecture that a class of ArtinianGorensteinHilbert algebras called full Perazzo algebras
always have minimal Hilbert function, fixing codimension and length. We prove the conjec-
ture in length four and five, in low codimension. We also prove the conjecture for a particular
subclass of algebras that occurs in every length and certain codimensions. As a consequence
of our methods we give a new proof of part of a known result about the asymptotic behavior
of the minimum entry of a Gorenstein Hilbert function.
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Introduction

Gorenstein algebras appear as cohomology rings in several categories. For instance, real
orientable manifolds, projective varieties, Kahler manifolds, convex polytopes, matroids,
Coxeter groups and tropical varieties are examples of categories for which the ring of coho-
mology is an Artinian Gorenstein K-algebra. The fundamental point is that these algebras
can be characterized as algebras satisfying Poincaré duality, see [13].
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We deal with standard graded Artinian GorensteinK-algebras over a field of characteristic
zero.Anatural and classical problemconsists in understanding their possibleHilbert function,
sometimes also called Hilbert vector. When the codimension of the algebra is less than or
equal to 3, all possible Hilbert vectors were characterized in [20]; in particular, they are
unimodal, i.e. they never strictly increase after a strict decrease. While it is known that non
unimodal Gorenstein h-vectors exist in every codimension greater than or equal to 5 (see
[3–5]), it is open whether non unimodal Gorenstein h-vectors of codimension 4 exist. For
algebras with codimension 4 having small initial degree the Hilbert vector is unimodal (see
[16, 19]).

Consider the familyAGK(r , d)of standard gradedArtinianGorensteinK-algebras of socle
degree d and codimension r . By Poncaré duality, the Hilbert function of A ∈ AGK(r , d) is a
symmetric vector Hilb(A) = (1, r , h2, . . . , hd−2, r , 1), that is hk = hd−k . There is a natural
partial order in this family given by:

(1, r , h2, . . . , hd−2, r , 1) � (1, r , h̃2, . . . , h̃d−2, r , 1),

if hi ≤ h̃i , for all i ∈ {2, . . . , d − 2}. The maximal Hilbert functions are associated to com-
pressed algebras and completely described in [12]. In fact the Hilbert vector of a compressed
Gorenstein algebra is a maximum in AGK(r , d). On the other hand, classifying minimal
Hilbert functions is a hard problem. We do not know in general if there is a minimum. More-
over, given two comparable Gorenstein Hilbert functions, it is not true that any symmetric
vector between them is Gorenstein. Some partial results in this direction were obtained in
[21] and called the interval conjecture.

The first example of a non-unimodal Gorenstein h-vector was given by Stanley (see [20,
Example 4.3]). He showed that the h-vector (1, 13, 12, 13, 1) is indeed aGorenstein h-vector.
In [14] the authors showed that Stanley’s example is optimal, i.e. if we consider the h-vector
(1, 12, 11, 12, 1), it is not Gorenstein. We say that a vector is totally non unimodal if

h1 > h2 > · · · > hk for k = �d/2�.
A totally non-unimodal Gorenstein Hilbert vector exists for every socle degree d ≥ 4 when
the codimension r is large enough. It is related to a conjecture posed by Stanley and proved
in [15, 17] and also a consequence of our Proposition 2.3, see Corollary 2.4.

FromMacaulay–Matlis duality, every standard graded Artinian GorensteinK-algebra can
be presented by a quotient of a ring of differential operators by a homogeneous ideal that
is the annihilator of a single form in the dual ring of polynomials. full Perazzo algebras are
associated with full Perazzo polynomials, they are the family that we will study in detail.
Perazzo polynomials are related to Gordan and Noether theory of forms with vanishing
Hessian (see [18, Chapter 7], [9]). In [9] the author introduced the terminology Perazzo
algebras to denote the Artinian Gorenstein algebra associated to a Perazzo polynomial. In
[1, 8] the authors study the Hilbert vector and the Lefschetz properties for Perazzo algebras
in codimension 5. In [7] the authors study full Perazzo algebras focusing on socle degree
4, showing that they have minimal Hilbert vector in some cases. In this paper we deal with
codimension greater than 13 and we are more interested in full Perazzo algebras. In the case
of socle degree 4 we recall the known results.

We now describe the contents of the paper in more detail. In the first section we recall the
basics on Macaulay–Matlis duality, see Theorem 1.1. In the next subsection we recall the
classical bounds for Hilbert functions given by Macaulay, Gotzman and Green summarized
in Theorem 1.4.

In the second section we recall the definition of full Perazzo algebras and we pose the
full Perazzo Conjecture (see Conjecture 2.6). A full Perazzo polynomial of type m and
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degree d is a bigraded polynomial of bidegree (1, d − 1) given by f = ∑
x j M j where

{Mj | j = 1, . . . ,
(m+d−2

d−1

)} is a basis forK[u1, . . . , um](d−1). The associated Artinian Goren-
stein algebra is called full Perazzo algebra (see Sect. 2 for more details).

Conjecture Let H be the Hilbert vector of a full Perazzo algebra of type m ≥ 3 and socle
degree d ≥ 4 and let r = r(m, d) its codimension. Then H is minimal in the family of Hilbert
vectors of Artinian Gorenstein algebras of codimension r and socle degree d, that is, if Ĥ is
a comparable Artinian Gorenstein Hilbert vector such that Ĥ � H, then Ĥ = H.

In the third section we prove special cases of the Conjecture in socle degree 4 and we try
to fill the gaps in order to classify all possible Hilbert functions up to codimension 25 (see
Theorem 3.6, Corollary 3.7 and Proposition 3.8). In socle degree 5 we prove the Conjecture
for m ∈ {3, 4, 5, 6, 7, 8, 9, 10} (see Theorem 3.15) and a stronger version of the conjecture
for m = 3 (see Corollary 3.16).

