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ABSTRACT
Ice is one of the most important and interesting molecular crystals, exhibiting a rich and evolving phase diagram. Recent discoveries mean
that there are now 20 distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals
dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often
not able to accurately characterize the relative energies of the various ice polymorphs. Thanks to recent advances that enable the accurate
and efficient treatment of molecular crystals with Diffusion Monte Carlo (DMC), we present here the DMC-ICE13 dataset; a dataset of lattice
energies of 13 ice polymorphs. This dataset encompasses the full structural complexity found in the ambient and high-pressure molecular ice
polymorphs, and when experimental reference energies are available, our DMC results deliver sub-chemical accuracy. Using this dataset, we
then perform an extensive benchmark of a broad range of DFT functionals. Of the functionals considered, revPBE-D3 and RSCAN reproduce
reference absolute lattice energies with the smallest error, while optB86b-vdW and SCAN+rVV10 have the best performance on the relative
lattice energies. Our results suggest that a single functional achieving reliable performance for all phases is still missing, and that care is needed
in the selection of the most appropriate functional for the desired application. The insights obtained here may also be relevant to liquid water
and other hydrogen-bonded and dispersion-bonded molecular crystals.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102645

I. INTRODUCTION
Water and ice are ubiquitous in nature and relevant to an

almost endless list of scientific problems in materials science, chem-
istry, physics, and biology. This broad interest has motivated many
decades of research into the phase diagram of water and ice, with
renewed interest in the last few years owing, for example, to the dis-
covery of several new crystalline polymorphs,1–5 and the theoretical
prediction of numerous further candidates, e.g., Ref. 6. The recent
experimental discoveries have increased the already extreme com-
plexity of the water phase diagram to 20 solid phases, the liquid
state, and various amorphous phases.7–11 An accurate description

of the phase diagram has been a major challenge for computational
approaches, and excellent progress has been made both with classi-
cal potentials12,13 and Machine Learning (ML) models.14,15 The ML
work has been particularly impressive, testing several Density Func-
tional Theory (DFT) functionals (SCAN, B3LYP+D, PBE0+D, and
revPBE0+D), as well as taking into account quantum nuclear effects
(QNEs). However, differences between the computed and experi-
mental phase boundaries still exist. Although thermal and QNEs are
important, the key to the phase diagram is an accurate description
of the relative energies of the various ice polymorphs. It is this issue
that the present paper focuses on.
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The main parameters used to assess the stability of ice poly-
morphs are the absolute lattice energy (i.e., the crystal total energy
relative to gas phase water molecules) and the relative lattice energy
(i.e., the lattice energy of a polymorph relative to hexagonal ice).
Since the first DFT study of Hamann16 in 1997, a large number
of DFT studies (considering a broad range of exchange–correlation
functionals) have followed (see, e.g., Refs. 17–23 and, for a review,
see Ref. 24). Considerable insight has emerged from these studies,
notably the realization that non-local van der Waals (vdW) dis-
persion forces need to be accounted for an accurate description
of the relative energies of the different polymorphs. Generally, the
above studies have made reference to benchmark lattice energies
derived from Whalley’s work.25 Consequently, benchmark lattice
energies are available only for polymorphs characterized before
then. In the absence of experiment, high-level electronic structure
theories can, in principle, provide an alternative source of bench-
mark reference data. And, indeed, the energetics of several ice
polymorphs have been examined with various explicitly correlated
electronic structure theories.26–29 In particular, Diffusion Monte
Carlo (DMC) gives excellent results in the computation of water-ice
lattice energies.18,26,30 However, largely because of the computational
cost of DMC, estimates are only available for four polymorphs (ice
Ih, II, VIII, and XI).

In this study, thanks to recent developments31,32 enabling accu-
rate and efficient DMC simulations for molecular crystals,26 we
perform an extensive DMC study of ice polymorphs. High-accuracy
reference values of the lattice energy for 13 ice polymorphs are
provided, with the 13 polymorphs selected to provide a broad treat-
ment of the main bonding topologies found in the ambient and
high-pressure molecular ice polymorphs. We subsequently use the
DMC reference energies to conduct a benchmark on a broad range
of DFT exchange–correlation (XC) functionals. This reveals that
different functionals perform better in capturing the stability with
respect to the gas or the solid phase, indicating that care should be
taken in selecting the optimal functional for a particular study. From
another perspective, our results suggest that a “universal” functional
for water, i.e., a functional that gives a good agreement for all phases,
is still missing.

The outline of this paper is as follows: In Sec. II, we introduce
the 13 ice polymorphs under consideration and then give tech-
nical details of both DFT and DMC simulations. In Sec. III, we
first present the DMC reference values, comparing with available
experimental results. Subsequently, we present the outcome of the
benchmark of numerous DFT-XC functionals, analyzing the stabil-
ity of the considered polymorphs with respect to the gas phase and
hexagonal ice. Finally, we give some concluding remarks in Sec. IV.

