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Abstract

This in-silico investigation evaluated the mechanical impact of Morse tape implant-abutment

interface and retention system (with and without screw) and restorative materials (compos-

ite block and monolithic zirconia) by means of a three-dimensional finite element analysis

(3D-FEA). Four 3D models were designed for the lower first molar. A dental implant (4.5 ×
10 mm B&B Dental Implant Company) was digitized (micro CT) and exported to computer-

aided design (CAD) software. Non-uniform rational B-spline surfaces were reconstructed,

generating a 3D volumetric model. Four different models were generated with the same

Morse-type connection, but with a different locking system (with and without active screw)

and a different crown material made of composite block and zirconia. The D2 bone type,

which contains cortical and trabecular tissues, was designed using data from the database.

The implants were juxtaposed inside the model after Boolean subtraction. Implant place-

ment depth was simulated for the implant model precisely at crestal bone level. Each

acquired model was then imported into the finite element analysis (FEA) software as STEP

files. The Von Mises equivalent strains were calculated for the peri-implant bone and the

Von Mises stress for the prosthetic structures. The highest strain values in bone tissue

occurred in the peri-implant bone interface and were comparable in the four implant models

(8.2918e-004–8.6622e-004 mm/mm). The stress peak in the zirconia crown (64.4 MPa)

was higher than in the composite crown (52.2 MPa) regardless of the presence of the pros-

thetic screw. The abutment showed the lowest stress peaks (99.71–92.28 MPa) when the

screw was present (126.63–114.25 MPa). Based on this linear analysis, it is suggested that

the absence of prosthetic screw increases the stress inside the abutment and implant, with-

out effect on the crown and around the bone tissue. Stiffer crowns concentrate more stress

on its structure, reducing the amount of stress on the abutment.
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Introduction

Surgical application of dental titanium implants is nowadays considered a predictable therapy

to rehabilitate partial and full edentulous patients [1]. The major purpose of this long-term

therapy is to rehabilitate the chewing function and biologically maintain a sound bone level

around the fixtures. In fact, marginal bone loss is a percentage directly related to implant fail-

ure [2]. However, the etiology of bone loss is multifactorial. According to Albrektsson et al.

[3], in the first year of function, the clinically acceptable threshold of bone loss around a

dental implant is 1.5 mm, with approximately every year of bone loss of 0.2 mm without

infection.

The biomechanical behavior of the bone around a single dental implant restored with a

crown depends on different factors [4]. One of these is the final rigidity of the implant-sup-

ported crown system. It has been shown that close contact between the dental implant and

bone tissue transfers occlusal vectorial load effects directly to the bone itself. In many condi-

tions, this chewing load may exceed the physiological elasticity of bone, accelerating bone

resorption also because of a missing natural shock absorber like the periodontal ligament [5].

Another factor that biomechanically contributes to the stress concentration in bone tissue is

the cervical level and the angle of the lateral surface of the prosthetic connection. Several

authors [6] investigated this topic through numerical simulation and they found that implants

with 10˚ and 20˚ neck designs should be chosen as an alternative of straight platforms to better

redistribute stress. In this sense, other points need to be strictly investigated: the role of the

implant-abutment connection, external or internal, and of the loosening of the prosthetic

screw [7] on the microstrain distribution and its effect on the bone tissue.

During the rehabilitation of missing teeth, the placement of implant-supported restorations

became a standard clinical practice, and different systems and connections are available to be

used with shared clinical indications [8]. The morse-tape design containing a screw-retained

restoration is encouraged due to more advantageous stress distributions and reduced risk for

leakage in comparison with external and internal hexagonal connections [9, 10]. Although

morse-taper prosthetic connection offers a steady locking mechanism that can decrease micro-

motion and micro gaps, stresses concentrated at the screw are still noticeable [10]. However,

the morse-taper system has a greater torque maintenance capacity and is associated with a

smaller component conformation by excessive occlusal forces [8]. Aiming to overcome any

limitation caused by the presence of prosthetic screw, some implant systems are available with-

out this structure, using solid and friction retained abutment designs [11]. The disadvantage of

this condition is less reversibility for implant-supported restorations, while the mechanical

advantage is still not clear. To investigate some mechanical aspects related to these problems, a

new approach has been proposed using an in-silico investigation.

The three-dimensional (3D) finite element analysis (FEA) is a theoretical numerical analy-

sis that is useful to investigate stresses and strains of complex systems. It is properly applied

also in biomedicine and in different fields of dentistry [12–19] to study the internal and mar-

ginal adaptation of materials and dental tissues. Furthermore, the literature widely employs

three-dimensional finite element analysis (FEA) approach, for a more accurate simulation of

the stress distribution within the implant system compared to traditional analytical methods

[10, 19]. It was reported that FEA results can contribute to a better understanding of the bio-

mechanical behavior of dental implant, frameworks and different rehabilitation designs which

can inform the development of more effective and durable implant designs [19, 20].

In this study, it was considered the effects of occlusal loading on strain and stress develop-

ment in a morse-type implant-abutment connection where taper surfaces are connected by a

cold-welding effect and the two parts engaged together, dependently on different crown
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material stiffness (E). The null hypotheses were: 1) screw effect inside the connection is negligi-

ble; 2) crown restoring material does not influence the implant-bone interface.