In the fourth section we prove our main result that the full Perazzo Conjecture is true for
arbitrary socle degree d ≥ 4 and type m = 3.

Theorem Every full Perazzo algebra with socle degree d ≥ 4 of type m = 3 has minimal
Hilbert function.

In the last section we give a new proof of part of a result originally proved in [17],
concerning the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function
(see Theorem 5.2).

1 Preliminaries

Most of the background material presented here can be found in [7].

1.1 Macaulay–Matlis duality

In this sectionwe recall some basic results fromMacaulay–Matlis duality for ArtinianGoren-
stein algebras over a field K of characteristic zero. We recall that in characteristic zero we
can use a differential version of Macaulay–Matlis duality.

Let A = K[X1, . . . , Xn]/I = ⊕d
i=0 Ai be a standard graded Artinian K-algebra with

Ad �= 0. The Hilbert function of A can be described by the vector Hilb(A) = (1, h1, . . . , hd)
where hi = dim Ai . We say that A is Gorenstein if dim Ad = 1 and for every i = 1, . . . , d ,
the natural pairing given by multiplication Ai × Ad−i → Ad 
 K is perfect. There is an
isomorphism A∗

i 
 Ad−i . In this context, d is the socle degree of the algebra and assuming
I1 = 0, n is the codimension of A.

Let us regard the polynomial algebra R = K[x1, . . . , xn] as a module over the algebra
Q = K[X1, . . . , Xn] via the identification Xi = ∂/∂xi . If f ∈ R we set

AnnQ( f ) = {α = p(X1, . . . , Xn) ∈ Q | α( f ) := p(∂/∂x1, . . . , ∂/∂xn) f = 0}.
More generally, given any Q submodule M of R we define the ideal of Q:

AnnQ(M) = {α ∈ Q | α( f ) = 0 for all f ∈ M}.
On the other side we have the notion of inverse system. Given I ⊂ Q be an ideal, we define
the inverse system I−1 which is a Q submodule of R:

I−1 = { f ∈ R | α( f ) = 0 for all α ∈ I }.
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By Macaulay–Matlis duality we have a bijection:

{Homogeneous ideals of Q} ↔ {Graded Q submodules of R}
AnnQ(M) ← M

I → I−1

From the Theory of Inverse Systems, we get the following characterization of standard
Artinian Gorenstein graded K-algebras. A proof of this result can be found in [13, Theorem
2.1].

Theorem 1.1 (Double annihilator Theorem of Macaulay) Let R = K[x1, . . . , xn] and let
Q = K[X1, . . . , Xn] be the ring of differential operators. Let A = ⊕d

i=0 Ai = Q/I be an
Artinian standard gradedK-algebra. Then A is Gorenstein if and only if there exists f ∈ Rd

such that A 
 Q/Ann( f ).

In the sequel we always assume that char(K) = 0, A = Q/I , I = AnnQ( f ) and I1 = 0.
Wewill deal with standard bigradedArtinianGorenstein algebras A = ⊕d

i=0 Ai , Ad �= 0,
with Ak = ⊕k

i=0 A(i,k−i), A(d1,d2) �= 0 for some d1, d2 such that d1+d2 = d , we call (d1, d2)
the socle bidegree of A. Since A∗

k 
 Ad−k and since duality is compatible with direct sum,
we get A∗

(i, j) 
 A(d1−i,d2− j).
Let R = K[x1, . . . , xn, u1, . . . , um] be the polynomial ring viewed as standard

bigraded ring in the sets of variables {x1, . . . , xn} and {u1, . . . , um} and let Q =
K[X1, . . . , Xn,U1, . . . ,Um] be the associated ring of differential operators.

Wewant to stress that the bijection given byMacaulay–Matlis duality preserves bigrading,
that is, there is a bijection:

{Bihomogeneous ideals of Q} ↔ {Bigraded Q submodules of R}
AnnQ(M) ← M

I → I−1

If f ∈ R(d1,d2) is a bihomogeneous polynomial of total degree d = d1 + d2, then I =
AnnQ( f ) ⊂ Q is a bihomogeneous ideal and A = Q/I is a standard bigraded Artinian
Gorenstein algebra of socle bidegree (d1, d2) and codimension r = m + n if we assume,
without loss of generality, that I1 = 0.

Remark 1.2 With the previous notation, all bihomogeneous polynomials of bidegree (1, d−1)
can be written in the form

f = x1g1 + · · · + xngn,

where gi ∈ K[u1, . . . , um]d−1. The associated algebra, A = Q/AnnQ( f ), is bigraded, has
socle bidegree (1, d − 1) and we assume that I1 = 0, so codim A = m + n.

1.2 Classical bounds of Hilbert function

We recall some classical bounds for the growth of theHilbert function ofArtinianK-algebras.
The three main results are due to Macaulay, Gotzmann and Green; before stating them, we
need to recall the following definition:

Definition 1.3 Let k and i be positive integers. The i-binomial expansion of k, denoted by
k(i), is

k = k(i) =
(
ki
i

)

+
(
ki−1

i − 1

)

+ · · · +
(
k j
j

)

(1)
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where ki > ki−1 > · · · > k j ≥ j ≥ 1.

An expansion of type (1) always exists and is unique (see, e.g., [6, Lemma 4.2.6]). Following
[6], we define for any integers a and b,

(k(i))
b
a =

(
ki + b

i + a

)

+
(
ki−1 + b

i − 1 + a

)

+ · · · +
(
k j + b

j + a

)

where we set
(s
c

) = 0 whenever s < c or c < 0.