II. MATERIALS AND METHODS
A. Dataset setup

In this work, we compiled the DMC-ICE13 set by consider-
ing 13 ice polymorphs, including hydrogen-ordered and -disordered
phases that span a broad range of temperatures and pressures on
the water phase diagram.11 First, we considered the structures previ-
ously included in the DFT database ICE1021— ice Ih, II, III, VI, VII,
VIII, IX, XIII, XIV, and XV. Then, we added the ordered counter-
part of hexagonal ice, ice XI, leaving out the cubic ice Ic, expected
to be isoenergetic with ice XI/Ih within the DMC statistical error.30

Finally, we considered the meta-stable and self-interpenetrating
structure of ice IV and the recently discovered ice XVII.3 Interest-
ingly, this is an ultra-low-density porous state and has its stability
domain in the negative pressure regions; however, it is meta-stable at
ambient pressures and low temperatures. In this way, we are taking
into account at least one polymorph for each hydrogen ordered-
disordered couple (both for ice XI/Ih, VIII/VII, IX/III, and XV/VI).
We leave out of the set ice XII and V, disordered counterparts of ice
XIV and XIII, respectively. Finally, we do not include the least dense
ice XVI, stable only at negative pressures, ice XIX, described as the
“glassy” counterpart of ice VI, and the high pressures symmetric ice
X, and “superionic water” ice XVIII. In fact, these phases go beyond
the intent of this study, which is focused on molecular crystals.

We note here that, in principle, several structures should
be considered when computing the lattice energy of hydrogen-
disordered polymorphs. Based on a DFT analysis reported in the
supplementary material, we estimate that the differences among
the lattice energies of different hydrogen arrangements are of
the order of the DMC error bars. Being indistinguishable at the
DMC level, we consider only one hydrogen arrangement for each
hydrogen-disordered phase.

The geometries of the considered structures are reported in
the supplementary material and shown in Fig. 1. Input DFT and
DMC files are provided as supplementary material, to facilitate
accessibility and reproducibility of our data.

B. Geometry optimization and DFT lattice energies
The physical quantity usually considered to establish the stabil-

ity of a crystal is its absolute lattice energy, which is the energy per
molecule gained upon assuming the crystal form with respect to the
gas phase. It can be computed as

Elatt = Ecrys − Egas, (1)

where Ecrys is the energy per molecule in the crystal phase, and Egas
is the energy of the isolated molecule. However, we are also inter-
ested in capturing the relative stability of the ice polymorphs, i.e.,
the stability with respect to a fixed crystalline phase instead of the
gas state. This property is more relevant in, e.g., the computation
of the water phase diagram. Therefore, we assess the relative stabil-
ity of the crystalline phases by computing the relative lattice energy
with respect to hexagonal ice Ih. For a general polymorph “x,” this is
simply computed as

ΔEx
latt = Ex

latt − EIh
latt (2)

and is independent of the configuration of the monomer in the gas
phase.

Initial structures of ice Ih, II, VIII, XIII, XIV, and XV were
taken from Ref. 18, ice III, VI, VII, IX, and XVII were taken from
Ref. 6, ice IV was taken from Ref. 34, and ice XI from Ref.
30. DFT calculations have been performed with the VASP pro-
gram package.35–38 The projector-augmented plane wave method
(PAW) has been used with hard pseudo-potentials,39,40 with a dense
FFT grid and a PAW energy cut-off of 1000 eV, necessary to
achieve convergence in unconstrained geometry optimization, as
reported in Ref. 21. To be consistent in the benchmark of sev-
eral exchange–correlation functionals with respect to the reference
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FIG. 1. Crystalline structures of the
systems contained in the DMC-ICE13
dataset. Each subplot reports the unit
cell of the specified polymorph (plot-
ted using VESTA33), with oxygen atoms
in red, hydrogen atoms in white, and
hydrogen bonds as dashed black lines.
The experimental phase diagram pub-
lished in Ref. 11 is reported here to
facilitate visualization of the phase dia-
gram regions covered by our dataset.
Adopting the convention of Ref. 11, sta-
ble phases are indicated by large bold
Roman numerals, whereas meta-stable
states are indicated by a smaller font
size. The phase diagram is reproduced
from C. G. Salzmann, J. Chem. Phys.
150, 060901 (2019) with the permission
of AIP Publishing.

(DMC) value computed on a fixed geometry, we relaxed all the ice
polymorph structures at a fixed DFT-XC level. These structures have
therefore been used both in the DMC and DFT evaluations of the lat-
tice energies. This is the standard procedure also adopted in previous
benchmarks.18,19,21

