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Simple Summary: In recent years, mathematical models have revolutionized cancer research, il-
luminating the complex dynamics of tumor growth and aiding drug development. These models,
reflecting biological and physical processes, are increasingly used in clinical practice, offering precise
patient-specific predictions. Our work introduces an innovative in silico model to simulate tumor
growth and invasiveness. The automated hybrid cell, replicating key tumor cell features, enables ex-
ploration of 3D tumor spheroid evolution. Sensitivity analyses reveal that tumor growth is primarily
influenced by cell replication speed and adhesion, while invasiveness relies on chemotaxis. These
insights shed light on tumor development mechanisms, guiding effective strategies against tumor
progression. Our model serves as a valuable tool for advancing cancer biology research and potential
therapeutic interventions.

Abstract: Purpose: In recent years, mathematical models have become instrumental in cancer research,
offering insights into tumor growth dynamics, and guiding the development of pharmacological
strategies. These models, encompassing diverse biological and physical processes, are increasingly
used in clinical settings, showing remarkable predictive precision for individual patient outcomes
and therapeutic responses. Methods: Motivated by these advancements, our study introduces an
innovative in silico model for simulating tumor growth and invasiveness. The automated hybrid cell
emulates critical tumor cell characteristics, including rapid proliferation, heightened motility, reduced
cell adhesion, and increased responsiveness to chemotactic signals. This model explores the potential
evolution of 3D tumor spheroids by manipulating biological parameters and microenvironment
factors, focusing on nutrient availability. Results: Our comprehensive global and local sensitivity
analysis reveals that tumor growth primarily depends on cell duplication speed and cell-to-cell
adhesion, rather than external chemical gradients. Conversely, tumor invasiveness is predominantly
driven by chemotaxis. These insights illuminate tumor development mechanisms, providing vital
guidance for effective strategies against tumor progression. Our proposed model is a valuable tool
for advancing cancer biology research and exploring potential therapeutic interventions.
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1. Introduction

According to the World Health Organization, cancer remains one of the leading
causes of death in advanced countries. In 2020 alone, there were 19.3 million new cases
and 10 million deaths reported worldwide [1,2]. However, there has been a consistent
decrease in cancer-related mortality, primarily due to successful prevention efforts and
advancements in treatment options [3]. It is noteworthy that approximately 66.7% of cancer
deaths are related to a process known as metastasis [4], which refers to the formation of
secondary tumors in parts of the body different from the site of cancer origin. The process
involves cancer cells crossing endothelial walls, circulating through in the bloodstream,
and eventually extravasating from capillaries crossing the basement membrane to colonize
the new site [5].

A key feature of the abovementioned steps is the ability of cancer cells to migrate
directionally in response to external stimuli, known as chemotaxis, which plays a funda-
mental role in enabling tumor invasiveness [6]. Chemotaxis is defined as the directional
movement of an organism in response to the concentration gradient of a given chemical
species. In the context of cell chemotaxis, it refers to the sensitivity of cells to specific gradi-
ents, quantified as the ratio between the concentration gradient and the local concentration
value (SG = ∇C/C) [7,8]. Chemokines (e.g., interleukin) and growth factors (e.g., FBS) are
examples of chemical species that drive chemotaxis in cancer cells [7]. Metabolites, such
as glucose or oxygen, which are also present in many growth factors, as well as catabolite
gradients, can also induce chemotaxis.

In the case of cancer tissues, cell over-proliferation induces a lack of nutrients and
an accumulation of catabolites. Consequently, tumor masses lose compactness and, in
order to keep a high surface to volume ratio, tend to invade the surrounding tissues. This
morphologic instability [9], known as diffusional instability [10,11], can be predicted by
mathematical models. The investigation of such a complex phenomenon requires the
use of adequate models able to include both biological and transport phenomena aspects.
Different approaches have been followed in cancer research, ranging from simple 2D cell
cultures, complex 3D scaffolds in vitro, murine in vivo models, to clinical studies.

In cancer research, in vitro approaches, which involve the study of biological systems
in artificial laboratory conditions, have been widely employed to investigate the underlying
mechanisms of cell migration, proliferation, and other processes related to tumorigene-
sis. Most of the published data regarding known cell-based processes are derived from
experiments performed in two-dimensional (2D) conditions. Two-dimensional cell cul-
tures, growing on solid substrates, such as plastic, do not fully reproduce the complex
three-dimensional (3D) architecture and complexity of living tissues. Important aspects,
such as cell–cell interactions, tissue phenotypes, the role of cell density and extracellular
matrix (ECM) [12–15], proliferation regulators [16], and metabolic functions [17] are often
missing or not adequately represented in 2D cultures.

In order to mimic the native in vivo scenario [18–20] where cancer growth occurs, 3D
models have been used in cancer research as a compromise between 2D cell cultures and
whole-animal systems. However, 3D tumor microenvironments in murine models may not
accurately represent the human scenario, making it challenging to control and interpret
experimental outcomes.

Recently, the tumor spheroid [8], a tightly bound aggregate of cells, is gaining popu-
larity as a 3D model due to of its ability to strikingly mirror the 3D cellular context. Being
characterized by naturally physiological and chemical gradients, cellular spheroids consist
of actively proliferating cells on the outside with quiescent cells in the inner rim, and a
central nutrient-deprived zone (necrotic core) [21], mimicking the natural scenario in a
tumor in situ.

Each of the abovementioned approaches has limitations that can be taken into account
by adequately coupling experimental investigations with in silico mathematical models.
One of the main challenges is to capture the complex and dynamic interactions between
cancer cells and their microenvironment. In vitro experimental conditions may introduce
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artifacts that can potentially compromise the validity of conclusions drawn from these
studies if not properly accounted for. In silico approaches, based on mathematical modeling
and computer simulations, have the potential to overcome these limitations by focusing
on the representation of the interactions of cells with the microenvironment, which are
difficult to mimic experimentally [22,23]. Furthermore, in silico models, once developed and
adequately validated, can be used to conduct extensive virtual experimental campaigns at a
significantly lower cost compared to in vivo and in vitro research. This approach is crucial
for the fundamental understanding of mechanisms of cancer growth and can facilitate the
simulation of specific treatments on individual patients, or the study of the effects of rare
mutations or genetic variations, implementing precision and personalized medicine [24]
protocols.

For this reason, in silico approaches [25] are attracting more attention. The earliest
attempts to mathematically model tumor growth and invasiveness date back to 1967, and
since then, the number and accuracy of these models have continued to grow [14]. These
models can be classified into continuum, discrete, and hybrid models [26], and they are
employed to simulate and study a wide variety of phenomena, such as the resistance of
tumors to different drug treatments [27–29], the interaction between tumor cells and their
microenvironment [13,15], and the immune system [25,30].