Theorem 1.4 Let A = R/I be a standard graded K-algebra, and L ∈ A a general linear
form (according to the Zariski topology). Denote by hd the degree d entry of the Hilbert
function of A and by h′

d the degree d entry of the Hilbert function of A/(L). Then:

(Macaulay) hd+1 ≤ ((hd)(d))
+1
+1.

(Gotzmann) If hd+1 = ((hd)(d))
+1
+1 and I is generated in degrees ≤ d + 1, then

hd+s = ((hd)(d))
s
s for all s ≥ 1.

(Green) h′
d ≤ ((hd)(d))

−1
0 .

Proof ForMacaulay, see [6, Theorem 4.2.10]. ForGotzmann, see [6, Theorem 4.3.3] or [10].
For Green, see [11, Theorem 1]. ��
Definition 1.5 A sequence of non-negative integers h = (1, h1, h2, . . . , hi , . . .) is said to be
an O-sequence if it satisfies Macaulay’s Theorem (1.4) for all i .

Recall that when A is Artinian and Gorenstein, then its Hilbert function is a finite, sym-
metric O-sequence.

2 Minimal Gorenstein Hilbert functions

We recall the construction of full Perazzo algebras, introduced in [7].

Definition 2.1 Let K[x1, . . . , xn, u1, . . . , um] be the polynomial ring in the n variables
x1, . . . , xn and in the m variables u1, . . . , um . A Perazzo polynomial is a reduced biho-
mogeneous polynomial f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1), of degree d, of the form

f =
n∑

i=1

xi gi (2)

with gi ∈ K[u1, . . . , um]d−1, for i = 1, . . . , n, linearly independent and algebraically depen-
dent polynomials in the variables u1, . . . , um . The associated algebra is called a Perazzo
algebra, it has codimension m + n and socle degree d .

Now we fix m ≥ 2 and we consider the m variables u1, . . . , um . For a multi-index
α = (e1, . . . , em) with e1 + · · · + em = d − 1, let

Mα = ue11 · · · uemm ∈ Qd−1

be a K-linear basis for Qd−1 and denote τm = dim Qd−1 = (m+d−2
d−1

)
.
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Definition 2.2 Let f ∈ K[x1, . . . , xτm , u1, . . . , um](1,d−1) be aPerazzopolynomial of degree
d of form:

f =
τm∑

j=1

x j M j . (3)

In this case f is called full Perazzo polynomial of type m and degree d . The associated
algebra is a full Perazzo algebra of socle degree d and codimension m + τm .

Proposition 2.3 Let A be a full Perazzo algebra of type m ≥ 2 and socle degree d. Then for
k = 0, . . . , � d

2 �

hk = dim Ak =
(
m + k − 1

k

)

+
(
m + d − k − 1

d − k

)

.

In particular, its Hilbert function is totally non-unimodal for r >> 0.

Proof Using the bigrading of A and considering that the polynomial f has degree 1 in the
variables x1, . . . , xτm , fixed k = 0, . . . , � d

2 �, we have the following decomposition:

Ak = A(0,k) ⊕ A(1,k−1).

(i) It is clear that A(0,k) = Q(0,k), hence dim A(0,k) = dim Q(0,k) = (m+k−1
k

)
.

(ii) We have A∗
(1,k−1) 
 A(0,d−k) and A(0,d−k) = Q(0,d−k), hence dim A(1,k−1) =

dim Q(0,d−k) = (m+d−k−1
d−k

)
.

To verify that the Hilbert vector is asymptotically totally non unimodal it is enough to see
that as a function of m, hk(m) 
 1

(d−k)!m
d−k for k ≤ d/2. ��

Corollary 2.4 For every d ≥ 4 there is a positive integer r0 such that for all r ≥ r0 there is
an Artinian Gorenstein algebra with socle degree d and codimension r having a totally non
unimodal Hilbert vector.

Proof Let m be large enough in order to guarantee that the Hilbert vector of the full Perazzo
algebra A = Q/Ann( f ), of type m and socle degree d has a totally non unimodal Hilbert
vector. For every r > m + (m+d−2

d−1

)
, let s = r − [m + (m+d−2

d−1

)] and consider the algebra

A′ = Q′/Ann(g) where Q′ = Q[Y1, . . . , Ys] and g = f + ∑s
i=1 Y

d
i . It is easy to see

that the Hilbert vector of A′ is given by h′
k = hk + s for k �= 0, d , therefore, it is totally

non-unimodal and the result follows. ��

Let d ≥ 4, r ≥ 3. Consider the family AG(r , d) of standard graded artinian Gorenstein
K-algebras of socle degree d and codimension r . In this section we will consider K, a fixed
field of characteristic 0. We know that the Hilbert function of A ∈ AG(r , d) is a symmetric
vector Hilb(A) = (1, r , h2, . . . , hd−2, r , 1), with hi = hd−i by Poincaré duality.

Consider the family of lengthd symmetric vectors of type (1, r , h2, . . . , hd−2, r , 1), where
hi = hd−i . There is a natural partial order in this family

(1, r , h2, . . . , hd−2, r , 1) � (1, r , h̃2, . . . , h̃d−2, r , 1).

