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Abstract: Dynamics of arable and pastoral farming systems in Scotland over the period 1867–2020 are
documented using time series analysis methods, including for nonlinear dynamical systems. Results
show arable and pastoral farming, at a national scale, are dynamic over a range of timescales, with
medium- and short-term dynamics associated with endogenous system forces and exogenous factors,
respectively. Medium-term dynamics provide evidence of endogenous systems-level feedbacks
between farming sectors responding to change in world and national cereal prices as an economic
driver, and act to dampen impacts of exogenous shocks and events (weather, disease). Regime shifts
are identified in national cereal prices. Results show change and dynamics as emergent properties of
system interactions. Changes in dynamics and strength of endogenous dampening over the duration
of the study are associated with dynamical changes from major governmental policy decisions that
altered the boundary conditions for interdependencies of arable and pastoral farming.

Keywords: land system dynamics; emergent properties; time series analysis; nonlinear dynamics;
Recurrence Plots; Scotland

1. Introduction

Much research in land systems science has focused on process–response (cause and
effect) relationships of changes in land use and land cover with a variety of drivers of
change as causal factors [1–4]. Many of these studies have focused on dynamics defined
by change resulting from either land conversion (changes in type of cover and/or use) or
land modification (land use intensification, land degradation, land abandonment) using
snapshots in time and simple differencing between dates to elucidate patterns in observed
changes. Observed changes are hypothesized to be caused by a variety of drivers and
processes. In a whole systems context, however, dynamics are the set of behaviours
exhibited as a result of the interactions of the elements that define land as a system [5].
The nature of land systems as complex systems with dynamic and emergent behaviours
is recognized in, for example, land use transitions and the causal roles of endogenous
forces and exogenous factors [6] and in calls for identification of regime shifts [7,8]. To
date, however, despite recognizing land systems as inherently coupled systems, relatively
few studies of land systems beyond agent-based models [9] have attempted to interpret
dynamics as a function of the structures, interactions, and feedback mechanisms that
define land as a coupled system. Additionally, as Turner and colleagues note, despite wide
recognition of land as an exemplar of coupled human-environment systems [10], these
explanations typically invoke one of the human or environment subsystem explanations in
more detail, and few are rooted in the interactions of human and environment systems [1].

There are three main limitations on the current description and understanding of
dynamics in land systems. First, the short time spans of studies provide a limited set
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of system states recording change, which can allow changes to be mis-characterized [8].
Second, drivers are treated as constants over the short time span of interest, with little
attempt to describe change in drivers over time or feedbacks from the system to the drivers;
this can preclude identification of regime shifts and other dynamic system responses,
particularly if change occurs as a punctuated equilibrium process [7,8] and may lead to
misidentification of mechanisms generating change [11]. Third, in the context of whole
systems approaches to land, land systems are not only dynamic, but also dynamical, in
that their state can change over time even in the absence of changes in use or cover. This
has implications for studies of process–response relationships in land change, since change
may be a result of dynamical responses that are endogenous to the land system, in addition
to being caused by drivers and other exogenous forcing variables.

The dynamic and dynamical nature of land systems are central to understanding land
as a complex, coupled human-environment system. Land conversion and modification are
undoubtedly important, and central to the scientific and applied needs for understanding
land system change and its impacts [12–14]; understanding dynamics and dynamical
changes in land systems is essential for describing functional behaviours of the whole
land system. In dynamic and dynamical systems with many feedbacks and interactions
the linear and sequential distinction between cause and effect becomes weak since each
variable is both a cause and an effect. In this context, explanation of dynamics is based on
system functioning via interaction of structures through uncovering endogenous forces
and measurement of system-level responses to exogenous factors. This is related to the
problem of equifinality, in which there are multiple plausible explanations for an outcome, a
phenomenon well known in environmental science [15], and with an importance recognized
for policy advice and developing models for socio-ecological systems [9].

Description of the dynamics of a system requires data that describe the structures,
funds, flows (inputs, outputs, changes in funds) over time, as well as frameworks that
organize the funds, flows and feedbacks into a system, and mathematical and other
kinds of models that encapsulate functional dynamics of the system. Erb et al., and
Kuemmerle et al., describe potential inputs, outputs, and structures for use to describe
land intensity [16,17], responding to knowledge gaps that limit understanding and charac-
terization of dynamics and patterns of land use intensity, but their conceptual framing is
limited in description of the structure of the land system itself, and no attempt is made to
incorporate feedbacks or land system funds beyond the biophysical structures they identify.
Rahim et al., (2017) describe a causal loop model for analysis of supply and demand in
Malaysian rice production as a complex system but have yet to quantify the model [18].
Elements defining land systems include state descriptors and system drivers, such as the
structures and funds that comprise the system, but also the interactions of these elements,
associated with connections between structures and funds through flows and feedbacks.

The aim of this study is to analyse long-, medium- and short-term patterns in land
system changes, to understand the dynamics associated with interaction of systems at these
different scales. Few studies have attempted formally to characterize multi-scale dynamics
or analyse long time-series of land system data. The study also demonstrates some of the
techniques available for this type of analysis, using a case study for Scotland.

This paper analyses dynamics of farming systems in Scotland, using data describing
farming at a national (Scotland-wide) scale from the last third of the 19th century until
2020. The record of farming in Scotland over this period is well known from studies
contemporary with the changes observed (see, for example, annual publications of the
Transactions of the Royal Highland and Agricultural Society (1790–1969) and Scottish
Agricultural Economics (1950–1960), and reviews and audits of the history [19–25]. The
difference here is that the analysis develops from the perspective of farming as a land
system and spans the full period from 1867 to 2020 within a single quantitative analysis.
Time series analysis, including methods for nonlinear dynamical systems, is used (i) to
examine dynamics of the system over the full timespan and (ii) to characterize internal
feedbacks and coupling of farming as a system at the national scale. These analyses reveal
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some system characteristics and behaviours associated with the evolution of the system
itself. The results also identify regime shifts using analytical and graphical tools for study
of nonlinear dynamical systems.

Analysis is based on the contention that the time series of data recording the history
of land use for farming in Scotland from 1867 to 2020 contain a record of the impacts of
all long-, medium-, and short-term dynamics associated with both endogenous system
forces and exogenous factors that have influenced the land system. Just as spatial patterns
embed all the processes, from many spatial and temporal scales, that are involved in the
production of landscape patterns (Dobson, 1990, 1992), so the temporal record of land
systems contains an embedded record of both the effects of processes acting over long-,
medium- and short- timescales and system responses. Because of this, the temporal scale
at which a land system is studied should be made explicit, as the factors needed for
explanation of changes and dynamics will vary with the time scale of interest. The case
study shows that arable and pastoral farming, at a national scale, are dynamic over a
range of timescales, but that throughout much of the timespan of the study the system
has maintained a pattern of changes consistent with endogenous systems-level feedbacks
between sectors that act to dampen the impacts of exogenous drivers. Changes in these
system dynamics over the timespan are associated with policy changes that altered the
interaction of arable and pastoral farming.