Hybrid agent-based models, such as hybrid cellular automata (HCA), have proven to
be effective in investigating complex tumor systems by combining deterministic reaction–
diffusion partial differential equations with the representation of the cells as single and
autonomous entities (cellular automata, CA [25]) governed by deterministic or stochastic
laws. These models consider the interactions between individual cells [26–29,31] and can
provide greater insights into the mechanisms underlying cancer growth and progression,
supporting the design of new therapeutic strategies [30,32].

HCA models are particularly useful in many applications in cancer research, where a
multi-scales model is required to depict the dynamics of cancer development over time,
including the evolution of cell phenotypes and genotypes [25]. These models account
for the interaction of individual cells with parameters characterizing the surrounding
environment, such as concentration fields or changes in pH [33].

In this study, a computational model based on HCA is developed to simulate the
growth and invasiveness of spheroids under different gradients of nutrients. Specifically,
chemotaxis is taken into account by estimating the glucose concentration profiles surround-
ing a cancer cell aggregate (tumor spheroid). The model aims to investigate the roles of
cell migration, duplication, and other parameters, such as cell–cell adhesion and sensitiv-
ity to chemotactic gradients, in the phenomenon of cancer invasion. A global sensitivity
analysis (GSA) and a local sensitivity analysis (LSA) are performed to evaluate the model’s
sensitivity to the variations in the abovementioned cellular parameters.

The goal of this study is to develop a model that can capture the complexity of
the cancer invasion mechanism, as envisioned by the diffusional instability model [9],
while maintaining computational feasibility. This will provide a more comprehensive
understanding of cancer biology and aid in the design of new therapeutic strategies.

2. Materials and Methods

In the following section, the structure of the hybrid cellular automata model, referred
as 2D-HCA, used for simulating the in vitro growth of avascular tumor spheroids, is
presented in detail. The model description is organized into several subsections. Firstly,
the model domain (Section 2.1.1) and numerical methods used to calculate continuous
functions (in our case, glucose concentration) (Section 2.1.2) are presented. The HCA
model is described by presenting the cell phenotypes (Section 2.1.3) and rules governing
cellular dynamics (Section 2.1.4). Statistical and sensitivity analyses are described in an
independent subsection (Section 2.2).
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By structuring the model description in this manner, the paper provides a comprehen-
sive overview of the 2D-HCA model and its application in simulating the in vitro growth
of avascular tumor spheroids.

2.1. Model Development

The 2D domain used in the model represents a layer of the extracellular matrix (ECM)
that contains a single tumor spheroid. This domain is discretized into a squared grid,
referred to as a lattice. Each element of the lattice (lattice point, LP) can be occupied by
a single cell or remain empty, representing the presence of ECM only. The entire grid
evolves through a series of discrete time steps, following a set of pre-defined rules. The
evolution of each cell is governed by the chemical stimuli in the LP occupied, and by
the state of neighboring LPs. In this model, the chemical stimuli are represented by the
concentration profile of a chemoattractant, specifically glucose. The model can be viewed
as a superposition of two identical square grids, where one represents the cellular layer
(see Section 2.1.3) and the other is used to calculate the glucose concentration field (see
Section 2.1.2). The model can be easily generalized to account for more chemical species, or
other types of stimuli, such as pressure fields, simply adding further layers.

In Figure 1a, a schematic representation (not in scale) of the cellular layer superimposed
onto the glucose layer of our model is presented. In the cellular layer, the LPs are colored
either in orange or blue, corresponding to the positions occupied or not by the cells. In
each LP, the glucose concentration is calculated and schematically represented in Figure 1a
in a color scale. As qualitatively reported in Figure 1a, the glucose concentration at the
grid margins is higher compared to the center of the domain. The resulting symmetrical
radial concentration gradient is achieved due to an isotropic source of glucose from each of
the four edges of the domain, and a consumption in the center where the cell spheroid is
located.
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Figure 1. Model schematic showing cellular and glucose field layers. (a) Typical initial configuration
of the cellular layer (upper grid) with cell-free LPs (dark blue) surrounding cell-occupied LPs
(orange). Not in scale. In the glucose layer (bottom grid) glucose concentration is calculated in a
pseudo-stationary condition in each lattice point (LP), according to Equation (6). In the scheme, a
typical concentration profile in a cell spheroid is reported using a color scale. (b) Eight possible
migration directions for a representative cell (located in P5); (c) schematic representation of the
migration direction probabilities (Ri values).

2.1.1. Domain Building

In this study, the domain considered for the model was a squared layer with dimen-
sions of 2 mm× 2 mm. This domain was discretized into a grid consisting of 100 × 100 LPs.
Each LP represented a cell with an approximate diameter of 20 µm. Two scenarios were
examined in this study, defined as isotropic and gradient. Both scenarios shared the same set
of parameters, except for the initial and boundary conditions in the glucose layer.

In the isotropic case, the initial glucose concentration was set to 5.5 mM over the entire
domain (initial condition), mimicking a physiological level of glucose in the ECM [34]; the
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concentration was fixed at the boundary of the domain (5.5 mM). As a result, the tumor
spheroid placed in the center of the domain was subjected to an isotropic chemical stimulus,
analogous to what was qualitatively reported in Figure 1a. In the gradient case, we defined
different boundary conditions at the left and right edges of the domain, imposing fixed
glucose concentrations of 8 [34,35] and 3 mM [36,37], respectively. As a consequence,
the initial condition was a linear concentration gradient

(
∂C(x,y)

∂x = 2.5 mM/m
)

, with an
average concentration (and at the centre of the domain) still equal to 5.5 mM, as in the
isotropic case. The initial concentration was constant along the y-axis.

The tumor spheroid was initially represented as an aggregate of a few cells, occupying
a sub-domain with a radius of 50 µm (21 cells) in the center of the lattice representing the
ECM, which, for the sake of simplicity, was assumed to be composed of collagen. Spheroid
growth was simulated for 48 h (simulated time). During the experiment, the spheroid
evolved while individual cells proliferated and migrated invading the ECM under the
chemotactic stimuli of glucose concentration.