If hi ≤ h̃i , for all i ∈ {2, . . . , d − 2}. This order can be restricted to AG(r , d) which
becomes a poset.
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Definition 2.5 Let r , d be fixed positive integers and let H be a length d + 1 symmetric
vector (1, r , h2, . . . , hd−2, r , 1). We say that H is aminimal Artinian Gorenstein Hilbert
function of socle degree d and codimension r if there is an Artinian Gorenstein algebra such
that Hilb(A) = H and H is minimal in AG(r , d) with respect to �. To be precise, if Ĥ is a
comparable Artinian Gorenstein Hilbert vector such that Ĥ � H , then Ĥ = H .

We now present the full Perazzo Conjecture.

Conjecture 2.6 Let H be the Hilbert vector of a full Perazzo algebra of type m and socle
degree d. Then H is minimal in AG(r , d).

3 Minimal Gorenstein Hilbert functions in low socle degree

In this section we study Gorenstein Hilbert functions of algebras with socle degree 4 and 5.
Part of the results in socle degree 4 can be found in [7].

3.1 Minimal Gorenstein Hilbert functions in socle degree 4

In socle degree 4, a Gorenstein sequence is of the form

(1, r , h, r , 1).

Letμ(r) be the integer such that (1, r , μ(r), r , 1) is a Gorenstein sequence, but (1, r , μ(r)−
1, r , 1) is not a Gorenstein sequence. Then μ(r) ≤ h ≤ (r+1

2

)
.

It iswell known that (1, r , h, r , 1) is aGorenstein sequence if and only ifμ(r) ≤ h ≤ (r+1
2

)

(see [21]). We set δ(r) = r − μ(r). This function was introduced in [15] and also studied in
[7]. The function δ(r) is not decreasing, so δ(r) ≤ δ(r +1), for every r (see [15, Proposition
8]).

By Remark 5.4 in [7], if δ(r − 1) < δ(r) then δ(r) = δ(r − 1) + 1.

Definition 3.1 We say that the Gorenstein sequence (1, r , μ(r), r , 1) is minimal. Moreover
we say that the Gorenstein sequence (1, r , μ(r), r , 1) is strongly minimal if δ(r −1) < δ(r).

By Remark 5.4 in [7], if (1, r , μ(r), r , 1) is strongly minimal, then δ(r) = δ(r − 1) + 1.
The minimal r such that (1, r , μ(r), r , 1) is not unimodal is r = 13 [14]. So δ(r) = 0 for

r ≤ 12.

Proposition 3.2 δ(r) = 1 iff 13 ≤ r ≤ 19.
Consequently the sequence (1, 13, 12, 13, 1) is strongly minimal.

Proof The sequence (1, 13, 12, 13, 1) is a Gorenstein sequence. This was originally proved
by Stanley in [20]. This sequence is also the Hilbert Function of the full Perazzo algebra
with m = 3. In [14, Proposition 3.1], it was proved that (1, 12, 11, 12, 1) is not a Gorenstein
sequence. Consequently δ(12) = 0, therefore δ(r) = 0 for every r ≤ 12. In [2, Theorem4.1],
was shown that (1, 19, 17, 19, 1) is not a Gorenstein sequence, so δ(r) = 1 for 13 ≤ r ≤ 19.
In [14, Remark 3.5], was observed that (1, 20, 18, 20, 1) is a Gorenstein sequence, so for
r ≥ 20 we have that δ(r) ≥ 2. ��
Corollary 3.3 δ(20) = 2. Consequently the sequence (1, 20, 18, 20, 1) is strongly minimal.

Proof In [14, Remark 3.5], it was observed that (1, 20, 18, 20, 1) is a Gorenstein sequence.
So, by Remark 5.4 in [7], δ(20) = 2. ��

123
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Proposition 3.4 Let m ≥ 3. We have that

δ

(

m +
(
m + 2

3

))

≥
(
m

3

)

.

Proof For r = m + (m+2
3

)
there exists the full Perazzo Algebra. It realizes the Gorenstein

sequence
(

1,m +
(
m + 2

3

)

,m(m + 1),m +
(
m + 2

3

)

, 1

)

.

So δ
(
m + (m+2

3

)) ≥ (m+2
3

) + m − m(m + 1) = (m+2
3

) − m2 = (m
3

)
. ��

Lemma 3.5 Let (1, r , h, r , 1) be a Gorenstein sequence. Let u = r − h, with u ≥ 0. Then

((
(r(3))

−1
0 − u

)
(2)

)1
1 ≥ (r(3))

−1
0 .

Proof Let A be aGorenstein algebrawithHilbert function (1, r , h, r , 1) and let L be a general
linear form. Using the same argument as in Proposition 3.1 in [14], we get that the Hilbert
function of A/(L) is of the type

(1, r − 1, s − u, s).

By the theorems of Green and of Macaulay we have s ≤ (r(3))
−1
0 and

(
(s − u)(2)

)1
1 ≥ s.

Consequently

(
(s + t − u)(2)

)1
1 ≥ s + t, for every t ≥ 0;

In particular, for t = (r(3))
−1
0 − s we are done. ��

Theorem 3.6 δ(24) = 4 and δ(40) = 10.

Proof By Proposition 3.4, δ(24) ≥ (4
3

) = 4. We have to prove that (1, 24, 19, 24, 1) is not a

Gorenstein sequence. Indeed 24(3) = (6
3

) + (3
2

) + (1
1

)
, so (24(3))

−1
0 = 11. Since u = 5 we

have that
(
(11 − 5)(2)

)1
1 = 10 < 11.

By Lemma 3.5, (1, 24, 19, 24, 1) is not a Gorenstein sequence.
By Proposition 3.4, δ(40) ≥ (5

3

) = 10. We have to prove that (1, 40, 29, 40, 1) is not a

Gorenstein sequence. Indeed 40(3) = (7
3

) + (3
2

) + (2
1

)
, so (40(3))

−1
0 = 22. Since u = 11 we

have that
(
(22 − 11)(2)

)1
1 = 21 < 22.