Since the previous DMC calculations on ice Ih, II, and VIII
with PBE structures have shown results in excellent agreement with
experimental values,18,26 we decided to optimize the geometry of
all the considered polymorphs with the PBE functional; the poten-
tial error due to this approximation is estimated to be smaller than
∼1 kJ/mol, as discussed in the supplementary material. All geome-
tries have been carefully optimized until all forces were less than
∼0.002 eV/Å, sampling the Brillouin zone with a 3 × 3 × 3 k-point
grid centred on the Γ point. The convergence of the structure relax-
ation for several polymorphs has been subsequently checked using
a denser 5 × 5 × 5 grid. A 3 × 3 × 3 k-point grid has been used to
perform GGAs, meta-GGAs, and vdW-inclusive single-point peri-
odic calculations, yielding a 1 meV convergence threshold on the
lattice energy, evaluated with respect to the 5 × 5 × 5 grid. A denser
4 × 4 × 4 k-point grid has been used for hybrid-XC calculations
to achieve the same accuracy. The geometry used for the iso-
lated molecule (gas phase) can also influence the value of Elatt [see
Eq. (1)]. For this, we used the most accurate geometry for the
water monomer, derived by Partridge and Schwenke41 using cou-
pled cluster with single, double and perturbative triple excitations
[CCSD(T)], which is already used in previous analyzes.18,26,42 An
additional DMC calculation has been performed for the compu-
tation of Egas on the water monomer geometry optimized at the
DFT-PBE level, leading to a variation in the absolute lattice energies
smaller than 1 kJ/mol.

There are now countless DFT functionals and we cannot test all
or even most of them. Rather, here, we focus on evaluating the per-
formance of some of the most widely used families of functionals for
water and ice. Specifically, we considered local-density approxima-
tion (LDA),43 GGA (PBE,44 revPBE45), several dispersion-inclusive
functionals (optB88-vdW,46 optB86-vdW,47 optPBE-vdW,46

vdW-DF,48 vdW-DF2,49 rev-vdW-DF250), meta-GGA (SCAN,51

RSCAN,52 R2SCAN,53 SCAN+rVV1054), and hybrid methods
(PBE0,55,56 revPBE0,57 B3LYP58,59). GGA and hybrid methods have
also been applied with the D3—with both zero and Becke–Johnson
(BJ) damping, and with or without the three-body dispersion
term of Axilrod–Teller–Muto (ATM)—and D4 London dispersion
correction using the dftd3/dftd460–64 tools. PBE and PBE0 have
also been evaluated with the Tkatchenko–Scheffler (TS) dispersion
correction65 and the Many-Body-Dispersion (MBD) method.66,67

We also tested the Hartree–Fock (HF) approach.

C. Diffusion Monte Carlo
Reference values for the lattice energies were computed with

fixed-node DMC (FN-DMC) by using the CASINO code.68 We used
Hartree–Fock pseudo-potentials69,70 with the most recent determi-
nant locality approximation (DLA).32 The trial wave-functions were
of the Slater–Jastrow type with single Slater determinants, and the
single-particle orbitals obtained from DFT local-density approxima-
tion (LDA) plane-wave calculations performed with PWscf71,72 by
using an energy cut-off of 600 Ry and re-expanded in terms of B-
splines.73 The Jastrow factor included a two-body electron–electron
(e–e) term, two-body electron–nucleus (e–n) terms, and three-body
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electron–electron–nucleus (e–e–n) terms. The variational para-
meters of the Jastrow have been optimized by minimizing the
variance in the simulated cell for each analyzed polymorph. The size
of the simulation cell imposes some constraints on the Jastrow vari-
ational freedom, in the form of cut-offs in the e–n, e–e and e–e–n
terms. Following the workflow given in Ref. 26, tested on several
molecular crystals including three ice polymorphs, the simulation
cells have been generally defined in order to guarantee the radius of
the sphere inscribed in the Wigner–Seitz cell to be greater than 5 Å.
The number of molecules in the simulated cell of each polymorph is
reported in the supplementary material.

The time step τ is a key issue affecting the accuracy of DMC cal-
culations. In DMC, a propagation according to the imaginary time
Schrödinger equation is performed to project out the exact ground
state from a trial wave-function.74 A time step τ must be chosen, but
the projection is exact only in the continuous limit τ → 0. However,
the ZSGMA31 DMC algorithm gives better convergence with respect
to τ than previously used methods because the time-step bias per
molecule is independent of the size of the simulated cell in a molecu-
lar crystal.26 In this work, we have verified the time-step convergence
for each analyzed ice polymorph, as reported in the supplementary
material. We note that, in general, even in the limit of zero-time step,
the DMC energy may be biased by the choice of the Jastrow fac-
tor, depending on how the non-local part of the pseudo-potential is
treated. This bias is eliminated if the DLA scheme is employed.

The computation of Ecrys involves the use of periodic bound-
ary conditions that can be subject to significant finite size errors
(FSE). We took into account FSE using the Model Periodic Coulomb
(MPC)75–77 correction and further correct for the (smaller) Indepen-
dent Particle FSE (IPFSE) according to the procedure described in
Ref. 26. An analysis of the FSE for each considered polymorph can
be found in the supplementary material.

Finally, the periodic DMC simulations have been performed
by using Twist Averaging Boundary Condition (TABC).78 This
involves averaging the absolute DMC energies obtained by using
DFT-LDA single Slater determinants computed at different k-points
in the Brillouin zone of the simulated cell. In particular, this means
that the general DMC wave function of a periodic system is a
complex function, except for a finite set of points in the Brillouin
zone that makes the wave function real, such as the Γ point or the
corner points. In this case, the FN-DMC is substituted by the non-
equivalent fixed-phase DMC (FP-DMC). In principle, this means
that Egas also has to be computed with the FP-DMC, in order to be
consistent in the estimation of Elatt. However, it has been shown in
Ref. 26 that the difference between the FN and FP estimates of Egas
for water is smaller than the statistical accuracy. For this reason, we
used a real wave function in the DMC simulation of the gas phase.