2.1.2. Glucose Layer

In the model, glucose was defined as a function of the spatial variable x = (x,y) and time
t. The dynamics of the glucose concentration field C(x,t) in time and space is determined
by solving the classical Fickian reaction–diffusion equation:

∂C(x,t)
∂t = D • ∇2C(x, t)− k(x, t)

with C(x, 0) = C0
(1)

where D = 7 • 10−10m2/s [38] is the diffusion coefficient of glucose in the collagen-based
ECM and k(x,t) is the consumption rate of glucose by the cells. The computational cost
to obtain the numerical solution of Equation (1) can thus be high, given the considerable
disparity between the time scales of cell division (hours to days) and glucose diffusion
(seconds); cellular proliferation was treated as an adiabatic perturbation in the chemical
field [29]. Thus, using the adiabatic perturbation approximation, Equation (1) is approxi-
mated as a pseudo-stationary problem [39]:

0 = D • ∇2C(x, t)− k(x, t) (2)

which is numerically solved by the method of simultaneous over-relaxation with the
Chebyshev acceleration [29]. This method requires the discretization of the differential
equation in terms of finite differences, where y and x represent the row and column indices
of the elements on the grid, and ∆ is the size of a single LP (i.e., each of the two edges along
x and y):

(C x+1,y − Cx,y) +
(
Cx−1,y − Cx,y

)
+
(
Cx,y+1−Cx,y

)
+
(
Cx,y−1 − Cx,y

)
∆2 −

kx,y

D
= 0 (3)

where ∆ is the size of a single LP (in our case 20 µm). Equation (3) can be rearranged by
defining its residual ξx,y as:

ξx,y = Cx+1,y + Cx−1,y + Cx,y+1 + Cx,y−1 −
(

4 +
∆2kx,y

D

)
Cx,y (4)

and calculating an approximate solution for the concentration field in the subsequent
simulation time step t + dt as:

Ct+dt
x,y = Ct

x,y +
ξt

x,y(
4 + ∆2kx,y

D

) (5)
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Glucose consumption by cells (in LPs where cells are present) is calculated according
to a Michaelis–Menten kinetics:

kx,y = Vmax •
Cx,y

Km + Cx,y
• I(x, y) (6)

where Vmax = 0.05 mol/(m3•s) [40] is the maximum consumption rate, Km = 2 mol/m3 [40]
is the Michaelis–Menten constant, and I is a Boolean indicator that takes on the value of
1 or 0 for lattice points that may or may not contain a cell. Because, in our model, two
different cell phenotypes (active and starved, see subsequent section) able to consume
glucose can occupy LPs, the indicator I in Equation (6) is calculated as the sum of two Dirac
delta functions, one for each cell phenotype:

I(x, y) = δ(x− xact, y− yact) + δ(x− xstarv, y− ystarv)

where (xact, yact) and (xstar, ystarv) are the coordinates of the LPs where active and starving
cells are located. The use of the Dirac delta function allows for the representation of a
point-like object, in this case, the presence of a cell in a specific LP.

2.1.3. Cellular Layer and Cell Phenotypes

In the cellular layer of our model, the dynamics of individual cells were governed
by specific rules that governed cellular dynamics and phenotyping, including migration,
proliferation, starvation, and death.

Cell time evolution was governed by the nutrient condition. In the cellular layer,
three different cellular phenotypes were distinguished: active, starving (or quiescent), and
necrotic cells. The occurrence of various phenotypes depended on the cellular microenvi-
ronment and affected the metabolic activity of the cells. Two critical glucose concentrations
defined the threshold for starving and necrotic cells (Cstarv > Cnec). A cell was active if
the local glucose concentration Cx,y (i.e., concentration in the LP occupied) was higher
than both these predefined thresholds, Cx,y > Cstarv > Cnec. An active cell consumed glu-
cose according to Equation (6) and its metabolism included the possibility to migrate and
eventually duplicate upon the completion of its cell cycle.

If Cnec < Cx,y < Cstarv, the cells did not have enough nutrients to duplicate, and thus
starved. The cells still consumed residual glucose and could migrate, looking for more
nutrient-rich LPs. As time progressed, if Cx,y increased back to levels higher than Cstarv, a
starved cell could become active again, unless it remained in the starved state for too long
a period, going in apoptosis (see subsequent section).

If the nutrient concentration decreased further, Cx,y < Cnec, the cell underwent necrosis.
This process is irreversible, independent of any future change in the glucose concentration,
and from that time on, the necrotic cell cannot proliferate, migrate, or consume glucose.

2.1.4. Rules Governing Cellular Dynamics

The dynamic evolution of cells is highly dependent on nutrient availability, particularly
glucose concentration. In response to nutrient availability, cells can experience different
fates, including necrosis and apoptosis (cell death).

Each non-necrotic cell in the cellular layer can undergo migration or (if active) prolifer-
ation. The two mechanisms are regulated by two independent characteristic times, defined
as the migration time Tm and duplication time Td.

(a) Cell migration

As the simulation time progresses, at every time interval Tm, a cell can migrate.
The probability of the cell to migrate is affected by cell–cell interactions if the cell under
evaluation is attached to a cell cluster and not isolated (detached). If a migration event
occurs, the cell occupies one of its eight neighboring LPs, provided the target location is
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empty (Figure 1b); alternatively, if migration does not occur, the cell remains in the same
position until the subsequent time interval, Tm.

When a cell tries to migrate, it must overcome cell adhesion defined by a probability
Padh, defined as: {

Padh =
Natt

cell
K+Natt

cell
if attached

Padh = 0 if attached
(7)

where Natt
cell is the number of attached cells confined with the cell of interest (0 < Natt

cell < 8),
while K (K ∈ R) is a parameter quantifying the role of cell–cell adhesion. For K = 0, cell–cell
adhesion is supposed to be strong enough to inhibit the possibility of any movement to the
cells, while high values of K are related to a weak cell–cell interaction and the higher motility
of the cells. When an attached cell attempts to migrate, a random number (0 < σ < 1) is
generated and compared to Padh. If σ < Padh, the migration fails, until the subsequent time
interval, Tm. If σ > Padh, migration is allowed and a change in the cell adhesion state can
be induced; in our model, for simplicity, we assume that cell detachment is irreversible, i.e.,
once detached, a cell is not allowed to re-attach. If the cell of interest is already detached
(Padh = 0), it shows the typical behavior of isolated cells and is expected to migrate every
Tm.

If migration is allowed, the cell has to choose a motility direction, which is de-
fined according to a biased random walk approach. Each of the nine possible positions
Pi(i = 1, 2, . . . , 9) that a cell can take (Figure 1b), including the position already occupied
(P5), is associated with a numeric interval Ri = [ai−1, ai[ . The 9 intervals have different
sizes (|Ri| = ai − ai−1), are contiguous and non overlapping, and span the entire range 0–1

(0 < |Ri| < 1,
9
∑

i=1
|Ri| = 1) (Figure 1c). A further random number 0 ≤ λ ≤ 1 is generated

and compared to the Ri intervals; if λ ∈ Ri, the cell migrates towards direction Pi, if the
corresponding LP is empty. In particular, if λ ∈ R5, i.e., the LP already occupied by the
cell, the cell does not migrate. If the cell, upon arrival at its new location, is not contiguous
with any attached cells, it undergoes a transition into the detached state, provided it is not
already in that state.

To evaluate the range of Ri and define the probability of migration in each direction, a
score Si is evaluated for each of the 9 candidate positions as:

Si = eαAi (8)

where α ∈ R is a parameter describing the glucose chemotactic sensitivity of the cell, and
Ai is the local glucose specific gradient, defined as Ai = (Ci − C5)/C5. Si values are further
normalized si =

Si
9
∑

j=1
Sj

. Finally, the ranges Ri = [ai, ai+1] are calculated as ai = ∑i−1
j=1 sj

(Figure 1c).