The rest of this paper is structured as follows:

1. Terminology, assumptions, and organizing principles for the data and analyses pre-
sented are defined. These represent pre-analytical decisions and definitions that
prescribe the purpose of analyses and the specific hypotheses investigated.

2. Methods for addressing dynamics in time series data, including for nonlinear dynam-
ics are outlined.

3. The Data section describes the detailed time series of data used; these define dimen-
sions of farming land systems for Scotland as the basis for describing dynamics. The
data represent funds, flows, and drivers of the land system, and data summarize as-
pects of the history of farming. The data are used for decomposition of hierarchically
structured, time-related changes in both (a) the selected drivers of system dynamics
and (b) system funds, structures, and feedbacks.

4. The Results section

(a) reports the results of analysis of time series data to identify trends, cycles,
and random elements at long-, medium-, and short timescales. The short-
term component in the data is treated mathematically and operationally as
statistical noise, but in practice reflects the impacts of real exogenous shocks,
and other perturbations at specific times during the period of interest. This
analysis shows the capacity of time series analyses to reveal the variety of
long-, medium-, and short-term patterns recorded within the data, and ways
in which system variables interact when viewed over various time spans.

(b) analyses time series data for cereal prices, area planted with cereals, and num-
ber of sheep using methods from nonlinear dynamics. This analysis is based
on understanding the interactions of arable and pastoral farming at a national
scale in Scotland over the 19th and 20th Century. Arable and pastoral farm-
ing typically are treated as separate land uses and receive separate economic
treatment as relatively distinct farming sectors in contemporary studies; this
reflects increasing specialization in farming associated with intensification
and modernization [26], and land cover and land management differences.
However, this separation has not always been the case, and the interaction of
pastoral and arable farming has long been widely recognized [21,27–29].

5. Discussion about the results and implications and opportunities of the approaches
used for study of dynamics in land systems.



Land 2021, 10, 1172 4 of 27

2. Terminology, Assumptions, and Organization: Pre-Analytical Definitions

In the discussion that follows, land system implicitly refers to a coupled human-
environment system. The description of the system and definition of system elements are
central to analysis; this forms a necessary and fundamental pre-analytical stage for subse-
quent data collection and analysis. An underpinning conceptual model for land systems
has been described elsewhere [5], using funds and flows to define the system structures
and their interactions. This conceptual representation of the land system describes a series
of sub-systems that are associated with both driving factors, that operate as system pro-
cesses, and different types of capital (human, social, financial, physical/manufactured, and
natural). A suite of human and social factors that influence individual and group decisions
and decision-making is also included within a decision-making subsystem. Funds are
linked by flows, as fluxes and changes in funds. The conceptual model in Aspinall and
Staiano (2017) does not quantify the funds and flows, although it does indicate some of
the time scales over which the fluxes and changes in the system elements operate, from
days, months, and seasons to years and decades, and longer. The model has been used to
underpin an accounting approach for analysis of supply of provisioning services and the
dynamics of agricultural land use in Scotland between 1940 and 2016 [26].

The timespan considered is 154 years (1867 to 2020, inclusive). The time step is 1 year.
The geographic unit used is the aggregate national land use in arable (cereals) and pastoral
(sheep) farming in Scotland. In the example here we are primarily interested in exploring
the nature of change in the land system and in the ways in which structural measures of
the system as well as drivers have changed over the long-, medium-, and short-term, using
data for the period from the last third of the 19th Century to 2020. The long run and annual
time step allow us to measure long-, medium-, and short-term patterns within these data.

Hierarchy theory is helpful in conceptual organization of hypotheses about scale
(Wu, 2013), including the interaction of different time scales, and the use of time series
analyses. Allen and Starr (1982) define hierarchies as a process-oriented framework, and
Allen (2009) lists some general principles for ordering levels in ecological hierarchies.
These include:

1. higher levels operate more slowly and at a lower frequency than lower levels;
2. higher levels exert constraints on lower levels;
3. higher levels function as a context to lower levels.

This hierarchical organization of process embeds and defines relationships between
processes at different levels, based on timescale of processes from fast to slow (short
to long), with dynamics of slower processes at higher levels appearing as a constant
at lower levels, and dynamics of faster processes at lower levels appearing as noise at
higher levels. Hierarchy theory provides, therefore, a coherent conceptual architecture
for addressing complexity, ordering levels by rate of processes, and defining coupling
of system components across and within timescales such that they can be decomposed
for description, analysis, and understanding (Wu, 2013). Nonlinear dynamics also offers
potential, particularly in the interaction of fast and slow processes [30] and understanding
the consequences of managing resources based on one over the other [31], leading to
fragility in system resilience [32]. A hierarchical structure of process dynamics from fast
to slow is embedded in the conceptualization and analysis of the system dynamics for
farming used to inform interpretation.

3. Methods for Addressing Dynamics

Dynamics are changes or motion in systems that reflect the nature and interactions of
system elements, including system states, feedbacks, and evolution. As such, dynamics
are characterized in temporal changes in system drivers and states and in the operation
of interactions between system elements. Techniques from time series analysis and for
analysis of nonlinear dynamical systems are used to describe, extract, and understand
observed dynamical behaviours and patterns from noisy time series. This section outlines
the methods used in the context of some of the time-varying characteristics of system funds
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and drivers; the methods are then used to describe and understand the dynamics of arable
and pastoral system behaviours.

Dynamics are examined using two sets of methods:

(i) Time series analysis, including lag plots and decomposition of time series into long-,
medium-, and short-term components

(ii) Recurrence plots and Recurrence Quantification Analysis.

3.1. Time Series Analysis

Time series analysis is described in a number of standard texts [33,34] and imple-
mented in numerous statistical and mathematical packages. Representation of change
in the time domain is straightforward, using plots of data against time. Lag plots and
decomposition of time series are used to identify long-, medium-, and short-term patterns
in the time series, specifically identifying long-, medium-, and short-term patterns using
detrending, smoothing, and calculation of residuals respectively. Least-squares regression
is used to model exponential growth and other long-term changes in data over the com-
plete timespan of the data. Deviations from these trends are modelled with smoothing
splines to describe cycles over medium-term time scales. The residuals from the trends and
cycles describe short-term variation. Results are reported both as absolute values and, for
comparison between variables, as normalized values using z scores. The separate patterns
and values of long-, medium-, and short-term components (trends, cycles, and residuals)
for multiple variables can be analysed further to assess possible influences and feedbacks
between variables at different timescales.

To identify and describe trends and cycles in time series of prices, and to link prices
in Scotland to global prices, we use the Christiano-Fitzgerald Filter, a bandpass filter
designed to identify patterns in data that lie within a specific range of frequencies [35,36].
The Christiano-Fitzgerald Filter has been used to identify long-term trends, cycles, and
boom/bust episodes for world price data for commodities [37]. The filter characterizes time
series as the sum of periodic functions, using a bandpass to accommodate trends without
restrictions on the distribution of the underlying data. The method allows filtered series to
be extracted for the duration of the full span of time in the data, without discarding data
from the beginning or end of the series, as observations from the beginning of the period
can be filtered with future values and from the end with past values. In the use here, the
filter identifies cycles in prices data, allowing comparison of data for Scotland with world
prices for commodities.