By Lemma 3.5, (1, 40, 29, 40, 1) is not a Gorenstein sequence. ��

Corollary 3.7 δ(25) = 4.
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Proof By Theorem 3.6 and by Theorem 2.5 in [14], (1, 25, 21, 25, 1) is a Gorenstein
sequence, so δ(25) ≥ 4.Wehave to prove that (1, 25, 20, 25, 1) is not a Gorenstein sequence.
Indeed 25(3) = (6

3

) + (3
2

) + (2
1

)
, so (25(3))

−1
0 = 12. Since u = 5 we have that

(
(12 − 5)(2)

)1
1 = 11 < 12.

By Lemma 3.5, (1, 25, 20, 25, 1) is not a Gorenstein sequence. ��
Proposition 3.8 2 ≤ δ(21) ≤ δ(22) ≤ δ(23) ≤ 4.

Proof This follows trivially by the fact that δ(20) = 2 and δ(24) = 4. ��
Proposition 3.9 20 ≤ δ(62) ≤ 21.

Proof By Proposition 3.4, form = 6,we get that (1, 62, 42, 62, 1) is a Gorenstein sequence.
On the other hand, (1, 62, 40, 62, 1) is not a Gorenstein sequence by Lemma 3.5. Indeed

(62(3))
−1
0 =

(
7

3

)

+
(
3

2

)

= 38

and
(
(38 − 22)(2)

)1
1 = 36 < 38.

��
Proposition 3.10 δ(26) = 4 = δ(27).

Proof For r = 26, we have to prove that (1, 26, 21, 26, 1) is not a Gorenstein sequence.
Indeed, let A = R/I be a Gorenstein algebra with Hilbert function (1, 26, 21, 26, 1), L
be a general linear form. We set J = (I≤3), J̄ = (J , L)/(L) and S = R/(L). By the
theoremsofGreen andofMacaulay and repeating the abovemethod, R/ J̄ hasHilbert function
(1, 25, 8, 13). As R/ J̄ has maximal growth from degree 2 to degree 3 and J̄ has no new
generators in degree 4, by Gotzmann’s theorem we get hR/ J̄ (t) = (t+2

2

) + t . Therefore, J̄ is

the saturated ideal, in all degrees ≥ 2 of the union of a plane and a line in P24. It follows that,
up to saturation, J is the ideal of a scheme T given by the union in P

25 of a 3-dimensional
linear variety, a plane andm points (possibly embedded). Hence, 50 ≤ hR/ J̄ (4) ≤ 45, which
is absurd.

Now, for r = 27, following the same argument as above, we prove that the sequence
(1, 27, 22, 27, 1) is not Gorenstein. In this case we conclude 50 ≤ hR/ J̄ (4) ≤ 46. ��

3.2 Minimal Gorenstein Hilbert functions in socle degree 5

In socle degree 5, a Gorenstein sequence is of the form

(1, r , h, h, r , 1).

Let μ(r) be the integer such that (1, r , μ(r), μ(r), r , 1) is a Gorenstein sequence, but
(1, r , μ(r) − 1, μ(r) − 1, r , 1) is not a Gorenstein sequence. Then μ(r) ≤ h ≤ (r+1

2

)
.

It is well known that (1, r , h, h, r , 1) is a Gorenstein sequence iff μ(r) ≤ h ≤ (r+1
2

)
(see

[21]). We set δ(r) = r − μ(r).

Definition 3.11 We say that the Gorenstein sequence (1, r , μ(r), μ(r), r , 1) is minimal.
Moreover we say that the Gorenstein sequence (1, r , μ(r), μ(r), r , 1) is strongly minimal if
δ(r − 1) < δ(r).
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Proposition 3.12 In socle degree 5 we have
δ(r) = 0 iff r ≤ 16.
δ(r) = 1 iff r = 17.
For 18 ≤ r ≤ 25, δ(r) = 2

Proof For 18 ≤ r ≤ 25, see Theorem 3.4 and Remark 3.5 in [14]. ��
Lemma 3.13 Let (1, r , h, h, r , 1) be a Gorenstein sequence. Let u = r − h. Then

((
(r(4))

−1
0 − u

)
(2)

)2
2 ≥ (r(4))

−1
0 .

Proof Analogous to Lemma 3.5. ��
Proposition 3.14 Let m ≥ 3. We have that

δ

(

m +
(
m + 3

4

))

≥ m + 5

4

(
m

3

)

.

Proof For r = m + (m+3
4

)
there exists the full Perazzo Algebra. It realizes the Gorenstein

sequence
(

1,m +
(
m + 3

4

)

,

(
m + 1

2

)

+
(
m + 2

3

)

,

(
m + 1

2

)

+
(
m + 2

3

)

,m +
(
m + 3

4

)

, 1

)

.

So

δ

(

m +
(
m + 3

4

))

≥
(
m + 3

4

)

+ m −
(
m + 1

2

)

−
(
m + 2

3

)

= m + 5

4

(
m

3

)

.

��
Theorem 3.15 For m ∈ {3, 4, 5, 6, 7, 8, 9, 10}, we have δ

(
m + (m+3

4

)) = m+5
4

(m
3

)
. That is,

the full Perazzo conjecture is true in these cases.