(b) Cell proliferation

As the simulation time progresses, at every time interval Td, active cells proliferate,
generating a new daughter cell, identical to its progenitor. The new cell is randomly located
in one of the free positions among the eight LPs surrounding the progenitor. If no empty
spot is available, the new cell’s location is chosen by identifying the direction where the
minimum number of cells separate the progenitor from the edge of the cluster. All the
cells along the selected direction shift one position away from the progenitor cell, and
the new-born cell occupies the vacancy. It is worth mentioning our model considered the
memory of the history of each cell to consider the possible cell-dependent variables, such
as the random mutations of cell parameters, even if, in this work, this feature was not
used. In each time step, all the cells were considered the same, with the only differences
being among the active, starved, and necrotic phenotypes, while cell dynamic evolution
was dependent on the nutrient availability only. The code implemented in our model also
allowed for more complex interactions. Another simplification of our model was that only
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active cells attached to the spheroid could duplicate, while detached cells were expected to
enter irreversibly in a migration state, unless nutrient availability induced their deaths.

(c) Cell death

In our model, if a cell remained in starved state for a time longer than the apoptosis
time (Tapop), it could spontaneously die. This biological event, known as apoptosis [41],
is a mechanism of defense of the cells to prevent the propagation of lesions to the future
generation. In our model, apoptosis corresponded to the degradation of the cell, which was
dissolved in the ECM, and left the previously occupied LP empty. It is worth mentioning
that, in the case where the glucose concentration reduces further to values below Cnec,
while the cell is already in a starved state, the cell does not enter a state of apoptosis, but
evolves into a necrotic state, where it remains indefinitely. Necrotic cells, according to our
model, do not proliferate nor migrate, but continue indefinitely to occupy the same LP.
The flowchart of the whole cell dynamic algorithm is presented in Figure 2. The model
implementation of cell dynamics is also summarized as a sequence of operations in the
figure caption.
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from the glucose layer; if Cx,y < Cnec, the cell is classified as necrotic; if Cnec < Cx,y < Cstarv, the cell is
classified as starved; if Cx,y > Cstarv, the cell is classified as active. Starved cells after Tapop undergo
apoptosis and release the occupied LP. Active cells after Td proliferate. Active cells after Tm can
migrate, according to the migration rules.

2.1.5. Analysis

In this study, we focused on analyzing the effects of four key input parameters on the
dynamic evolution of cell spheroids in our model: Td, Tm, K, and α. By investigating the
influence of these parameters, we aimed to gain insights into the roles of cell adhesion,
proliferation, and migration in tumor growth and invasion processes.

In Table 1, the output variables computed in our model are briefly summarized and
they include the number of cells attached within the spheroid (Ncore

cell ), the number of

cells that migrated away from the spheroid (Nmig
cell ), and the total number of cells (NTOT

cell ).
Additionally, the percentages of adhered and migrated cells relative to the total number
were calculated as Ncore

% and Nmig
% , respectively. The ratio of adhered to migrated cells, φ,

was also determined by calculating the ratio of Ncore
cell /Nmig

cell , and considered as a measure of
the invasiveness of the tumor. The lower the φ value, the higher the tendency of the cancer
cells to invade and colonize the surrounding ECM.

Table 1. Model outputs.

Output Variable Formula Description

Ncore
cell Number of cells adhered to the spheroid

Nmig
cell

Number of cells that migrated away from the spheroid
NTOT

cell Ncore
cell + Nmig

cell
Total number of cells

Ncore
%

(
Ncore

cell /NTOT
cell

)
• 100 Percentage of cells adhered to the spheroid

Nmig
%

(
Nmig

cell /NTOT
cell

)
• 100 Percentage of cells that migrated away from the spheroid

φ Ncore
cell /Nmig

cell
Ratio of adhered cells to migrated cells

NN
cell Number of migrated cells located in the North quadrant

NS
cell Number of migrated cells located in the South quadrant

NE
cell Number of migrated cells located in the East quadrant

NW
cell Number of migrated cells located in the West quadrant

NN
%

(
NN

cell/Nmig
cell

)
• 100 Percentage of migrated cells located in the North quadrant

NS
%

(
NS

cell/Nmig
cell

)
• 100 Percentage of migrated cells located in the South quadrant

NE
%

(
NE

cell/Nmig
cell

)
• 100 Percentage of migrated cells located in the East quadrant

NW
%

(
NW

cell/Nmig
cell

)
• 100 Percentage of migrated cells located in the West quadrant

Furthermore, the spatial domain where the spheroid was located was divided into
four sectors according to the diagonals of the square domain and named as North (N),
South (S), East (E), and West (W) (Figure S1). The number of migrated cells located in each
of these four quadrants were counted and represented as NN

cell , NS
cell , NE

cell , and NW
cell . The

corresponding percentages of migrated cells in each quadrant relative to the total number
of migrated cells (Nmig

cell ) were also calculated.

2.2. Statistical Analysis

In this study, we employed statistical analysis techniques to achieve a greater un-
derstanding of our model by conducting both global and local sensitivity analysis. GSA
enabled us to assess the collective impact of perturbing all input parameters simultaneously,
providing insights into how variations in multiple parameters influenced the system as a
whole, while LSA allowed us to investigate the effects of perturbing individual parame-
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ters, providing detailed information on the sensitivity of the system to specific parameter
changes. This approach allowed us to identify the parameters that had a greater impact
on specific aspect of the model, and to identify the controlling mechanism that drove the
entire dynamic of the system. In our model, we investigated, in particular, the effect of
varying the input parameters related to cell duplication time, cell migration, chemotactic
motility, and cell–cell adhesion: Td, Tm, K, and α.

2.2.1. Average and Variance Convergence

Since stochastic events and the values of randomly generated numbers governed our
HCA model, each simulation run was unique, even if the values of the parameters, initial
conditions, and boundary conditions were kept the same. For this reason, the outcomes
of one single simulation for a given set of the four input parameters (Td, Tm, K, and α)
were not enough to guarantee the statistical significance of the results. Therefore, for
each set of input parameters, the simulation was replicated n times, defining the actual
outcomes as the arithmetic average of the n iteration. To identify a value of n reliable from
the statistical point of view, a convergence analysis was performed to study the effect of
the number of simulation replicates on the model outputs (see Supplementary Materials,
Figure S2). Convergence was verified on 4 different sets of model parameters, for the
gradient experimental condition, running up to 100 simulations for each set. For n ∼= 10, all
the model outcomes became constant and independent on n (data reported in Figure S2)
for each of the 4 sets of parameters investigated. Therefore, in the results presented below,
each simulation was reiterated and mediated for n = 40.