3.2. Recurrence Plots and Recurrence Quantification Analysis

Further analysis of the time series data is carried out using Recurrence Plots (RP) and
Recurrence Quantification Analysis (RQA). RP and RQA are nonlinear dynamics methods
for analysis and visualization of time series data [38,39]. Analysis is based on phase space
reconstruction [40,41], a method for discovery of deterministic structure present in real-world
dynamical systems using time series data of a single variable [42–44]. The approaches can be
applied to coupled variables through cross and joint recurrence plots [45,46]. Detailed descrip-
tions of the approach can be found in literature from physics and mathematics [38,45,47] and
complexity science [39]; and examples of applications found in a variety of disciplines includ-
ing economics [48,49], ecology [50–52], psychology [53,54], epidemiology [55], atmospheric
science [56–58], and geosciences [59–62].

Using time series of values for structural or state variables as basic building blocks,
we define X, a vector set of elements describing system structure and fund at a series of
discrete time intervals, to represent the land system. Change in elements of this set over
time (t) formally can be represented with a standard equation describing change over time:

dX
dt

= f (X) (1)
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Continuous and discrete representations of change are unified by time-scale for-
mulation [63].

Data are analysed by plotting values of the time series for X against lagged values
of X, a standard procedure for time series that reveals changes from time (t − k) to time
(t) over the period of the lag (k), and that graphically identifies the patterns of changes.
We use this method to identify annual changes of magnitude greater or less than 2.0 SDs
from the probability density function of all observed differences, using a lag of 1 year to
represent annual decisions in the farming calendar over time.

Specializing Equation (1) to derive the matrix of first order time derivatives of X for
all lags across the discrete time series defines a new space and a Jacobian matrix:

J = {x(t), x(t− ∆t), x(t− 2∆t), . . . x(t− n∆t)} (2)

This matrix describes vectors of delay space coordinates that estimate the original
phase space generating the dynamics of X [40,41]. The eigenvalues that can be calculated
from the Jacobian matrix are local Lyapunov exponents, used in diagnostic analysis of
chaotic systems [64], including in geomorphology [65] and ecology [51].

In practice, the matrix of delay space coordinates is calculated for time lags up to the
embedding dimension and each column is a vector of coordinates

→
xt

→
xt = {x(t), x(t− ∆t), x(t− 2∆t), . . . x(t− (dε − 1)∆t)} (3)

where:

∆t is the time delay or lag between data
dε is the embedding dimension or dimension of the space required to recover the dynamics.

The embedding dimension is estimated for a time series using the method proposed
by Cao [66].

The delay space matrix is a representation of the phase space and used for phase
space reconstruction. Recurrence plots [38] and Recurrence Quantification Analysis [47]
are used to evaluate the dynamics of the time series from the delay space coordinates.
These methods are robust, RP and RQA being independent of limiting constraints, such as
data set size, non-stationarity, and assumptions about underlying statistical distributions
of data. RP and RQA can also identify thresholds in datasets, and have been proposed
as a nonlinear time series analysis method for detection of environmental thresholds [50].
In the context of land systems, RP and RQA offer potential for both characterizing and
identifying complex dynamics and identification of thresholds and regime shifts.

A Recurrence Plot is a graphical tool for interpretation of delay space. The plot is based
on computation of a matrix of distances R between the vectors of reconstructed points in
the delay space, identifying when transitions in the delay space revisit the same value:

Rij =

 1 :
→
xi ≈

→
xj

0 :
→
xi
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i, j = 1, . . . , N (4)

where N is the number of considered states and
→
xi ≈

→
xj means equivalence up to a

distance r, a radius threshold identifying proximity in the delay space. The RP is hence
sensitive to the value of r. A value that is too small will result in a sparse RP with little to
no information. Similarly, a value that is too large will fill the RP, again providing little to
no information. A number of criteria guide selection of r [45]:

(a) it should not exceed 10% of the mean or the maximum phase space diameter [47,67,68]
(b) it should be defined so that the recurrence point density in the RP is about 1% [69]
(c) to avoid problems related to noise, r has to be chosen such that it is five time larger

than the standard deviation of the observational noise, i.e., r > 5σ [70].
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To generate RPs for each of the variables in this study we set the initial value of r to
the minimum of (a) 10% of the maximum value of the phase space diameter and (b) 5σ
where σ is initially estimated from the standard deviation of the annual changes at lag
t = 1 over the duration of the time series. We then iterate from this value of r to reduce the
point density in the RP, examining changes in the RP as r changes. The value of r used here
for each variable is the smallest that retains pattern in the RP.

The RP is a square, symmetrical plot of the N × N matrix R. In the analysis, N is the
number of time points under study. Values from Equation (4) are plotted, 1 being coloured
black, 0 being white. Black points highlight the recurrences of the dynamical system
(defined by the radius r), the patterns in the RP giving insight into periodic structures and
clustering properties within the data that do not show up in the original time series. The
main diagonal is the identity line. RPs reveal structures in the data which can be single
dots, diagonal, horizontal, and vertical lines, and blocks. Infrequent states are represented
as isolated dots. Diagonal lines are the result of the system visiting the same region of
state space several times. Horizontal and vertical lines represent periods when the system
remains in the same state for a while; the lengths of lines represent the time the system is in
the state. A threshold, or regime shift, will appear as a two (or more) separate square areas
along the diagonal. White noise produces a uniformly distributed structure, and periodic
oscillations produce a regular pattern within the RP. White bands are caused by abrupt
changes in the dynamics and by extreme events, facilitating identification of extreme and
rare events [45].

Analysis of the structures in the RP use methods from Recurrence Quantification
Analysis [39,47] providing several measures indicative of the dynamics [45]. We use
(i) recurrence rate, which is the percentage of points in the RP and indicates the probability
that a specific state recurs; (ii) laminarity, which is the percentage of recurrence points
that form vertical lines and is a measure of the presence of laminar phases in the system,
and (iii) entropy, the Shannon entropy of the probability distribution of diagonal line
lengths, indicative of the deterministic coupling of the system. RQA can be applied to a
single RP for the full time series and to sliding windows traversing the time series. The
RQA values for sliding windows of different sizes are computed to build up a picture of
the dynamical properties over time between 1867 and 2020 across different time periods
within the timespan of the data. A RP for the full time series is constructed to identify any
regime shifts.

4. Data

The data used are time series of annual records describing the farming system in
Scotland from 1867 to 2020. Specifically, data are

(i) finance and economics (national and global prices of cereals and other commodities),
(ii) descriptors of funds in arable and pastoral farming land use, namely area of cereal

crops and numbers of sheep, and their change over time.