Proof By Proposition 3.14, we have to prove that for m ∈ {3, 4, 5, 6, 7, 8, 9, 10}, the
sequence

(

1,m +
(
m + 3

4

)

,

(
m + 1

2

)

+
(
m + 2

3

)

− 1,

(
m + 1

2

)

+
(
m + 2

3

)

− 1,m +
(
m + 3

4

)

, 1

)

is not a Gorenstein sequence.
The case m = 3 will be dealt with in general in the next section. We can assume m ≥ 4.
For m = 4 we have to prove that the sequence (1, 39, 29, 29, 39, 1) is not a Gorenstein

sequence. Indeed, using Lemma 3.13, we have:

(39(4))
−1
0 = 16; u = 10; 16 − 10 = 6; (6(2))

2
2 = 15 < 16.

For m = 5 we have to prove that the sequence (1, 75, 49, 49, 75, 1) is not a Gorenstein
sequence. Indeed, by Lemma 3.13, we have:

(75(4))
−1
0 = 36; u = 26; 36 − 26 = 10; (10(2))

2
2 = 35 < 36.

For m = 6 we have to prove that the sequence (1, 132, 76, 76, 132, 1) is not a Gorenstein
sequence. Indeed, using Lemma 3.13, we have:

(132(4))
−1
0 = 71; u = 56; 71 − 56 = 15; (15(2))

2
2 = 70 < 71.
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Form = 7wehave to prove that the sequence (1, 217, 111, 111, 217, 1) is not aGorenstein
sequence. Indeed, by Lemma 3.13, we have:

(217(4))
−1
0 = 128; u = 106; 128 − 106 = 22; (22(2))

2
2 = 127 < 128.

Form = 8wehave to prove that the sequence (1, 338, 155, 155, 338, 1) is not aGorenstein
sequence. Indeed, using Lemma 3.13, we have:

(338(4))
−1
0 = 212; u = 183; 212 − 183 = 29; (29(2))

2
2 = 211 < 212.

Form = 9wehave to prove that the sequence (1, 504, 209, 209, 504, 1) is not aGorenstein
sequence. Indeed, using symmetry, Green’s theorem and Macaulay’s theorem, the following
diagram represents the Hilbert functions of R/I , R/(I : L) and R/(I , L)

1 504 209 209 504 1
1 171 54 171 1

1 503 38 155 333

By Lemma 3.5 the middle line is not a Gorenstein sequence.
For m = 10 we have to prove that the sequence (1, 725, 274, 274, 725, 1) is not a Goren-

stein sequence. Indeed, using symmetry, Green’s theorem and Macaulay’s theorem, the
following diagram represents the Hilbert functions of R/I , R/(I : L) and R/(I , L)

1 725 274 274 725 1
1 226 65 226 1

1 724 48 209 499

By Lemma 3.5 the middle line is not a Gorenstein sequence. ��
Corollary 3.16 The Gorenstein vector

(1, 18, 16, 16, 18, 1)

is strongly minimal.

Proof By the previous theorem we know that it is a minimal Gorenstein Hilbert vector. We
have to prove that (1, 17, 15, 15, 17, 1) is not a Gorenstein sequence. Indeed, by Proposi-
tion 3.12, δ(17) = 1. ��

4 A family of minimal Gorenstein Hilbert functions

Consider the family of full Perazzo algebras of type m = 3 and socle degree d ≥ 4. Its
Hilbert function is given by hk = (k+2

k

) + (2+2q−k
2q−k

)
, for k ≤ �d/2� and by symmetry we get

hd−k = hk .

Lemma 4.1 Let k ≤ �d/2�. Then we have:
(((

k + 1

2

))

(d−k)

)−1

0

≤ k − 2.

Proof First of all, consider d > 2k − 1. In this case, d − k + 1 > k, i.e. (d − k + 1) + (d −
k) + · · · + (d − 2k + 3) > k + (k − 1) + · · · + 2 + 1 = k(k + 1)/2 = (k+1

2

)
.
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We have: (
(k+1

2

)
)(d−k) <

(d−k+1
d−k

) + ( d−k
d−k−1

) + · · · (d−2k+3
d−2k+2

)
. Then

(((
k + 1

2

))

(d−k)

)−1

0

≤ k − 2.

Now there are only two other cases to consider: 1) d = 2k − 1, 2) d = 2k.
They are similar, we will do the details for d = 2k. In this case, we have:

(((
k + 1

2

))

(k)

)−1

0

≤ k − 2.

Indeed we know that the k-binomial expansion of
(k+1

2

)
has two blocks

(
(k+1

2

)
)(k) = [(k+1

k

) + ( k
k−1

) + . . . + ( j+1
j

)] + [( j−1
j−1

) + · · · + (i
i

)]. The first block consists
of binomials of type

(s+1
s

)
and the second one of type

(s
s

)
.

Therefore:
(((

k + 1

2

))

(k)

)−1

0

= k − j + 1.

If k − j + 1 > k − 2, then j ≤ 2, but the cases j = 1 and j = 2 are not possible. In fact,
suppose, j = 2, since:

(
k + 1

k

)

+
(

k

k − 1

)

+ · · · +
(
3

2

)

= (k + 4)(k − 1)/2 ≥
(
k + 1

2

)

.

It is absurd for k > 2. The case j = 1 is analogous, the result follows. ��
Theorem 4.2 Every full Perazzo algebra with socle degree d ≥ 4 of type m = 3 has minimal
Hilbert function.

Proof We want to show that the Hilbert vector of the full Perazzo algebra H =
(1, h1, h2, h3, . . . , hd−1, hd = 1) with hk = (m+k−1

k

) + (m+d−k−1
d−k

)
is a minimal Goren-

stein Hilbert vector. Let

Ĥ = (1, ĥ1, ĥ2, ĥ3, . . . , ĥd−1, 1)

be a comparable Artinian Gorenstein Hilbert vector Ĥ � H of length d+1 and ĥ1 = h1. We
will proceed in steps to show that Ĥ = H . Consider, on the contrary, one of the following
situations:

(1) For some k ∈ {2, . . . , �d/2� − 1}, ĥk < hk ;
(2) For d = 2q , suppose that ĥt = ht for all t < q and ĥq < hq ;
(3) For d = 2q + 1, suppose that ĥt = ht for all t < q and ĥq < hq .