2.2.2. Global and Sensitivity Analyses

To explore the impact of simultaneous parameter perturbations on the key model out-
puts, a GSA was conducted, according to the protocols reported in the literature [42–44]. In
brief, Latin hypercube sampling (LHS) was used to sample the multidimensional parameter
space generating a set of 500 combinations of the 4 key parameters of interest (α ∈ [0, 30],
K ∈ [0, 4], Td ∈ [10, 60 h] [45,46], and Tm ∈ [10, 120 min] [47]).

As there is no literature available to guide the choice of ranges for α and K, the
selection was based on informed judgment and the biological context. For the α parameter,
which was an index of cell chemotaxis, the lower limit of 0 represented a situation where
cells did not sense concentration gradients, while the positive range reflected a scenario
where the cells were attracted to increasing glucose concentrations. The upper limit of 30
was chosen to provide a degree of certainty that most cells would localize in regions that
were rich in nutrients. For the K parameter, which was an index of the cell–cell adhesion
strength, the lower limit of 0 corresponded to the strongest cell adhesion that inhibited any
cell movement, while the upper limit of 4 was arbitrarily chosen to represent an adhesion
strength weak enough for all cells to detach from the spheroid in a time frame of 48 h.

For each of the 500 combinations of the parameters, a simulation of n = 10 iterations
was run. A multivariate linear regression analysis (MLRA) was performed using the built-
in MATLAB function mvregress on a whole set of samples to obtain the linear regression
coefficients for each parameter. The MLRA technique is based on the idea to express
the output of interest Yi as a linear function of the input parameters Xj, as shown in
Equation (9):

Yi = εi + β1X1 + β2X2 + β3X3 + . . . = εi + ∑
j

β jXj (9)

εi is an error term and β j is the regression coefficient of the input parameter. In our
case, there were four input parameters , Xj (Td, Tm, K, and α), and nine outputs, Yi, which

were Ncore
cell , Nmig

cell , NE
cell, NS

cell, NW
cell Ncore

% , NE
%, NS

%, and NW
% . This subset of outputs, Yi, was

chosen to be linearly independent, as required by the MLRA. The entire procedure (LHS
and MLRA) was repeated 10 times, on 10 different sets of 500 combinations of the input
parameter Xj value combinations. As result, four regression coefficient distributions were
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obtained. Each distribution (one for each input parameter, Xj) represented the measure of
the sensitivity index (SI) of the respective parameter.

Finally, a one-way ANOVA test was performed, followed by Tukey’s test (using the
built-in MATLAB functions anova1 and multcompare) on the SI distributions. This procedure
allowed us to rank the parameters according to their relative significance in affecting the
model outputs. The GSA was conducted for both the isotropic and gradient cases.

2.2.3. Local Sensitivity Analysis

Each input parameter was perturbed independently, while keeping the others constant
at their respective baseline values. The parameter ranges chosen were the following:
chemotactic index α [−30, 30] (basal value α = 6), cell–cell adhesion parameter K [0, 4]
(basal value K = 0.2), doubling time Td [10, 60 h] (basal value Td = 18 h), and migration time
Tm [10, 120 min] (basal value Tm = 30 min). For α, the range was set between −30 and 30 to
account for a chemo-repellent effect. The baseline value of 6 was arbitrarily chosen based
on trial and error in order to represent a moderate chemotactic force. For K, the range was
still between 0 and 4, with a baseline value of 0.2. Furthermore, the baseline value was
selected through trial and error to ensure a balanced level of adhesion strength. For each
parameter, 150 values were sampled uniformly and randomly within the specified range.
Also, in this case, the LSA was conducted for both the isotropic and gradient cases.

3. Results

In this section, we present the results of the numerical model simulations, which aim to
study the evolution of a tumor spheroid under two different glucose concentration profiles,
defined as isotopic and gradient. The results are organized into three main paragraphs.
In the first paragraph, we present the results of the simulation of the tumor spheroid’s
evolution assuming baseline values for the input parameters of the model. In the second
paragraph, we report the result of a GSA used to identify the key parameters that have the
most significant impact on the tumor’s evolution. Finally, in the third paragraph, we report
the results of an LSA of the parameters to further understand the relationship between the
parameters and tumor evolution.

3.1. Baseline Case

In this paragraph, we present the results of the simulation of the tumor spheroid’s
evolution imposing baseline values onto the four input parameters (i.e., α = 6, K = 0.2,
Td = 18 h, and Tm = 30 min) both under isotropic and gradient conditions.

Figure 3 displays snapshots of the temporal evolution of the cellular and glucose layers
at five time points (0, 12, 24, 36, and 48 h) for both isotropic (Figure 3a,b) and gradient
(Figure 3c,d) conditions. The cellular layer (Figure 3a,c) displays the extracellular matrix
(ECM) in dark blue, with the spheroid in the center with attached and detached cells,
respectively, reported in orange and light blue. The glucose layer (Figure 3b,d) displays the
concentration field of glucose in a color scale, ranging from blue (low concentration) to red
(high concentration).

The general behavior observed was that the main tumor mass grew over time and
consumed nutrients, inducing the formation of concentration gradients from the surround-
ing environment to the cell-populated area. This chemical stress stimulated cell motion
and led to the cells’ detachment and migration toward regions less populated where a
higher concentration of nutrients was available, in agreement with the predictions of the
diffusional instability theory [9], and its experimental verification [38]. The two conditions
investigated presented relevant differences. Under isotropic conditions, the cells moved
radially away from the core, without any apparent preferential direction (Figure 3a). Under
gradient conditions, as a consequence of the anisotropy in the stimulus, the detached cells
tended to travel preferentially toward the source of nutrients at the left edge of the domain
(Figure 3c).
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Figure 3. Baseline numerical solution. Snapshots of cellular layer (a,c) and glucose layer (b,d) at 0, 12,
24, 36, and 48 h following seeding of cancerous cells in the center of the simulation domain at 0 h,
under isotropic (a,b) and gradient (c,d) conditions. Cellular layers display cells attached to the core
(orange) and cells detached from the core (light blue), which migrate to the collagen matrix (dark
blue).

It is worth mentioning that, in the base value conditions we investigated, given the
limited size of the spheroid and the short time frame simulated, the glucose concentration
in the nutrient layer, determined by diffusion and consumption, always remained higher
than Cstarv = 0.1 mol/m3. Therefore, all cells remained proliferative, and neither a necrotic
core nor a starvation rim were formed in the cellular layer. When running a simulation on
a larger domain (5 mm × 5 mm) and for a longer time (20 days), the appearance of necrotic
cells was observed, as expected (the results are reported in the Supplementary Figure S3).

To quantitatively investigate the observed phenomenon and evaluate the numerical
measures of tumor evolution over time, we calculated the total number of cells

(
NTOT

cell
)

and the number of cells that adhered to the spheroid
(

Ncore
cell
)

as a measure of tumor

growth. The ratio of Ncore
cell to cells that migrated away from the spheroid Nmig

cell , defined as ∅,
allowed us to compare the proliferation and migration activity, and it was a measure of the
invasiveness of the tumour. We independently counted the number of cells that migrated
in the four sectors (Figure S1)

(
NN

cell , NS
cell , NW

cell , and NE
cell
)

and the respective percentages(
NN

% , NS
%, NW

% , and NE
%
)
. The comparison of these four values was a measurement of

anisotropy in cancer invasion and a directional response to chemotactic stimuli (diffusional
instability).