III. RESULTS AND DISCUSSION
The computation of the lattice energy is performed at zero tem-

perature and pressure and considering only the electronic contribu-
tion, i.e., neglecting quantum nuclear effects. Experimental estimates
of the ice polymorphs lattice energies have been deducted from mea-
sures of the internal energy variation, according to an approximation
described in the supplementary material. These experimental values
are affected by two types of error: an uncertainty coming from the
actual measurement of the internal energy variation (∼0.1 kJ/mol),

and an error due to the correction for the zero-point energy effects
that we estimate to be of the order of ∼1 − 2 kJ/mol, as generally
found for molecular crystals in Ref. 26, and further analyzed for
ice polymorphs in the supplementary material. This uncertainty on
the experimental estimates of the lattice energies and the lack of
them for the recently discovered phases are key reasons why results
from a high-accuracy electronic structure method, such as DMC, are
needed.

In Fig. 2, we report the DMC estimates, as well as the experi-
mental values when available, of both the absolute (top panel) and
relative (bottom panel) lattice energies for all the considered poly-
morphs. Exact values are also reported in Table I. First, we note
that our DMC values for ice Ih and II agree within statistical error
with the previous DMC results reported in Ref. 26. For ice VIII, a
small (∼1.5 kJ/mol) difference is found, which arises from the use,
in the current study, of a bigger supercell and of the DLA in the
pseudo-potentials (see Sec. II).

Recently, high-accuracy Random Phase Approximation with
exchange (RPAx)28 lattice energies were computed for several crys-
talline systems, including ice II, VIII, IX, and XI. We find our DMC
estimates in good agreement with the reported values, with a maxi-
mum discrepancy of ∼1.2 kJ/mol that can be mainly ascribed to the
different functional (PBE+TS) used for the geometry optimization.

Observing the entire dataset, it is evident that the energy differ-
ences we want to catch in this work are minimal; in fact, they are, in

FIG. 2. Performance of DMC for the 13 ice polymorphs considered on the absolute
(top) and relative (bottom) lattice energy, compared with available experimental
data.25 The error on the experimental estimates due to the correction for the zero-
point energy, estimated in the supplementary material, is reported with a shaded
error bar for ice II, VIII, and IX. Energies are given in kJ/mol.
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TABLE I. Experimental (Ref. 25) and DMC values (errors given in parentheses)
for the absolute and relative lattice energies. Energies are in kJ/mol. [n.a. ≡ not
available].

Absolute Lattice Energy Relative Lattice Energy

Polymorph EXP DMC EXP DMC

Ih −58.87(1) −59.45(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

II −58.78(10) −59.14(7) 0.08(10) 0.31(10)
III −57.95(5) −58.20(7) 0.92(5) 1.25(10)
IV n.a. −55.62(7) n.a. 3.83(10)
VI −57.24(12) −57.67(7) 1.63(12) 1.78(10)
VII −54.68(23) −54.46(7) 4.18(23) 4.99(10)
VIII −55.69(23) −55.22(8) 3.18(23) 4.23(10)
IX −58.45(8) −58.85(7) 0.42(8) 0.60(10)
XI n.a. −59.29(8) n.a. 0.15(10)
XIII n.a. −57.33(7) n.a. 2.12(10)
XIV n.a. −57.75(7) n.a. 1.70(10)
XV n.a. −57.71(7) n.a. 1.74(10)
XVII n.a. −57.70(8) n.a. 1.75(10)

most cases, smaller than the “chemical accuracy” limit of 4 kJ/mol.
In particular, ice XIV, XV, and XVII are degenerate within the
DMC statistical error. Overall, all the lattice energies vary in a small
range of 5 kJ/mol, defined by the lowest pressure phase ice Ih/XI
and the highest pressure phase ice VII. Interestingly, we find that
all the “recent” polymorphs, where no experimental value is avail-
able, fall in this range. Overall, DMC is always in good agreement
with the experimental values, with a maximum disagreement of
0.5 kJ/mol on the absolute lattice energies, and ∼1 kJ/mol on
the relative lattice energies. Thus, it ultimately defines the ref-
erence method we use to establish the performance of the
DFT functionals.

The benchmark of several DFT methods has been conducted
by dividing the XC functionals in macro-classes, reported roughly
according to Jacob’s ladder, as GGA, vdW-inclusive functionals,
meta-GGA, and hybrid functionals. Also, HF was added to the
benchmark. The HF, GGA, and hybrid dispersion-less function-
als have been corrected through the D3/D4 correction, while the
Tkatchenko–Scheffler (TS) and the Many-Body-Dispersion (MBD)
corrections have also been taken into account for PBE and PBE0.