We will show that all of these situations give rise to a contradiction.
(1). Let A = Q/I with I = Ann( f ) be a standard graded Artinian Gorenstein K-

algebra such that HA = Ĥ with ĥk = dim Ak < hk = (m+k−1
k

) + (m+d−k−1
d−k

)
for some

k ∈ {2, . . . , �d/2� − 1}. Suppose that k is minimal satisfying this property, that is, for t < k
we get ĥt = ht , by the comparability hypothesis. Let L ∈ A1 be a generic linear form and
let S = Q/(L). We get the following exact sequence:

0 −−−−→ Q/(I : L)(−1) −−−−→ Q/I −−−−→ S/I −−−−→ 0
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with I = (I , L)

L
and (I : L) = Ann( f ) and f ′ = L( f ) denoting the derivative of f with

respect to L ∈ Q. Therefore Q/(I : L) is also Gorenstein. We get the following diagram:

1 ĥ1 . . . ĥk . . . ĥd−k ĥd−k+1 . . . 1
1 . . . ak−1 . . . ak−1 . . . 1

1 ĥ1 − 1 . . . h′
k . . . h′

d−k+1

We have ĥd−k+1 = ĥk−1 = hk−1 = hd−k+1 = (k+1
k−1

)+(d−k+3
d−k+1

)
. The (d−k+1)-binomial

decomposition of hd−k+1 is (hd−k+1)(d−k+1) = (d−k+3
d−k+1

)+(
(k+1
k−1

)
)(d−k). ByGreen’s theorem

we have

h′
d−k+1 ≤ ((ĥd−k+1)(d−k+1))

−1
0 = ((hd−k+1)(d−k+1))

−1
0

=
(
d − k + 2

d − k + 1

)

+
(((

k + 1

k − 1

))

(d−k)

)−1

0

.

By Lemma 4.1, we have

h′
d−k+1 ≤ d − k + 2 + k − 2 = d.

We consider only the case h′
d−k+1 = d , the other cases are similar.

We have ak−1 = ĥd−k+1 − d , h′
k = ĥk − (ĥd−k+1 − d). Since ĥk ≤ hk − 1 we have

h′
k ≤ hk − hd−k+1 + d − 1.
We recall that

hk =
(
k + 2

2

)

+
(
d − k + 2

2

)

, hd−k+1 =
(
d − k + 3

2

)

+
(
k + 1

2

)

.

Therefore

hk − hd−k+1 =
[(

k + 2

2

)

−
(
k + 1

2

)]

−
[(

d − k + 3

2

)

−
(
d − k + 2

2

)]

= (k + 1) − (d − k + 2)

= 2k − d − 1

We obtain h′
k ≤ 2k − 2. Thence h′

k ≤ 2k − 2 = k + 1 + k − 3 which implies that

(h′
k)k ≤ (k+1

k

) + (k−1
k−1

) + · · · + (3
3

)
.

By Macaulay’s theorem applied d − 2k + 1 times we have

h′
d−k+1 ≤ ((h′

k)k)
d−2k+1
d−2k+1 ≤ (k+1+d−2k+1

k+d−2k+1

) + k − 3 = k + 1 + d − 2k + 1 + k − 3

therefore d ≤ d − 1,a contradiction.
(2). Case d = 2q is even. Suppose that ĥt = ht for all t < q and ĥq < hq . Let L ∈ Q be

a generic linear form and S = Q/(L). We have the following exact sequence:

0 −−−−→ Q/(I : L)(−1) −−−−→ Q/I −−−−→ S/I −−−−→ 0
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where I = (I , L)

L
and (I : L) = Ann( f ), f ′ = L( f ), that is, Q/(I : L) is also Gorenstein.

In the middle we get the following diagram:

1 h1 . . . hq−1 ĥq hq+1 . . . 1

1 . . . aq−2 aq−1 aq−1 . . . 1

1 h1 − 1 . . . h′
q h′

q+1

Since (hq+1)(q+1) = (
(q+3
q+1

) + (
(q+1

2

)
)q , from Green’s theorem

h′
q+1 ≤ ((hq+1)q+1)

−1
0 =

(
q + 2

q + 1

)

+
(((

q + 1

2

))

q

)−1

0

.

By Lemma 4.1 we have

((hq+1)q+1)
−1
0 =

(
q + 2

q + 1

)

+
(((

q + 1

2

))

q

)−1

0

≤ q + 2 + q − 2 = 2q.

We study the case h′
q+1 = 2q , the other cases are similar.

We have a′
q−1 = hq+1 −2q , h′

q = ĥq −aq−1 ≤ hq −hq+1 +2q−1, then h′
q ≤ 2q−2 =

(q + 1) + (q − 3).
Therefore

(h′
q)q ≤

(
q + 1

q

)

+
(
q − 1

q − 1

)

+
(
q − 2

q − 2

)

+ · · · +
(
3

3

)

,

with
(q−1
q−1

) + (q−2
q−2

) + · · · + (3
3

)
being counted q − 3 times.

From Macaulay’s theorem we have h′
q+1 ≤ ((h′

q)(q))
+1
+1, hence

2q ≤
(
q + 2

q + 1

)

+
(
q

q

)

+
(
q − 1

q − 1

)

+ · · · +
(
4

4

)

≤ q + 2 + q − 3 = 2q − 1.