Figure 4 presents the time-course plots of isotropic and gradient conditions (Figure 4a–d
and e–g, in the top and bottom parts of the figure, respectively). The solid lines report the
average output (n = 40) values and the ribbons represent the associated standard errors.
The orange data report the number (n = 40) of cells attached to the spheroid

(
Ncore

cell
)
, while

the light-blue data represent detached cells
(

Nmig
cell

)
. Figure 4a,e report the total cell count

over time, while the graphs in Figure 4b,f report the percentages of the core and migrating
cells. Figure 4c,g shows the time-course plot of ratio φ.
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Figure 4. Quantification of baseline solution. Results of the simulation assuming basal conditions
with input parameters α = 6; K = 0.2, Td = 18 h, Tm = 30 min in isotropic (a–d) and gradient cases
(e–h); (a,e) core (orange) and migrated cell numbers over time (light blue); (b,f) core (orange) and
migrated cell percentages (light blue); (c,g) migrated cell number ratio φ; (d,h) percentage of cells
migrated in the four directions: North (light blue), East (yellow), South (orange), and West (purple)
over time. The solid lines represent the means (n = 40) and the ribbons represents the standard errors.

The results show that the tumor core (Ncore
cell ) has an initial rapid growth rate over time,

with an exponential trend for the first 24–36 h; following this initial rapid expansion, Ncore
cell

continues to grow almost linearly (Figure 4a,e). The number of cells detaching from the
main body and migrating ( Nmig

cell

)
increases linearly over time, starting from the initial

value of 0, for the entire temporal window investigated (Figure 4a,e). Accordingly, the
percentage of migrated cells ( Nmig

%

)
increases while the percentage of adhering cells ( Ncore

%
)

decreases as time progresses. After an initial period of instability, both the percentages
of adherent and migrated cells reach a steady-state plateau, with the core cells ( Ncore

%
)

representing ~80% of the total number of cells in the domain (Figure 4b,f). This steady state
can be easily seen by the constant value of the ratio between the numbers of adherent and
migrated cells (φ = 4) after 24 h (Figure 4c,g). This result is due to the fact that both the
size of the spheroid and the number of migrating cells increase linearly over time, with
different rates, for long periods of time. The system, in other terms, reaches a steady state
where the generation of cells due to proliferation and the flow of cells leaving the spheroid
are balanced.

The abovementioned behavior is comparable in terms of total cells in the core and
migrating cells, among the two conditions investigated here, i.e., isotropic and gradient,
while a relevant difference can be observed in the direction of migration of the invading
cells.

Figure 4d,h report the percentages of migrated cells in the four different directions,
defined according to the source of nutrients (see Figure S1). In isotropic conditions, the
detached cells do not show any preferential migratory direction and they uniformly dis-
tribute into the four sectors of the domain (N N

%
∼= NE

%
∼= NS

%
∼= NW

% = 25%) (Figure 4d).
On the other hand, in the gradient case, a significant difference (p<0.005) in the percentage
of detached cells that migrate in the four directions is observed. As shown in Figure 4h, the
nutrient gradient induces the cells to move in a biased random walkway, such that a higher
percentage of the population migrates towards the West (higher glucose concentration). At
the end of the simulation (t = 48 h) under anisotropic conditions, 42 ± 12% of cells migrate
towards the direction of an increasing concentration gradient, and only 13 ± 8% of the
cells move against the gradient, heading towards the East. The remaining migrating cells
distribute almost uniformly between the remaining North and South sectors, with 21 ± 8%
and 24 ± 10% of cells present in each sector, respectively.
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3.2. Global and Sensitivity Analysis (GSA)

To perform the analysis, we estimated the SI values of each input parameter (Xj) and
ranked them according to their importance.

In Figure 5, the regression coefficients obtained from the MLRA for the isotropic and
gradient cases are plotted. Each bar represents the regression coefficient mean, which is a
measure of the SI parameter. The higher the SI, the greater the sensitivity of the parameter
in affecting a given model output. To determine the ranking of the relative sensitivity of the
model parameters, we conducted a one-way ANOVA test and post hoc analysis (Tukey’s
test) after checking that the regression coefficients followed a normal distribution, a crucial
requirement for the two tests. The bars marked with an asterisk indicated the statistically
significant parameters for each model output, obtained from the MLRA.
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Figure 5. MLRA regression coefficients (SI) in isotropic (a–i) and gradient (j–r) cases. The columns
refer to the key parameters α, K, Td, and Tm. The rows refer to the outputs of interest: (a,j) core
cell number; (b,k) migrated cell number; (c,l) number of cells migrating East; (d,m) number of cells
migrating South; (e,n) number of cells migrating West; (f,o) core cell percentage; (g,p) percentage
of cells migrating East; (h,q) percentage of cells migrating South; (i,r) percentage of cells migrating
West. The asterisk indicates the significance parameters (p < 0.05) for the related outputs.
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From the GSA, we observed that Ncore
cell was independent on α (an analogous result can

be obtained by measuring the core area), but it was significantly affected by Td (Figure 5a,j).
The number of migrated cells Nmig

cell independent on α and Tm under both isotropic and
gradient conditions (see Figure 5b,k). Looking at the migration direction-related outputs
NE

cell, NS
cell, NW

cell, NE
%, NS

%, and NW
% , relevant differences were visible when comparing

the two conditions investigated. In the gradient case, all the migration direction-related
outputs depended on all four parameters and, in particular, on α (Figure 5l–r). This was
expected since α was related to chemotaxis. On the other hand, in the isotropic case, NE

cell,
NS

cell, and NW
cell were only dependent on Td and K (Figure 5c–e), with the former being the

most relevant, while NE
%, NS

%, and NW
% were only affected by Tm (Figure 5g–i). From these

observations, we can see that α only influences the outputs related to the directionality
of cell migration, solely in the presence of a gradient, while it has no effect in isotropic
conditions; parameters K and Td affect both the size of the spheroid and the number of cells
detaching from it, in both isotropic and gradient conditions; and Tm has a reduced effect
on spheroid growth compared to K and Td, but it significantly influences the directionality
of cell migration, only in the presence of a gradient.

3.3. Local Sensitivity Analysis (LSA)

In order to define the empirical functional relationship between the parameters and
model outputs, we conducted an LSA. The results of the LSA provide a greater insight into
the non-linear relationships between the parameters and tumor evolution, and highlight the
regions of the parameter space where the response variables are most sensitive to changes.

We analyzed the effects of the key input parameters α, K, Td, and Tm on all model
outputs (see Table 1). However, for the sake of brevity, we limited our discussion to only
the most significant input–output relationships suggested by the results we obtained from
the GSA.