Additional data include time series for environment (weather data describing rainfall
and temperature), and events (disease outbreaks, wars, introduction of legislation, trade
agreements). These data are distilled to identify key events relevant to explanation of
patterns and residuals in the analysis of the time series (see Figure 1).

A condition for use for all data is that each time series is required to be complete, with
no missing data values within the timespan covered. Data describing structural elements
of Scottish agriculture are collated as time series compiled from the Annual Agricultural
(June) Censuses of Scotland which have been published over the last 154 years (Transac-
tions of the Royal Highland and Agricultural Society of Scotland (1867–1910), Board of
Agriculture for Scotland (1911–1927), Department of Agriculture for Scotland (1928–1958),
Department of Agriculture and Fisheries for Scotland (1959–89), Scottish Office Agriculture
and Fisheries Department (1990–1995), The Scottish Office Agriculture, Environment and
Fisheries Department (1996–1999), Scottish Executive Rural Affairs Department (2000),
Scottish Executive Environment and Rural Affairs Department (2001–2007), Scottish Gov-
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ernment Rural and Environment Research and Analysis Directorate (2008–2010), Scottish
Government Rural Payments and Inspections Directorate (2011), Scottish Government
Environment and Forestry Directorate (2012–2013), Scottish Government Directorate for
Environment and Forestry (2014–2017), Scottish Government Rural and Environmental
Science & Analytical Services Division (2018–2020)—see, for example, [71–77].

The Agricultural (June) Census started in 1866, but many of the entries for 1866 are
officially considered to be unrepresentative because of incomplete returns [23], and 1867 is
used as the start for the time series. The total planted area in cereals is used to represent the
arable sector; the number of sheep are used to represent the pastoral sector [22]. Together,
wheat, barley, and oats are over 99% of the area of cereals grown in Scotland and have not
been less than 97% in the period since 1867. In 2018, cereals contributed about 14% of the
annual value of Scottish agriculture (about £430 million); sheep were a further 7% of the
total value of agriculture (£236 m) [78].

Financial data on prices of cereals are from multiple sources. Wheat, barley, and
oats prices for Scotland are from the annual reports on Agricultural Statistics (1912–1978),
Economic Reports on Scottish Agriculture (1980–2020), Scottish Agricultural Economics
(1950–1959), and records of prices from Fiars Markets around Scotland from the Transac-
tions of the Royal Highland and Agricultural Society (1790–1969), themselves a continua-
tion of a longer series of records from Fiars Markets from 1550–1780 [79]. All prices data
are converted to pounds sterling per tonne (£/tonne), from a variety of source price and
weight units (viz. Scots and English pounds, shillings, and pence (£/s/d), GB Pounds
after decimalization in 1971, and weight (e.g., boll, bushel, cwt, ton, tonne) in use at the
time of original data collection. The prices and their trends for the three cereals over
time are similar. Barley price is used for price of cereals since barley is the cereal grown
over the largest area since the mid-1960s; oats were the major cereal crop by area until
the mid-1960s [22].

Potential links between these data as descriptors of structure and drivers of Scottish
farming are derived from the literature describing farming in Scotland [21,22], the UK [29],
and from the conceptual model of land systems described by Aspinall and Staiano (2017).
We focus on cereal area (km2), numbers of sheep (millions), and prices of cereals (barley
£/tonne). There are no single or sets of equations that relate these variables, since relation-
ships between them would not only have to deal with their different metrics and scaling,
but are also linked within a social and environmental system with limited potential for
description with invariant or deterministic mathematical functions. Although marginal
cost and other models for agriculture attempt to inform decisions e.g., [80,81], these are
developed for specific times and circumstances, and there are no existing universal models
describing the relationships between prices, crop areas, and livestock numbers that could
be considered to apply over the timespan of our study. Even with this, however, some
hypotheses about the general nature and direction of relationships can be formulated to
describe the general process we examine, based on principles and market signals resulting
from interactions of supply, demand, and price.

Traditionally, farming systems across the UK and its component countries have com-
bined arable and pastoral activities within many of the different environments farmed [27].
Historically, grass was grown as part of crop and land use rotations in Scotland, help-
ing rest and fertilize land prior to the next cycle of crop production [21]. Rotation grass
grazing also serves as a low maintenance land use during periods when pressures reduce
the capacity or potential for cereal farming [21,22]. Bowers and Cheshire compare sheep
numbers with wheat price for England and Wales from 1893 to 1940, using five year means
for the variables and a lag of three years for sheep numbers, revealing a negative linear
relationship between wheat price and sheep numbers [29]. Our hypotheses about the
cereal, grassland, and sheep farming system in Scotland is similar to Bowers and Cheshire’s
argument. An increase in price of a commodity produced by farming (barley price), itself
linked to increased demand or insufficient supply (or both) for the commodity, might be
expected to result in an increase in effort to produce that commodity (increased area for
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cereals). In turn, interdependence between parts of the system means that this increase
in production will be associated with a reduction in land for other uses and a decline in
livestock (sheep). Conversely, as prices or demand fall, and supply increases, the area of
cereals will decrease, and other land uses (sheep farming) will increase. Both cereals and
sheep are, therefore, expected to show a correlation with barley price, and cereal area with
sheep numbers. Additionally, trends in barley price in Scotland are expected to be aligned
with global trends in prices.

In land system terms, this set of relationships and feedbacks links economic/financial,
arable (cereal) and pastoral land uses, and livestock (sheep) components of the land system.
Fortunately, even in the absence of mathematical models for the relationships and feedbacks,
it is possible to interpret the patterns in time-series data against the expectations of these
general hypotheses about the directions of relationships and feedbacks. In addition to the
hypothesized relationships between prices, cereal area, and sheep numbers, which reflect
endogenous relationships within the farming system, there are a variety of exogenous
variables that can also be described with time series data. For some, such as plant and
animal diseases, war, and legislation and regulation the variable is binary. For others, such
as weather variables, the data provide a continuous measure that can be interpreted using
time series analysis to separate trend, cycles, and extremes (as statistical ‘noise’). These
exogenous events present shocks to the system that must be accommodated, depending on
the specific nature of the event, over time scales from short- to longer terms.

5. Results

Figure 1a shows plots of the price of barley (£/t), number of sheep (millions), and area
of cereals (km2) for Scotland from 1867–2020. The plot is scaled with natural logarithms.
The plots show that area of cereals and number of sheep, as funds, and barley price, as
a driver, vary with superficially different patterns. As noted above, these data contain a
record of changes at many temporal scales over the last century and a half.

Figure 1b shows some major legislative, trade, commodity price, weather, war, and
disease events from 1867–2020. These provide not only boundary conditions for farming
but also events that coincide with many of the more extreme values identified in the time
series data. For example, government policy during and after the two world wars, and
membership of the EEC/EU Common Agricultural Policy (CAP) provide system boundary
conditions that shape agriculture in the short and medium terms. The 1947 Agriculture Act
and associated support mechanisms (price guarantees, deficiency payments, marketing
boards, investment in R&D etc.) set the context for farming from 1947 until the UK
formerly joined the EEC CAP in 1973. Similarly, the influence of events such as wars,
disease outbreaks, extreme weather, and financial crashes were short-term shocks that have
clear signals in the short-term results (‘noise’) in the time series.