It is a contradiction.
(3). If d = 2q + 1 is odd. Suppose that ĥt = ht for all t < q and ĥq < hq . By the same

argument:

1 h1 . . . ĥq ĥq+1 hq+2 . . . 1

1 . . . aq−1 aq aq−1 . . . 1

1 h1 − 1 . . . h′
q h′

q+1 h′
q+2

Since hq+2 = (q+4
q+2

)+ (q+1
2

)
and (hq+2)q+2 = (q+4

q+2

)+
((q+1

2

))

q+1
, by Green’s theorem

h′
q+2 ≤ ((hq+2)(q+2))

−1
0 =

(
q + 3

q + 2

)

+
((

q + 1

2

)

)(q+1)

)−1

0
≤ q + 3 + q − 2 = 2q + 1.
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We consider only the case h′
q+2 = 2q + 1. We have aq−1 = hq+2 − (2q + 1), h′

q =
ĥq −aq−1. Then h′

q ≤ hq −1−aq−1, h′
q ≤ hq −1− (hq+2− (2q+1)), thence h′

q ≤ 2q−2.
We have

hq − hq+2 =
(
q + 2

2

)

−
(
q + 1

2

)

+
(
q + 3

2

)

−
(
q + 4

2

)

= −2.

Therefore

h′
q ≤ (q + 1) + (q − 3)

≤
(
q + 1

q

)

+
(
q − 1

q − 1

)

+ · · · +
(
3

3

)

where the terms
(q−1
q−1

) + · · · + (3
3

)
are q − 3.

By Macaulay’s theorem we have

h′
q+1 ≤ ((h′

q)q)
+1
+1 =

(
q + 2

q + 1

)

+
(
q

q

)

+ · · · +
(
4

4

)

,

the last terms are q − 3.
By Macaulay’s theorem we have

h′
q+2 ≤

(
q + 3

q + 2

)

+
(
q + 1

q + 1

)

+ · · · +
(
5

5

)

= q + 3 + q − 3 = 2q,

then 2q + 1 ≤ 2q .
It is a contradiction. The result follows. ��

5 Asymptotic behavior of theminimum

In this section we give a new proof of part of Theorem 3.6 in [17].
Let Pm = m + (m+d−2

d−1

)
be the codimension of a full Perazzo algebra of type m. Denote

by μd,k(r) the minimal entry in degree k of a Gorenstein h-vector with codimension r and
socle degree d .

Lemma 5.1 μd,k(Pm) ≥ (m+d−k−1
d−k

)
.

Proof We proceed by induction on k.
For k = 1, we have μd,1(Pm) = Pm = m + (m+d−2

d−1

)
>

(m+d−2
d−1

)
.

Now, suppose that

μd,k−1(Pm) >

(
m + d − k

d − k + 1

)

.

From Theorem 2.4 in [17], we get

μd,k(Pm) ≥
((

μd,k−1(Pm)
)
(d−k+1)

)−1

−1
+

((
μd,k−1(Pm)

)
(d−k+1)

)−d+2k

−d+2k+1
.

By inductive hypothesis, and by basic properties of binomial expansions, we have:
((

μd,k−1(Pm)
)
(d−k+1)

)−1

−1
>

(m+d−k−1
d−k

)
and

((
μd,k−1(Pm)

)
(d−k+1)

)−d+2k

−d+2k+1
>

(m+k
k+2

)
.

So,

μd,k(Pm) ≥
(
m + d − k − 1

d − k

)

+
(
m + k

k + 2

)

>

(
m + d − k − 1

d − k

)

.
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as we wanted. ��

Theorem 5.2 (Migliore–Nagel–Zanello [17]) Let A be a Gorenstein algebra of codimension
r and socle degree d. Then, for all k < �d/2�

lim
r→∞

μd,k(r)

r
d−k
d−1

= ((d − 1)!) d−k
d−1

(d − k)! .

Proof For any integer r >> 0 there is a unique integer Pm = m + (m+d−2
d−1

)
such that

Pm ≤ r ≤ Pm+1.

Applying the function μd,k we have

μd,k(Pm) ≤ μd,k(r) ≤ μd,k(Pm+1).

By Lemma 5.1

(
m + d − k − 1

d − k

)

≤ μd,k(r) ≤
(
m + d − k

d − k

)

+
(
m + k

k

)

.

Therefore

md−k

(d − k)! + o(md−k−1) ≤ μd,k(r) ≤ md−k

(d − k)! + o(md−k−1)

where o(ms) denote all terms of degree less than s.
On other hand, since Pm ≤ r ≤ Pm+1, then

md−1

(d − 1)! + o(md−2) ≤ r ≤ md−1

(d − 1)! + o(md−2)

md−k

((d − 1)!) d−k
d−1

+ o(md−k−1) ≤ r
d−k
d−1 ≤ md−k

((d − 1)!) d−k
d−1

+ o(md−k−1)

1
md−k

((d−1)!) d−k
d−1

+ o(md−k−1)
≤ 1

r
d−k
d−1

≤ 1
md−k

((d−1)!) d−k
d−1

+ o(md−k−1)

Multiplying, we get

md−k

(d−k)! + o(md−k−1)

md−k

((d−1)!) d−k
d−1

+ o(md−k−1)
≤ μd,k(r)

r
d−k
d−1

≤
md−k

(d−k)! + o(md−k−1)

md−k

((d−1)!) d−k
d−1

+ o(md−k−1)
.

Since in both sides the limit exists and are the same, the result follows. ��
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