3.3.1. Chemotaxis Sensitivity Index α

As described in the Materials and Methods Section, parameter α was an indicator
of cell sensitivity to chemical stimuli, represented by glucose in this work. The higher
the absolute value of α, the greater the tendency of the cells to migrate following a given
concentration gradient.

Figure 6a,b depict the fraction of migrating cells invading from the spheroid along
the four sectors (North, South, West, and East; see Figure S1) of the domain, which are
subjected to different chemical stimuli, due to the geometry of our domain. The cells were
counted after 48 h of a real-time simulation and reported on the y-axis as the fraction of
cells in each direction; the x-axis showed the α values. The solid lines represent the mean
fraction of cells, while the ribbons represent the associated standard deviations calculated
for the n = 40 iterations (see Section 2.2.1).

Under isotropic conditions (Figure 6a), the fraction of cells migrating in the four sectors
was independent on the α parameter, with the cells uniformly distributed throughout the
entire domain (NN

%
∼= NE

%
∼= NS

%
∼= NW

%
∼= 25%) in agreement with the isotropic stimulus

imposed.
In contrast, under anisotropic conditions (Figure 6b), the distribution of migrating

cells in the four sectors strongly depended on α. We also investigated the negative values
of α to study the potential impact of a chemorepellent (such as a catabolite or toxic drug)
on the migration of cancerous cells. Three cases are distinguishable in the graph: α = 0,
α > 0, and α < 0.

For α = 0, the cells were insensitive to the concentration gradient and the sys-
tem restored a pseudo-isotropic condition, with migrating cells uniformly distributed
(NN

%
∼= NE

%
∼= NS

%
∼= NW

%
∼= 25%), as in the case of Figure 6a.
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Results of LSA perturbing input parameter 𝑇d: (e) core cell numbers at 12 (green), 24 (blue), 36 

Figure 6. Most relevant LSA results according to the GSA. Results of LSA perturbing input parameter
α: (a) percentages of cells migrating North (light blue), East (yellow), South (orange), and West
(purple) at 48 h in the isotropic case; (b) percentages of cells migrating North (light blue), East
(yellow), South (orange), and West (purple) at 48 h in the gradient case. Results of LSA perturbing
input parameter K: (c) core cell numbers at 12 (green), 24 (blue), 36 (yellow), and 48 h (red) in gradient
case; (d) migrating cell numbers at 12 (green), 24 (blue), 36 (yellow), and 48 h (red) in gradient case.
Results of LSA perturbing input parameter Td: (e) core cell numbers at 12 (green), 24 (blue), 36
(yellow), and 48 h (red); (f) migrating cell numbers at 12 (green), 24 (blue), 36 (yellow), and 48 h
(red). Results of LSA perturbing input parameter Tm: (g) core percentages at 12 (green), 24 (blue), 36
(yellow), and 48 h (red); (h) percentages of cells migrating North (light blue), East (yellow), South
(orange), and West (purple) at 48 h. The solid lines represent the means (n = 40) and the ribbons
represent the standard deviations.
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For α > 0, the cells showed a preferential migration towards the source of the chemoat-
tractant, which was West in our domain. As α increased, NW

% (purple) increased linearly to
reach saturation levels for high values of α (α > 20), with the fraction of cells plateauing
at around 85%. The fraction of cells in the remaining sectors decreased accordingly. It
can be seen that the NN

% (light blue) and NS
% (orange) curves almost overlap, due to the

North/South symmetry of our setup, while the East direction (NE
%, yellow) decreases more

rapidly, being opposite to the source of chemoattractant.
A completely inverted situation was observed for α < 0, where the cells moved away

from the source of the chemical and showed preferential migration towards decreasing
gradients, with the directionalities of the cells inverted. The trends of the curves associated
with cells migrating towards the west and East were inverted, but the overall trend of the
chart was symmetrical.

3.3.2. Cell–Cell Adhesion Parameter K

As described in the Materials and Methods Section, parameter K models cell–cell
adhesion; the higher the value of K, the greater the tendency of an attached cell to move
to one of the adjacent positions. This implies a greater chance that a cell can detach from
the spheroid and invade the surrounding environment. Low values of K are related to a
limited tendency to invade.

As described in the GSA, parameter K mostly affected the number of cells connected
within the spheroid (Ncore

cell ), the number of detached cells that migrated away (Nmig
cell ),

and their percentages (Ncore
% and Nmig

% ). The general result, as expected, was that Ncore
%

monotonically decreased as time progressed and K increased.
The trends of Ncore

cell and Nmig
cell were evaluated at four different time points (12, 24, 36,

and 48 h) as a function of parameter K, and are shown in Figure 6c,d, respectively. We
reported the data only for the gradient case; the results obtained were independent of the
concentration field, as confirmed by the GSA. As in the previous paragraph, solid lines
represent the mean values of the cell numbers, while ribbons represent the associated
standard deviations.

For simplicity, we distinguished four scenarios: K = 0, 0 < K < 0.5, K = 0.5, and
K > 0.5. When K = 0, cell adhesion is indissoluble and, thus, Ncore

cell monotonically increases

over time, while Nmig
cell remains at 0. For values of 0 < K < 0.5, cell adhesion is still quite

strong and Ncore
cell can still increase over time, although at a decreasing rate as K increases.

This growth is slowed down by the progressive detachment of migratory cells, which
increases over time and as K increases.

For the critical value of K = 0.5, a steady-state equilibrium was established (Figure 6c,
inset). The number of cells adhering to the spheroid remained constant over time and was
approximately equal to the initial number of cells (21 cells, t = 0). On the other hand, the
number of migratory cells evaluated at 48 h (red) reached its absolute maximum for this
value of K. This indicates that there is a balance between the “flow” of cells leaving the
tumor and the generation of new cells within the tumor.

For values of K > 0.5, cell adhesion weakened further, and the generation of new cells
could not compensate for the outflow of migratory cells. The number of adhering cells
monotonically decreased over time until the spheroid completely disintegrated at 48 h.
Similarly, Nmig

cell decreased from the peak reached for K = 0.5 until it reached a plateau, as
there was no longer a tumor core able to generate new cells (Figure 6d). The higher the
value of K (above 1), the sooner the tumor core disappears.

3.3.3. Doubling Time Td

Based on the GSA results, Td mostly impacts the number of adherents (N core
cell
)

and

migrating cells (Nmig
cell ). Figure 6e,f display the trends of Ncore

cell and Nmig
cell , evaluated at four

different time points (12, 24, 36, and 48 h) as Td variates. Again, we present the results only
for the gradient case. Upon increasing Td, the Ncore

cell count (Figure 6e) rapidly decreases,
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and a similar, but less marked, trend is followed by Nmig
cell (Figure 6f), reconfirming the

results of the GSA.