The absolute lattice energies are reported in Table II (we also
include LDA lattice energies for completeness, but we leave them out
of the general discussion since they are known to be unreliable). The
performance of each functional is evaluated as the Mean Absolute
Error (MAE) with respect to the reference DMC value, graphically
reported both for the absolute and relative lattice energies in Fig. 3
to allow for easier comparisons. In particular, in the following analy-
sis, XC functionals are generally classified as “good,” if their MAE is
≲4 kJ/mol (≲2 kJ/mol) for the absolute (relative) lattice energy.

Overall, as expected, the worst performance on the absolute lat-
tice energy is obtained at the HF level, with significant improvement
(>50%) gained, thanks to the dispersion correction. Except for PBE,
the performance of all functionals is improved by the a posteriori
vdW correction. Interestingly, the performance on the relative lat-
tice energies is significantly different. Remarkably, the HF method

performs better than several DFT functionals; however, its perfor-
mance is significantly worsened by both D3 and D4 corrections.
Unreliable results are generally achieved by both PBE and PBE0
regardless of the D3/D4 corrections. Overall, the only macro-classes
where all the functionals achieve general good performance (on both
the absolute and relative lattice energies) are the meta-GGAs and
the vdW-inclusive functionals. As noted before, the energy differ-
ences between the considered polymorphs vary in a small range of
5 kJ/mol. For this reason, even if a functional generally achieves
small errors in reproducing the reference DMC values for the abso-
lute lattice energy, a fundamental condition to achieve good results
on the relative lattice energy is a constant error among all the poly-
morphs, so that an error cancelation serves to yield the desired
performance.

The best performing functionals for each XC macro-class are
further analyzed in Fig. 4. In Fig. 4 (top), we focus on the absolute
lattice energy. Among the considered meta-GGAs, only RSCAN and
R2SCAN achieve particularly good results (MAE ∼ 1 kJ/mol), while
SCAN and SCAN+rVV10 have an MAE ∼ 4 kJ/mol and ∼10 kJ/mol,
respectively. Several properties of liquid water have been shown to
be correctly predicted by SCAN.14,79,80 Its performance on a subset
of six proton-ordered polymorphs (ice IX, II, XIII, XIV, XV, and
VIII) has been previously analyzed by Sun et al.22 They showed that
SCAN reproduces relative lattice energies better than PBE, PBE0,
and PBE0+TS. These considerations are confirmed by our dataset;
however, we find several other XC functionals that achieve bet-
ter performance. Good results are achieved by revPBE-D3 (almost
equivalent with or without the Axilrod–Teller–Muto correction)
and vdW-DF2, with their MAE being lower than 1.4 kJ/mol. How-
ever, as evident in both Fig. 4 and Table II, their error with respect
to the DMC reference oscillates among all the polymorphs, lead-
ing to worse performance on the stability with respect to hexagonal
ice. In Fig. 4 (bottom), we focus on the best performing func-
tionals on the relative lattice energies, i.e., revPBE-D3 (GGA),
optB86b-vdW (vdW-inclusive), SCAN+rVV10 (meta-GGA), and
B3LYP-D3atm (hybrid). Except for revPBE-D3, these functionals
generally achieve poor performance when predicting the stabil-
ity with respect to the gas phase, with an MAE of ∼5 kJ/mol for
B3LYP-D3atm and even greater for optB86b-vdW (∼7 kJ/mol) and
SCAN+rVV10 (∼10 kJ/mol). However, as suggested before, this
error behaves like a constant offset with respect to DMC, with the
error cancelation allowing for optimal predictions on the relative
lattice energy.

Note, also, that the performance of B3LYP-D3, B3LYP-D3atm,
optB86b-vdW, and SCAN+rVV10 on the relative lattice ener-
gies is all equivalent within the statistical error of the DMC
estimates (MAE between 0.5 and 0.7 kJ/mol). However, hybrid
functional calculations require computational resources hundreds
of times greater than meta-GGA and vdW-inclusive methods
(and a denser k-point grid is necessary to achieve convergence).
Therefore, we suggest the latter to obtain optimal results at
a reasonable cost.

Remarkably, the DMC reference values allow us to qualitatively
understand why ice III is only meta-stable in the recent computa-
tional phase diagrams.14,15 Since we did not include ice V in our
benchmark, we consider its ordered counterpart ice XIII in the fol-
lowing analysis. Neglecting the temperature contribution and the
zero-point motion, and considering the zero pressure volumes, the
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TABLE II. Performance of each exchange–correlation functional on the absolute lattice energy. Energies are reported in kJ/mol. In order to facilitate reproducibility in the
supplementary material, we report the same table with energies in meV, directly comparable to the VASP output.