5.1. National and World Crop Prices

Long-, medium-, and short-term trends, cycles and patterns are identified in each of
the cereal price datasets for Scotland, and in global prices data for cereals [37]. Prices for
wheat, barley, and oats are shown in Figure 2a. Analysis of trend, cycles, and noise in data
for prices of wheat, barley, and oats in Scotland shows that all have similar long-, medium-,
and short-term trends. The long-term trend is exponential growth for each of the prices of
wheat, barley, and oats (Figure 2a), the exponents in the equations being quite similar for
the three (Table 1). Deviations from the long-term trend are modelled with a smoothing
spline, revealing four main cycles over the 154-year period (Figure 2b). The residuals after
removal of the long-term trend show high prices in 1918, 1942, the early 1980s, mid 1990s,
2007/8, 2012, and 2018, and low prices in 1972, 2005, 2009, and 2014–16 (Figure 2c). The
concentration of high and low residuals in the post-1972 period is unsurprising given
the increase in absolute values of prices due to inflation, but fluctuations are also latterly
related to payments from CAP being in Euros, prices thus being subject to exchange rate
variations in addition to inflation [82].
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Figure 1. (a) Price of barley (£/t), number of sheep (millions), and area of cereals (km2) for Scotland
from 1867–2020. The plot is scaled with natural logarithms. (b) selected major legislative, trade,
commodity price, weather, war, and disease events from 1867–2020.

Applying the Christiano-Fitzgerald filter to cereal prices in Scotland and world cereal
prices from datasets used by Jacks [37,83] shows that the medium-term cycles revealed
in cereal prices in Scotland are synchronized with cycles in prices for grain crops (wheat,
barley, corn, and rye) for world data (Figure 2d).
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Figure 2. Long-, medium-, and short-term variation in prices for wheat, barley, and oats in Scotland
(1867–2020). (a) data and long-term trends, (b) deviations from the long-term trend and smoothing
spline model, (c) residuals after removal of the long- and medium-term trends. (d) comparison of
cycles for prices of wheat, barley, and oats in Scotland with grain crops (wheat, barley, corn, and rye)
in world data from Jacks [37,83]. Note: the prices shown in Figure 2a,b, and c are prices for the year.
In Figure 2d the cycles comparing prices in Scotland with world prices are based on these prices
adjusted for inflation and indexed to a specific year so that they match the indexing for prices for the
world dataset used (see Jacks [83]). Price of barley in the year in question, not adjusted for inflation,
is used in the analysis of price with other data describing the farming system, since this is the price
data available for each individual year when decisions are being made within the farming system.
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Table 1. Regression models for prices of cereals (1867–2020).

Cereal Price
(£/Tonne)

Exponential
Growth Equation

t-Test for
Exponent F-Test Variance

Explained (R2)

Wheat price y = awe1.0227x t = 23.90
p < 0.0001

F = 571.1
df: 1 and 152

p < 0.0001
78.9%

Barley price y = abe1.0235x t = 26.41
p < 0.0001

F = 687.2
df: 1 and 152

p < 0.0001
82.1%

Oats price y = aoe1.0228x t = 29.28
p < 0.0001

F = 687.2
df: 1 and 152

p < 0.0001
84.9%

aw = 3.91; ab = 3.66; ao = 2.51
for x 1..154 (1867..2020)

5.2. Lag Plots and Recurrence Plots

Lag plots and RPs for the three variables are shown in Figure 3. Lag plots of barley
price (Figure 3a) show a decrease in price of more than 2 SDs in the year-on-year difference
in 1920 and increases in 1919, 1940, 1942, 1973, and 2007. The 1920 decrease reflects
adjustment after increased prices during the first world war [21]; the increases in 1940 and
1942 reflect UK government decisions to guarantee prices for farmers during the second
world war. The 1973 increase is associated with both UK accession to CAP and the world
oil price crisis [84], and the 2007 increase with the world food and financial crises [85]. The
RP for barley price (Figure 3b) shows clear evidence of regime shifts, with areas of black
along the diagonal of the plot and virtually no recurrence points outside those boxes. The
regime shift in the 1970s is clear in the time series plot (Figure 1), but the RP shows there
was a further shift starting in the 1950s during post war recovery and lasting into the 1970s.
The white bars coinciding with the world wars indicate extreme variability in barley price;
high variability since 1973 is also revealed in the absence of recurrence points.

The lag plot for area of cereals (Figure 3c) shows that 1919 was a decrease in area
planted of greater than 2SDs of the long-term annual changes, while 1918, 1940, 1941,
1942, and 1993 were increases in area of more than 2SDs. The decline in 1919 represents a
return to pre-war farming practices after the focus on cereals during the First War [19,21],
offsetting the 1918 increase. The 1940–1942 increases represent the intense and sustained
efforts to increase crop production during the Second World War [20]. The increase in area
in 1993 coincided with the introduction of set-aside [86]. Set-aside was a policy to reduce
the area of cereals, but payments under the scheme were based on the registered cultivated
area. The RP for cereals shows long term cycles in the area, with variability during the
wars. The RP also shows increased cycles in the period since 1973.

The lag plot for sheep (Figure 3e) shows that most year-on-year changes in the numbers
of sheep are relatively small. Three years, 1941, 1947, and 2001, were decreases of greater
than 2 SDs, while 1948 is an increase of more than 2 SDs from the previous year. Of these,
1941 represents government policy to reduce the sheep flock to allow crop production
to be increased during the Second World War [21]; the number of sheep was reduced by
over 1 million in 1941, and total sheep numbers were reduced by about 25% from pre-war
levels during the years of the war [20]. February and March 1947 were extremely cold
and snowy (see below), the timing additionally coinciding with lambing that led to high
sheep mortality (almost 1 million sheep fewer in 1947 than in 1946). In 2001 an outbreak of
foot-and-mouth led to 962,000 sheep being culled in Scotland to control the disease [87]. In
1948 over 700,000 sheep were added to the Scottish total through efforts to recover from
the 1947 winter. The RP for sheep shows very clear evidence of cycles in the number of
sheep, with regular pattern of recurrences spaces about 30 years apart, three cycles being
evident since 1950. Numbers were more stable in the latter part of the 19th century.
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Figure 3. Lag plots and Recurrence Plots for barely price, cereal area, and sheep numbers in Scotland (1867–2020). (a) lag
plot and (b) RP for barley price, (c) lag plot, and (d) RP for cereal area, and (e) lag plot, and (f) RP for sheep numbers.
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5.3. Time Series Analysis and Recurrence Quantification Analysis

Figures 4–6 show the time series analysis results and RQA results for barley price,
area of cereals, and number of sheep respectively.