3.3.4. Migration Time Tm

Once a cell is detached, Tm represents the time required by the cell to travel a distance
equal to its diameter, thereby indicating the motility of cells. Alternatively, when a cell is
attached, its capacity to move is limited, and Tm represents the inverse of the frequency at
which the attached cell attempts to move.

As described in the GSA, parameter Tm mostly affects the fraction of cells comprising
the spheroid (Ncore

% ) both in isotropic and anisotropic cases, and only in the gradient case is
the fraction of migrating cells located in the four sectors (NN

% , NE
%, NS

%, NW
% ).

Figure 6g depicts Ncore
% evaluated at four time points (12, 24, 36, and 48 h) in gradient

conditions. Decreasing Tm, the core reduces in size because a larger number of cells migrate
toward the surroundings (Figure 6g) due to an increased tendency of migration.

Figure 6h shows NN
% (light blue), NS

%(orange), NW
% (purple), and NE

%(yellow) evaluated
at 48 h as a function of Tm. In the gradient case, the effect of Tm is observed by an
increase in the cell population percentage migrating West (a higher glucose concentration)
when Tm decreases (Figure 6h). However, when Tm becomes sufficiently large, the four
percentages (NN

% , NS
%, NE

%, NW
% ) seem to converge to a ~25% value, which can be attributed

to the reduced frequency of all cells to migrate.

4. Discussion

The HCA model developed in this study successfully simulated the temporal and
spatial evolutions of a tumor spheroid under different chemical stimuli. The model incorpo-
rated the key biological mechanisms driving tumor progression, such as cell proliferation,
migration, apoptosis, and interactions, with the extracellular matrix and neighboring cells.
In this study, the growth and invasiveness of an avascular tumor spheroid were simulated
in two different chemical fields, isotropic and anisotropic, for 48 h to study its evolution
over time. For a fixed set of input parameters, and independent from the type of chemical
field, the spheroid core area increased over time, and a fraction of cells detached and in-
vaded the tumor’s surroundings. The effect of an external glucose gradient was to convert
cell migration from a random walk to a chemotaxis-driven biased random walk.

Through GSA and LSA, we were able to understand how the selected input parameters
affected the system, including how the parameters interacted with each other and how
they acted individually. The GSA revealed that the impact of α was negligible in isotropic
conditions but was a fundamental factor in governing tumor invasion under the gradient
case; parameters Td and K were critical for the evolution of the core area and the number
of cells detaching from the spheroid core, in both chemical fields, while Tm had a similar
but less effective influence on tumor growth and invasiveness.

The LSA quantitatively assessed the effect of parameter perturbation, showing that
the value of α influenced the migration direction of cells towards or away from a positive
gradient, while α equal to zero resulted in cells becoming insensitive to the gradient. The
parameter K, representing cell–cell adhesion, played a crucial role in tumor evolution, with
K = 0.5 marking the border between scenarios where adhesion promoted proliferation, or
the flux of migrating cells dissolved the tumor over time. Perturbing Td led to a drastic
decrease in the numbers of core and invading cells, while perturbing Tm had the opposite
effect, accelerating tumor growth.

Despite its simplicity, the HCA model proved to be highly effective in simulating
tumor growth and invasion over time, capturing essential features of tumor biology and
reproducing realistic spatiotemporal patterns under different experimental conditions. The
model’s versatility allowed for easy modification and adaptation to include additional
biological, chemical, and physical processes relevant to tumor growth and invasion. The
model could be calibrated and validated using the experimental data obtained from in vitro
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or in vivo assays, thus providing a more accurate representation of the biological system
under investigation.

Moreover, the model could be used to design and predict the outcomes of new ex-
periment setups, thereby reducing the need for extensive and costly experiments. By
incorporating new biological parameters extracted from simple and rapid experiments, the
model could simulate more complex scenarios beyond the limitations of laboratory-based
assays. Future improvements can involve the integration of complex signaling pathways,
immune responses, hypoxia, nutrient transport, and mechanical stresses, such as oncotic
pressure or laminar flows affecting the tumor surface.

In conclusion, the HCA model represents a promising tool for investigating the mech-
anisms of tumor growth and invasion, as well as for guiding the design and assessment of
novel therapeutic strategies. Its ability to capture the complexity of tumor biology and its
adaptability to various experimental settings makes it a valuable asset for cancer research.

5. Conclusions

This work introduced a model based on the HCA (hybrid cellular automaton) ap-
proach, capable of simulating tumor growth and cancer cell invasiveness. The model’s
performance was tested, simulating the evolution of a 3D tumoral model, spheroid, at the
early stages of its development, and under isotropic and anisotropic glucose concentration
fields. Furthermore, this study investigated how perturbations in selected cellular parame-
ters, including chemotactic sensitivity, cellular adhesion, doubling time, and cell motility,
affected tumor dynamics.

These parameters were ranked according to their influence on model outcomes by
performing a GSA. The results demonstrate that the automata-based model accurately
describes the initial exponential-like growth of tumors and depicts cells adapting their
migration mechanisms in response to external chemical stimuli. The chemotactic index was
identified as crucial for cellular migration in the presence of a chemoattractant gradient, but
it was irrelevant for the tumor development in isotropic chemical fields. Cellular adhesion
plays an essential role in tumor growth and metastasis. The study revealed an optimal value
of parameter K, representing cellular adhesion, where the tumor produced the highest
number of migrating cells while maintaining a constant size over time. Additionally,
the investigation highlighted that a hypothetical cancer cell line characterized by high
motility and a short doubling time generated cancers with rapid growth outcomes and
high invasiveness.

To ascertain the reliability and utility of our model, its validation through in vitro
experiments was essential. For this reason, future developments of this research should
primarily focus on validating the model with the empirical data derived from in vitro tumor
spheroid growth studies. This crucial step is intended to refine the model’s practicality and
expand our comprehension of tumor dynamics. Specifically, in our forthcoming studies,
we will analyze the morphological responses of spheroids, focusing on the changes in area
and cell detachment when subjected to chemical stimuli. This will include an in-depth
investigation of various cell lines, each with unique attributes, such as doubling times,
motility values, and cell–cell adhesion forces. These experimental validations will utilize
the chemotaxis experiments previously conducted by our research group [38], providing a
standardized and replicable framework for our investigations. Supporting this, the prelimi-
nary data presented in the Supplementary Video S1 demonstrate a promising qualitative
concordance between the in vitro and in silico outcomes. This alignment pertains to both
the morphological response and cell behavior over time, providing a qualitative compari-
son of the response to the chemoattractant. These experimental validations are anticipated
to enhance the model’s accuracy and its capacity to elucidate complex aspects of tumor
behavior.
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division into four sectors of the cellular layer; Figure S2: Convergence analysis; Figure S3: Simulating
advanced tumor morphology and temporal changes under isotropic conditions. Video S1: A qualita-
tive comparison of the morphological response to the chemoattractant in both in silico and in vitro
experiments, left and right, respectively.
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