Method Ih II III IV VI VII VIII IX XI XIII XIV XV XVII MAE

DMC −59.45 −59.14 −58.20 −55.62 −57.67 −54.46 −55.22 −58.85 −59.29 −57.33 −57.75 −57.71 −57.70

B3LYP-D4 −63.03 −61.11 −60.42 −58.10 −58.69 −53.78 −54.98 −61.33 −63.20 −60.18 −59.60 −58.65 −62.05 2.20
B3LYP-D3(BJ)atm

−63.63 −61.90 −61.11 −58.90 −59.60 −54.96 −56.21 −62.03 −63.80 −61.00 −60.43 −59.56 −62.68 2.88
B3LYP-D3(BJ) −64.04 −62.52 −61.65 −59.57 −60.37 −55.86 −57.09 −62.62 −64.23 −61.68 −61.17 −60.31 −63.01 3.52
B3LYP-D3atm

−64.14 −64.02 −62.10 −60.89 −62.24 −59.89 −60.95 −63.39 −64.28 −62.99 −62.61 −62.16 −63.24 4.96
B3LYP-D3 −64.55 −64.65 −62.64 −61.56 −63.01 −60.78 −61.84 −63.98 −64.71 −63.67 −63.34 −62.91 −63.57 5.60
B3LYP −52.71 −46.96 −48.22 −43.85 −42.88 −35.97 −37.36 −48.49 −52.73 −45.72 −44.46 −43.03 −52.09 11.84

revPBE0-D4 −56.31 −54.00 −53.65 −51.17 −51.58 −46.87 −48.09 −54.41 −56.42 −53.05 −52.44 −51.62 −55.27 4.89
revPBE0-D3(BJ)atm

−56.94 −55.02 −54.50 −52.22 −52.84 −48.38 −49.66 −55.32 −57.06 −54.15 −53.58 −52.86 −55.89 3.84
revPBE0-D3(BJ) −57.35 −55.65 −55.04 −52.89 −53.60 −49.28 −50.55 −55.91 −57.48 −54.83 −54.32 −53.61 −56.22 3.21
revPBE0-D3atm

−57.03 −56.96 −54.81 −53.80 −55.43 −54.71 −55.78 −56.03 −57.09 −55.65 −55.34 −55.40 −56.11 1.99
revPBE0-D3 −57.45 −57.58 −55.35 −54.47 −56.20 −55.61 −56.67 −56.61 −57.51 −56.33 −56.08 −56.15 −56.44 1.63
revPBE0 −44.05 −37.58 −39.51 −34.72 −33.31 −25.88 −27.35 −39.63 −44.00 −36.41 −35.03 −33.58 −43.29 21.08

PBE0-MBD −65.15 −63.08 −62.56 −60.11 −60.74 −55.92 −57.14 −63.40 −65.42 −62.18 −61.54 −60.64 −64.11 4.12
PBE0-TS −64.67 −64.14 −62.66 −61.30 −62.52 −41.88 −58.46 −63.76 −64.95 −63.44 −63.13 −62.43 −63.62 5.67
PBE0-D4 −64.38 −61.43 −61.48 −58.49 −58.75 −53.32 −54.56 −62.12 −64.63 −60.48 −59.74 −58.70 −63.34 2.82
PBE0-D3(BJ)atm

−64.68 −61.80 −61.81 −58.87 −59.17 −53.88 −55.14 −62.45 −64.93 −60.86 −60.13 −59.12 −63.66 3.03
PBE0-D3(BJ) −65.09 −62.42 −62.35 −59.54 −59.94 −54.78 −56.02 −63.03 −65.35 −61.54 −60.86 −59.87 −63.99 3.57
PBE0-D3atm

−65.80 −64.77 −63.44 −61.18 −61.90 −57.85 −58.99 −64.35 −66.05 −63.22 −62.62 −61.82 −64.81 5.26
PBE0-D3 −66.21 −64.77 −63.98 −61.85 −62.67 −58.75 −59.88 −64.94 −66.47 −63.91 −63.35 −62.57 −65.14 5.85
PBE0 −57.47 −52.12 −53.27 −49.05 −48.39 −41.88 −43.23 −53.49 −57.63 −50.88 −49.74 −48.45 −56.77 6.62

SCAN + rVV10 −68.53 −68.31 −66.79 −65.65 −67.21 −64.88 −66.04 −67.56 −68.96 −67.55 −67.46 −66.99 −67.60 9.71
R2SCAN −61.43 −59.94 −58.99 −57.20 −58.13 −54.98 −56.21 −59.59 −61.68 −59.00 −58.64 −58.02 −60.70 1.32
RSCAN −61.36 −59.34 −58.63 −56.48 −57.32 −53.80 −55.01 −59.11 −61.65 −58.31 −57.87 −57.18 −60.72 0.95
SCAN −64.70 −63.15 −62.23 −60.36 −61.35 −58.21 −59.42 −62.77 −65.06 −62.19 −61.84 −61.21 −64.00 4.55