Figure 4. Time series analysis results and RQA results for barley price in Scotland (1867–2020): (a) data and long-term trend,
(b) deviation from long-term trend and smoothing spline, (c) residuals from long- and medium-term trends, (d) recurrence
rate, (e) laminarity, and (f) entropy from RQA using sliding windows of 10–30 years duration in 2-year increments.

The time series analysis for barley price has been described above but is shown in
Figure 4a–c for comparison with the results of the RQA for barley price. In the RQA
for barley price (Figure 4d–f) the recurrence rate (Figure 4d), laminarity (Figure 4e), and
entropy (Figure 4f) all show that barley price was relatively stable until the first world war,
from the mid-1920s and through the 1930s, and from the mid-1950s to about 1970. The low
values of recurrence rate, laminarity, and entropy since 1973 reflect increasing variability
and volatility in price.

The total area planted with cereals in Scotland has varied between 3900 km2 and
6000 km2 over the period from 1867 to 2020, with major changes in both the cereals planted
and yields. The long-term trend is an annual decline in area planted of 0.14%, accumulating
to a total of about 19% over the 154-year period (Figure 5a). The yearly difference between
annual data and the long-term trend ranges from −1000 to +1000 km2, and shows four
cycles superimposed on the long-term trend, with greater areas planted in the 1870s and
1880s, during the two world wars, and again in the 1980s (Figure 5b). Negative deviations
from the long-term trend are in the 1920s and 1930s, mid-1950s to mid-1960s, and mid-1990s
and late 2000s. The residuals, after removing the long-term trend and medium-term cycles,
are high in 1918 and 1942, and low in 1939, 1993 and 1994, and 2006 and 2007 (Figure 5c),
similar to the results of the lag plot (Figure 3c). The recurrence rate (Figure 5d), laminarity
(Figure 5e), and entropy (Figure 5f) show that cereal area changes gradually for most of
the 154 years, although was more dynamic during the two wars, and also in the early-mid
1990s, coinciding with the onset of the policy and practice of set-aside.
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Figure 5. Time series analysis results and RQA results for cereal area in Scotland (1867–2020): (a) data
and long-term trend, (b) deviation from long-term trend and smoothing spline, (c) residuals from
long- and medium-term trends, (d) recurrence rate, (e) laminarity, and (f) entropy from RQA using
sliding windows of 10–30 years duration in 2-year increments.

Figure 6. Time series analysis results and RQA results for sheep numbers in Scotland (1867–2020):
(a) data and long-term trend, (b) deviation from long-term trend and smoothing spline, (c) residuals
from long- and medium-term trends, (d) recurrence rate, (e) laminarity, and (f) entropy from RQA
using sliding windows of 10–30 years duration in 2-year increments.
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Sheep numbers in Scotland have varied between 6 and 10 million over the period
from 1867 to 2020. The long-term trend is of increasing numbers at a rate of 0.1% per year,
accumulating to a total of about 17% over the 154-year period (Figure 6a). The yearly
difference between annual data and the long-term trend ranges from about −1.5 million to
+1.5 million and shows five cycles (Figure 6b) superimposed on the long-term trend, with
maxima in the late 1890s, 1930s, 1960s, and late 1980s and early 1990s, and minima in the
1880s, 1919/20, late 1940s, 1970s, and 2010s. The residuals, after removing the long-term
trend and the medium-term cycles show peaks in 1937–1939, 1950, 1998, and 1999, and
lows in 1947 and 2001 (Figure 6c). RQA results for sheep numbers show that although the
recurrence rate is low for much of the 154 years (Figure 6d), the laminarity shows only two
periods of extreme change (Figure 6f), these being during the 1940s, corresponding to the
second world war and subsequent high mortality of sheep in the cold spring of 1947 [21],
and in the early 2000s, coinciding with the outbreak of foot and mouth disease that reduced
sheep flocks [87].

5.4. Dynamics from Interdependencies in the System

Interdependencies among the three data series are assessed from correspondence
between the time series of medium-term changes with long-term trends and short-term
noise removed. The medium-term patterns of variation for barley price, cereal area, and
sheep numbers, expressed as time series and as x-y plots in Figures 7–9; all variables are
normalized with their mean and standard deviation to account for differences in scaling
between the variables. The correlation coefficients r and percent r2 for the pairs of variables
for 1867–1947, 1947–1972, and 1973 to 2020 are shown in Table 2. All coefficients except
two (marked by n.s. in the table) are significant at p ≤ 0.001. The signs of the correlations
correspond to expectations for associations between the variables.

The sequencing of cycles is of interest since this indicates their timings relative to
one another and is indicative of the influences we posit in our general model (see above).
Cycles for barley price and cereal area are synchronized and in phase until the late 1940s
after which they become less synchronized (Figure 7a). This can also be seen in the x-y
plot (Figure 7b), where data for 1867–1947 are tightly clustered along a line with positive
slope, and data from 1960 onwards, and particularly from the early 1970s have a different
trajectory in the x-y space. The change in trajectory in 1992, coinciding with the introduction
of set-aside and lasting until 2012, is particularly evident.

The medium-term trends for cereal area and sheep number are also synchronized, but
with a lag that places the peaks for sheep at the minima for cereal area, and vice versa for the
period from 1867 to the early 1970s (Figure 8a). After the early 1970s this synchronization
weakens (Figure 8a). The x-y plot of the medium-term trends (Figure 8b) shows the switch
in emphasis to sheep from cereals during the 1920s and the agricultural depression of that
period, the increase in area of cereals and decline in sheep numbers between the mid-1930s
and particularly from 1939–1944. The general negative association between cereal area
and sheep numbers from 1867–1972 contrasts with the positive association in the trajectory
after 1973 when sheep and cereals became decoupled under CAP.

Medium-term trends and cycles in barley price and sheep numbers are also synchro-
nized, although there is a lag between the two cycles (Figure 9a), as is expected from the
associations already described (Figures 7 and 8). The x-y plot of these trends shows close
association between 1867 and the 1950s, before the trajectory of the data changes to a
peak for price and sheep numbers between 1985 and 1992 (Figure 9b). This reflects the
decoupling of sheep numbers and cereal prices.

These associations are also apparent in the correlation coefficients (Table 2). Between
1867–1946 and 1947–1972, barley price has a positive correlation with cereal area and
negative with sheep numbers (Table 2). After 1973, the correlation coefficient between
cycles for cereal area and sheep number changes to +0.764, from negative correlations prior
to 1973. The correlations between barley price and both cereal area and sheep numbers are
not significant for the period 1973–2020. In summary, the different trajectories of each of
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the plots in Figures 7–9 for the 1973–2020 period compared with 1867–1946 and 1947–1972
are marked, the close associations between the variables in 1867–1946 and 1947–1972 being
shown by a trace over time that clusters along a positive or negative line through the x-y
space (Figures 7–9) and the 1973–2020 trace departing from these patterns.

Figure 7. Medium-term patterns of variation for barley price and cereal area in Scotland (1867–2020)
as (a) time series and (b) phase plots. Note: the variables are normalized to account for differences
in magnitude.
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Figure 8. Medium-term patterns of variation for cereal area and sheep numbers in Scotland
(1867–2020) as (a) time series and (b) phase plots. Note: the variables are normalized to account for
differences in magnitude.
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Figure 9. Medium-term patterns of variation for barley price and sheep numbers in Scotland
(1867–2020) as (a) time series and (b) phase plots. Note: the variables are normalized to account for
differences in magnitude.
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Table 2. Correlation coefficients (upper right quadrant) and r2 (lower left quadrant) between medium-
term cycles for 1867–1946, 1947–1972, and 1973–2020.

Barley Price Cereal Area Sheep Numbers

1867–1946
Barley price 0.967 −0.528
Cereal area 93.6% −0.503

Sheep numbers 27.9% 25.3%

1947–1972
Barley price 0.653 −0.857
Cereal area 42.6% −0.905

Sheep numbers 73.4% 82.0%

1973–2020
Barley price 0.157 n.s. 0.358 n.s.
Cereal area 2.5% 0.764

Sheep numbers 12.8% 58.4%

6. Discussion
6.1. Dynamics of Scottish Farming Systems

Trends and cycles over different timespans and timescales identified within the data
using time series analysis, as well as RP and RQA, characterize long-, medium-, and short-
term dynamics of cereal and sheep farming and cereal prices. Irregular cycles are evident
in each of barley price, cereal area, and sheep numbers, the cycles being synchronized with
each other but with phase shifts. The period of these cycles is between 15 and 40 years.
Cycles for cereal area and barley price are synchronized and in phase up to the early 1970s
(Table 2); both barley price and cereal area are negatively correlated with sheep numbers
until 1972 (Table 2), particularly under the policies that operated from 1947–1972. The
changes in synchronization and correlations following 1973 reflect decoupling of arable
and sheep farming sectors under the provisions of the EU CAP. The long-term trends and
patterns of cycles, as well as the year-to-year variability superimposed on the long- and
medium-term trends, for farming, reveal the multiscale nature of temporal variation in
changes to farming systems. The RP and RQA also help to identify regime shifts. The RP
(Figure 3b) and RQA (Figure 4) for Barley price shows clear evidence of regime shifts, with
one regime over the period from 1867 to the late-1930s (interrupted by World War One),
and two further shifts in about 1950 and 1970; since 1970 the price has been highly volatile.
Regime shifts are not apparent for cereal area and sheep numbers (Figures 3, 5 and 6).

Results of analysis of changes in Scottish farming over a century and a half show the
signal of endogenous system dynamics. Domestic cereal prices are linked to changes in
world prices (Figure 2d), and to national and international policies and events (Figure 1b),
but behind the influences of these exogenous factors, there is evidence from the period
from 1867 to 1972 for the dampening influence of endogenous dynamics associated with
the (loose) coupling of components of Scottish farming systems. From 1973–2020 system
feedback and interaction at a national aggregate scale has been weakened as sheep and
cereal farming have been decoupled. The dampening feedback provided resilience to
Scottish farming as long-term trends and medium-term changes in the world and domestic
economies, and short-term events influenced farming. The importance of system dynamics
for description and explanation of changes in system funds, and the presence of long-
term trends and medium-term cycles also challenges analysis of changes based on data
that cover only a restricted timespan. The results show higher level interdependencies
between arable and pastoral sectors, dependencies that have themselves changed during
the course of the twentieth century as boundary conditions are changed by events, policies
(e.g., the Agriculture Act of 1947, the UK’s accession to the EEC/EU CAP in 1973), that are
important for understanding both arable and pastoral farming, development of policy, and
land management. The lessons from the period studied, despite much of it being historic
remain important for strategic decisions about policy regarding farming, land management,
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and farming livelihoods in Scotland. The results show ways in which dynamic behaviours
of farming systems have evolved as policy context has changed. The extent to which the
dynamics have become decoupled and less resilient with modernization of farming raises
concerns for land use in future especially as new policy is developed following the UK’s
departure from the EU and CAP in 2020.

6.2. Land System Dynamics and Time Series Analyses

The results and analyses also highlight the variety of ways in which exogenous drivers
and endogenous interactions of state variables within the system can influence land system
change and dynamics across these time scales. Medium-term trends, revealed as cycles in
the data here, are particularly important in this analysis. It is important to note that cycles
(in both drivers and funds of the system) are not cycles in a strict mathematical sense, and
they are not required to be regular, to have fixed periods or magnitude of oscillation, or to
be predictable [83]. Rather, they are medium-term patterns of deviations from long-term
trends, with short-term noise filtered out. The focus on cycles is based on the expectation
that they reflect behaviours that result from interaction of system factors over the medium-
term, and, as such, cycles are of particular interest in characterizing and understanding
system dynamics. The interactions and feedbacks of system components over time result
in a statistical tendency for cycles, as (irregular) waves, to be found in the data, with values
increasing and decreasing as feedbacks propagate through the system (with characteristic,
but variable, time scales). Regime shifts are apparent in the RP for barley price, with cycles
in the RPs for cereal area and sheep number (Figure 3d,f) and by recurrence rate, laminarity
and entropy in the RQA (Figures 4d–f, 5d–f and 6d–f), as well as in the medium-term
patterns of the time series (Figures 4b, 5b and 6b). Interpreting these cycles provides
insights into system changes (Figures 7–9). Long-term trends represent slow dynamics
and secular changes. Short-term changes represent impacts of events, and year-to-year
stochastic variability, as well as a range of uncertainties, including inherent uncertainty of
environmental and social systems, measurement errors (statistical uncertainty), short-term
decision-making (partial controllability of complex systems), and structural uncertainty
(the inability to describe the system fully) [88].

The use of time series and nonlinear dynamical systems methods is guided by hy-
potheses about the nature of farming as a coupled land system integrating human- and
environment- drivers through farmer choices and decisions, manifest at the aggregate
national and regional scales. Results are informative on the nature of dynamics of farming
systems, the relation between dynamics and both endogenous feedbacks and exogenous
noise, the influence of different timescales in establishing explanations based on poten-
tial processes and drivers, and on the impacts of drivers at multiple scales from farm to
international trade, finance, and legislation. Together, the methods reveal aspects of the
dynamic nature of drivers that underpin land system change, evolution, and dynamics,
as well as the specific nature of dynamics in land systems themselves. The examples also
elucidate some fundamental principles and mechanisms for studying land systems as
complex coupled human-environment systems; the approaches have application to study
and explanation of both dynamics and change.

The short-, medium-, and long-term trends and process relationships embedded
within time series’ data offer potential for study of not only change in land systems, but also
temporal and cross-scale dynamics in system function, leading to improved understanding
of coupling between human and environment systems, evolution in land systems over
time, and influence and response to changes in land system drivers. The analysis uses a
long data series, necessary for identifying long- and medium-term patterns. A snapshot
in time cannot reveal these dynamics, and consideration of too short a time span can lead
to misinterpretation of change and dynamics, for example by focusing only on increase
or decrease [25].