optB88-vdW −67.90 −67.85 −66.91 −65.66 −66.99 −63.50 −64.61 −67.88 −68.32 −67.66 −67.52 −66.82 −66.40 9.33
optB86b-vdW −68.69 −67.89 −67.47 −65.74 −66.83 −62.84 −63.93 −68.22 −69.18 −67.68 −67.43 −66.63 −67.21 7.05
optPBE-vdW −65.55 −65.72 −64.79 −63.77 −64.84 −61.25 −62.46 −65.93 −65.82 −65.66 −65.50 −64.83 −63.87 9.20
rev-vdW-DF2 −66.38 −64.26 −64.27 −61.87 −62.52 −57.90 −59.03 −64.84 −66.84 −63.79 −63.32 −62.35 −65.26 5.71
vdW-DF2 −59.43 −60.16 −58.40 −57.93 −59.18 −56.49 −57.80 −59.87 −59.43 −59.92 −59.84 −59.30 −58.06 1.34
vdW-DF −53.59 −53.78 −52.86 −52.03 −52.74 −49.13 −50.47 −54.19 −53.59 −53.81 −53.60 −52.96 −51.84 4.91

revPBE-D4 −59.96 −56.47 −57.12 −54.00 −53.97 −48.67 −49.73 −57.33 −60.29 −55.68 −54.98 −53.90 −58.96 2.53
revPBE-D3(BJ)atm

−58.86 −55.92 −56.39 −53.54 −53.66 −48.25 −49.43 −56.74 −59.17 −55.31 −54.64 −53.62 −57.80 2.71
revPBE-D3(BJ) −59.27 −56.55 −56.92 −54.21 −54.42 −49.15 −50.31 −57.33 −59.59 −55.99 −55.37 −54.38 −58.13 2.17
revPBE-D3atm

−58.60 −57.13 −56.15 −54.37 −55.40 −53.93 −54.85 −56.82 −58.83 −56.02 −55.57 −55.31 −57.68 1.36
revPBE-D3 −59.01 −57.75 −56.69 −55.03 −56.16 −54.83 −55.74 −57.41 −59.25 −56.71 −56.30 −56.07 −58.00 0.91
revPBE −43.86 −35.59 −38.96 −33.16 −30.88 −21.89 −23.30 −38.52 −43.97 −34.66 −33.02 −31.14 −43.11 22.79

PBE-MBD −70.48 −67.29 −67.77 −64.69 −64.75 −58.87 −59.94 −68.13 −70.96 −66.64 −65.83 −64.57 −69.40 8.53
PBE-TS −69.59 −67.75 −67.44 −65.29 −65.86 −58.84 −60.36 −68.04 −70.10 −67.30 −66.81 −65.71 −68.53 8.71
PBE-D4 −69.62 −65.55 −66.60 −62.97 −62.71 −56.21 −57.35 −66.75 −70.10 −64.82 −63.96 −62.58 −68.61 6.88
PBE-D3(BJ)atm

−69.95 −65.95 −66.96 −63.38 −63.19 −56.85 −58.02 −67.11 −70.43 −65.23 −64.38 −63.05 −68.96 7.31
PBE-D3(BJ) −70.36 −66.58 −67.49 −64.05 −63.96 −57.75 −58.90 −67.69 −70.85 −65.92 −65.11 −63.80 −69.29 7.95
PBE-D3atm

−70.39 −67.75 −67.94 −65.15 −65.41 −59.76 −60.90 −68.38 −70.87 −67.07 −66.37 −65.25 −69.42 8.94
PBE-D3 −70.80 −68.37 −68.47 −65.82 −66.17 −60.66 −61.79 −68.97 −71.29 −67.76 −67.11 −66.00 −69.75 9.58
PBE −62.23 −55.54 −57.85 −52.85 −51.58 −43.79 −45.05 −57.56 −62.60 −54.54 −53.24 −51.56 −61.52 4.48

HF-D4 −42.89 −46.50 −41.70 −42.92 −45.69 −46.31 −47.99 −44.36 −42.18 −45.14 −45.47 −46.08 −41.82 13.03
HF-D3(BJ)atm

−50.53 −53.57 −49.36 −50.04 −53.03 −53.70 −55.15 −51.58 −49.97 −52.28 −52.77 −53.25 −49.53 5.67
HF-D3(BJ) −50.94 −54.20 −49.90 −50.70 −53.79 −54.60 −56.03 −52.16 −50.39 −52.97 −53.50 −54.00 −49.86 5.17
HF-D3atm

−39.07 −44.94 −38.65 −41.32 −44.88 −47.30 −49.09 −41.88 −38.27 −43.58 −44.14 −45.31 −38.01 14.76
HF-D3 −39.49 −45.57 −39.19 −41.99 −45.64 −48.20 −49.97 −42.47 −38.69 −44.27 −44.88 −46.06 −38.34 14.13
HF −26.57 −25.53 −23.38 −22.01 −22.58 −19.54 −21.57 −25.42 −25.62 −24.06 −23.47 −23.29 −25.73 33.82

LDA −100.08 −94.37 −95.92 −90.94 −91.03 −83.78 −84.66 −95.37 −101.22 −93.04 −91.99 −90.32 −99.67 35.69
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FIG. 3. Outcome of the benchmark, reported as Mean Absolute Error (MAE) with respect to the reference DMC values (black error bars indicate the DMC statistical error)
for the absolute (left) and relative (right) lattice energies. The XC functionals have been ordered according to Jacob’s ladder as Generalized Gradient Approximation (red),
non-local van der Waals inclusive functionals (blue), meta-GGA (ochre), and hybrid (green). Different shades are used within GGA and hybrid methods to differentiate the
basis dispersion-less functional. Hartree–Fock (cyan) results are also reported.