If a central tenet for study of land systems, as exemplars of coupled systems, is
that they are dynamic systems because of the functional interactions between the human
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and environment subsystems, then the dynamics of both system drivers and dynamical
behaviours of land systems themselves (based on the interactions and coupling of human
and environment) is as much a part of land dynamics as changes in the structures of
land systems. Dynamics of both land system structures and drivers are also necessarily
embedded in the pervasive impacts of spatial, temporal, and organizational scales, and in
both the hierarchical complexity and contingent history of land systems within societal and
environmental change more generally. Even in the absence of major categorical conversion
in type or intensity of change, land systems operate with complex dynamics, and they
require to be understood as dynamical complex systems.

The variety of dynamics represented by the patterns in the data used in this case study
emphasizes the need for explicit pre-analytical hypotheses to be constructed about rela-
tionships between land system dynamics and changes with potential trends and changes
in system drivers. The results also emphasize why hypotheses need to be explicit about
the time scale, or scales, of interest, since long-, medium-, and short- time scale patterns
are contained within the observed data, and all may be relevant to understanding the
variety of land system dynamics. If we accept that time series data represent and reflect
all the processes from all scales involved in their formation, then these data potentially
provide a source of insight into multi-scale consequences of the actions of drivers. In this
context, time series analysis provides a set of mechanisms for distinguishing these temporal
patterns at various time scales.

In summary, in systems terms the analysis of the historical record of changes in cereal
area and price, and sheep numbers in Scotland reveal a complex pattern of interdepen-
dencies and coupling over time and at different scales, combining endogenous system
dynamics with short-term variability associated with stochastic events, within a broader
set of higher-level interdependencies and boundary conditions for the system. The long
time-period of the study also shows that the embedded system dynamics can make farm-
ing relatively resilient to changes in policy, exogenous shocks (such as weather events
or disease outbreaks), or regime changes and thresholds (as seen here in prices). The
whole systems perspective is one that is seldom considered by short-term or sectoral
approaches to farming. Although many of the results are not new, the long-term, whole
systems perspective shows the evolution of land use in Scottish farming as a dynamic
and dynamical system, hence demonstrating that this kind of approach is suitable for
study and interpretation using a single analysis. The contribution of time series analysis
and the tools of NLDS (RP, RQA) in land systems science is also evident. The long time
series of data, and the impacts of historical contingency over the timespan of the study,
combined with the coupling and complexity of system-level relationships, weakens the
chances that steady-state latent structures would emerge by means of classical modelling.
Instead, analysis with time series analysis and methods from NLDS allows exploration
of discontinuities (if any) in the system dynamics, allowing abrupt changes and extreme
values to be identified, that would be difficult or impossible to capture in steady-state
global models. Time series analysis and NLDS also enable exploration of system dynamics
at hierarchically nested time scales, moving beyond use of classical models in describing
phenomena over short periods that are of little relevance over the longer duration of land
use history, as captured in the data used in the case study. As such, the results offer a
challenge to the land systems community to address timescales and dynamics explicitly,
while demonstrating some approaches and methodologies for achieving this. Authors
should discuss the results and how they can be interpreted in perspective of previous
studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible.

6.3. Directions for Future Research

Further research is needed into dynamics of land systems based on system interde-
pendencies, interactions, and feedbacks. As noted in the Introduction, studies of system
dynamics based in system structures and coupling are rare within land system science.
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Methods such as time series analysis, for analysis of non-linear dynamic systems, and mod-
els for exploring input-output within non-linear dynamic systems such as NARMAX [89],
offer tools with potential for use by the land systems community. This study shows the
importance of long time-series of data for capturing dynamics, the dynamical behaviours
found for Scotland being evident over medium-term cycles of about 30 years duration.
The consequences of policy changes for dynamic behaviours are also apparent from this
case study, producing dynamical shifts in system coupling, and showing the importance
of comparative studies across different socio-political, economic, and other contexts that
provide the boundary conditions for land use decisions. Finally, this case study uses
aggregate national data. The extent to which this is representative of the behaviours and
experience of individual farm or other land use units requires further research.

7. Conclusions

Time series analysis, including methods from analysis of non-linear dynamical sys-
tems, are used to separate long-, medium- and short-term dynamics encapsulated within
a historical record of land system states for farming in Scotland over the period from
1867 to 2020. The results show that cereal prices in Scotland follow similar trends and
cycles to those shown in global prices, and that the dynamics of both the area under cereal
cultivation and sheep numbers are linked to the dynamics of barley prices, as well as to
each other, particularly for the period from 1867–1972. The relationships revealed in the
medium-term trends are weaker since 1973 as prices, and cereal and sheep farming have
become decoupled under modernization associated with policies in the EEC/EU CAP
and as prices have become more volatile. These medium-term cycles in the data represent
the endogenous dynamics of the farming system itself, operating within boundary condi-
tions set by the policy environment. Short-term variability in the data reflect year-to-year
variability associated with weather, disease, and other events.

Our results characterize dynamics from internal feedbacks and coupling of farming as
a system at the national scale, reveal some system characteristics and behaviours associated
with the dynamical evolution of farming as a system, and identify some regime shifts over
the full 154-year timespan of the census. Specifically, the results reveal (i) consequences
of several exogenous factors as events that had an impact on system states, (ii) show that
arable and pastoral farming, at a national scale, are dynamically related over a range of
timescales and coupled to global trends, and (iii) that throughout much of the timespan
of the study the system has maintained a pattern of changes consistent with endogenous
systems-level feedbacks between sectors that act to dampen the impacts of exogenous
factors. Changes in system dynamics over the timespan are also associated with policy
changes that altered the interaction of arable and pastoral farming.

The analysis is based on the contention that the time series of system states recording
the history of land use contain an embedded record of the impacts of long-, medium-,
and short-term dynamics associated with both endogenous system forces and exogenous
factors that have influenced the land system. Because of this, both the underlying systems
framework structuring the land system and the temporal scales at which a land system
is studied should be made explicit, as the information needed for explanation of changes
and dynamics will vary with the system structure and the time scales of interest. The use
of time series analysis and methods from non-linear dynamics forces explicit attention
to system structure, time scales, and the multi-scale behaviours of land systems. This
demonstration of interdependencies between the prices, and arable and pastoral systems
in Scotland shows that farming land use in Scotland has functioned as a complex system
and was particularly resilient as a coupled arable-pastoral system prior to 1973, displaying
characteristic behaviours of endogenous variables within a nonlinear dynamical system
with noise-dampening feedbacks. The cases study illustrates a more general problem.
Because of the dominance of studies of land conversion and modification, the prevalence of
studies of short timespan [90], and the requirement for long time series of data to support
time series and NLDS analyses, there are, correspondingly, still few exemplars or results of
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analytical approaches applied to land system dynamics found in the land systems literature,
beyond those based on change detection. More are needed. Further studies of land systems
could usefully attempt to identify emergent properties and behaviours of land systems,
developing analyses focusing on dynamics in long-term time-series data, complementing
analyses based on spatial snapshots over short time spans.
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