transition pressure can be crudely estimated as

ptr = −
ΔEDMC

XIII−III

ΔVp=0
XIII−III

∼ 0.48 GPa. (3)

Therefore, even in this approximation, our DMC data allow for the

prediction of a reasonable transition pressure.11 Assuming that the
difference ΔV0

XIII−III does not change significantly with the XC func-
tional, then the condition that a functional needs to satisfy to predict
the stability of ice III is ΔEXC

XIII−III ∼ ΔEDMC
XIII−III. As can be computed

from Table II, none of the functionals considered in Refs. 14 and 15,
i.e., SCAN, PBE0+D3, revPBE0+D3, and B3LYP+D3, satisfies this
condition. Details of the used approximation are reported in the
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FIG. 4. Best performing DFT functional for each XC macro-class on the abso-
lute (top) and relative (bottom) lattice energies. Each plot reports the difference
between the DFT-XC and the reference DMC lattice energy for all the polymorphs
in DMC-ICE13. Each XC functional bar is colored according to the color-map used
in Fig. 3.

supplementary material, together with the performance of each XC
functional on the transition pressure. Interestingly, none of the
best performing functionals identified in our analysis captures this
stability difference either.

Based on our benchmarks, it is clear that care should be taken
when choosing which functional to use when computing a specific
water-ice property. This conclusion is consistent with the recent
work of Kapil et al.,81 where it was shown that two different func-
tionals, revPBE0-D3 and B3LYP-D3, perform better in capturing the
vibrational spectrum of liquid water and hexagonal ice, respectively.
From another perspective, despite the large amount of currently
available DFT methods and the optimal (or sub-optimal) perfor-
mance achieved by several of them, it is evident that there is still
room for improvement, especially if we do not want to rely on error
cancelation to reach the desired target.

Note also that, despite the large set of XC functionals tested,
there are certainly other DFT methods that could be consid-
ered. In particular, the recently proposed Density-Corrected SCAN
(DC-SCAN)82,83 looks very promising, while the hybrid functional
SCAN084 has been tested on liquid water showing better results than
SCAN. Moving forward, it would be interesting to test these func-
tionals, as well as others left outside this benchmark (e.g., numerous
meta-GGAs or double hybrid functionals), on the DMC-ICE13 set.

IV. CONCLUSION
We defined a set of 13 ice polymorphs, including both

hydrogen-ordered and -disordered phases and ranging from low-
to high-pressure phases. We computed absolute and relative lattice
energies using DMC, which were shown to be always in excellent
agreement (average error of ∼0.5 kJ/mol) with available experi-
mental data. Furthermore, our dataset allows us to qualitatively
understand a discrepancy between the experimental and compu-
tational phase diagram, highlighting the significance of computing
high-accuracy reference data. For polymorphs for which experimen-
tal lattice energies are not yet available, our DMC values serve as a
useful reference against which new methods can be tested. Indeed,
the fact that we can now compute 13 DMC lattice energies in a
fairly rapid timescale underlines how DMC has become a power-
ful reference method for molecular crystals and condensed phase
simulations with fairly large unit cells.

Here, we tested a broad range of DFT-XC functionals and, as
seen in previous benchmarks, the performance of GGA and hybrid
functionals generally improves when a dispersion correction is taken
into account. Of the schemes considered, unreliable performance on
the absolute lattice energies is achieved by HF (MAE > 30 kJ/mol)
as well as by revPBE and revPBE0 (MAE ∼ 20 kJ/mol). However,
significant improvement is obtained with D3/D4 corrections for
revPBE and revPBE0 (MAE < 5 kJ/mol). Almost equivalent perfor-
mance is achieved by vdW-DF, PBE0+D, and B3LYP+D. The vdW-
inclusive functionals generally offer good performance, this being
particularly true for the relative lattice energies (MAE < 2 kJ/mol).
Interestingly, the performance of an XC functional on the absolute
and relative lattice energies can be significantly different, the most
evident cases being HF, PBE, RSCAN, and PBE0. Indeed, it is clear
from this work that ice phases define a challenging set for elec-
tronic structure methods, and that improvements are still needed
to capture all its features with a single functional. Overall, our anal-
ysis suggests that revPBE-D3 and RSCAN (MAE ∼ 0.9 kJ/mol) are
the most accurate functionals for the absolute lattice energies, while
optB86b-vdW and SCAN + rVV10 (MAE ∼ 0.6 kJ/mol) are the
best options, considering both accuracy and computational cost, for
the relative lattice energies. Previous comparisons between water
clusters and ice phases21 suggested that these conclusions should
be transferable to the liquid state, as well as to solid–water inter-
faces, where detailed benchmarks are hindered by the prohibitive
computational cost.

SUPPLEMENTARY MATERIAL

See the supplementary material for the analyzes of the ice III–V
phase transition and of the experimental estimates of the lattice
energies, for details of our DMC and DFT simulations, and for the
geometries considered in our dataset.
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