Methods

A three-dimensional implant, abutment and screw shapes (Dura-vit 3P B&B DENTAL, Bolo-

gna, Italy) were digitized using technique of reverse engineering (Micro-CT, Skyscan 1172)

according to the manufacturer’s dimensions. For that, point clouds have been exported to the

Geomagic Studio1 dashboard, where 3D STL network was generated. Feature recognition

algorithms from Geomagic Studio1 software, were then applied to reduce sharp boundaries

and cross-segmented curves. The STL was then exported to Computer Aided Design (CAD)

software (Rhinoceros version 5.0 SR8, McNeel, Seattle, USA) and the plugin ’ReduceMesh’

was used with 45% significance, smoothing the assembly with the total normal faces directed

in the same path. The NURBS (non-uniform rational B-spline) shells were recreated from the

STL producing a 3D volumetric model analogous to the realistic proportion of the implant [6].

The models were checked as volumetric solids containing a standard prosthetic platform with

a morse-taper connection (Fig 1).

The dental crown was simulated based on a previously designed volumetric model of a com-

plete molar [14]. A high resolution micro-CT scanner system (Bruker micro CT) was used to

produce the 3D shell of the lower molar [6, 14]. With InVesalius 3.1.1 software, the data groups

were processed and polysurfaces were created with cross-section polylines. The parametric size

was then determined by means of loft-connected polysurfaces. The crown´s dimensions, after

post-processing the model, were 12.3 mm (mesio-distally) and 10.6 mm (bucco-lingually).

Following a previous investigation, a basic jawbone structure was selected (Fig 1). For that,

the bone model was reduced and individualized into a cylinder form (15 mm x 20 mm). Based

on the bone density properties of the literature, a D2 bone type was designed containing 2.0

mm cortical thickness juxtaposed with the trabecular bone tissue. To guarantee a correct con-

nection at bone implant contact (BIC), a Boolean difference was performed, by the difference

between the implant and bone volume [6, 17]. Based on that, an ideal condition was assumed

with total osseointegration of the implant.

The final geometries were imported into computer-aided engineering software (ANSYS

19.2, ANSYS Inc., Houston, TX, USA) in STEP format. The meshing process was created

using tetrahedral elements (Fig 2), after the subsequent iterative mesh refinement procedure of

convergence [10].

Elastic modulus and Poisson ratios for each component were assigned to each structure,

considering linear, elastic, homogeneous and isotropic behavior (Table 1).

The model wax fixed at the bone surface and a load of 600 N was applied to simulate the

occlusal force at the upper surface of the food bolus created upon the 3D coordinate system

(Fig 3).

Results

According to the evaluated factors, von-Mises Stress (MPA) maps were calculated to evaluate

each situation. The section plane for the crowns showed a similar stress pattern among the

models, apparently without a qualitative difference between them when containing or not the

prosthetic screw (Fig 4). Each stress map was based on a color-coded nonlinear scale of stress

ranging from -13 until 52 MPa for the crown, 8–117 MPa for the abutment, 0–91 MPa for the

prosthetic screw, and 7–123 MPa for the implant fixture. Yet, it is possible to notice a differ-

ence in the stress concentrated at the intaglio surface. In the simulated scenario, the lower the

stiffness of the crown, the lower the stress peak inside of it.
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Fig 1. Three-dimensional files from the manufacturer showing the different fixture features in the CAD software. In this model, the

height of the abutment was sectioned according to the size of the crown according to the manufacturer’s recommendation.

https://doi.org/10.1371/journal.pone.0285421.g001
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Additionally, a further dissimilar mechanical response was noticed for the stress concentration

trend between the abutment, with the highest stress magnitude calculated at the region of cervical

level and occlusal surface (Fig 5). While flexible crowns concentrated less stress on its structure,

they deformed largely, stressing the abutment more than zirconia crowns. The effect of prosthetic

screw is visible at the connection region, reducing the stress when present inside of the abutment.

When comparing both prosthetic screws between block-composite and zirconia crowns,

there are evident differences in mechanical response. For both models, the region of highest

stress magnitude was the screw neck and the first threads (Fig 6).

Fig 2. Numerical model after NURBS modelling containing different volumetric structures.

https://doi.org/10.1371/journal.pone.0285421.g002
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The implants showed a different mechanical behaviour when considering the presence or

absence of the prosthetic screw, but not when considering different crown materials (Fig 7).

Like the abutment structure, when the screw was present, less stress was concentrated on the

cervical side of the implant, and more stress is detectable in the threaded region.

The microstrain maps in the peri-implant tissue is visible in Fig 8. The micro-strain peaks

are reported in Table 2 together with the stress peaks per region. Regardless the simulated con-

dition, all simulated models were capable to dissipate the load at the bone-implant interface

with a comparable pattern, showing that nether crown material or prosthetic screw presence

would affect the bone mechanical behavior. Taking 3000 με as the standard strain for bone

resorption, it was possible to assent that, in any case, the calculated strains did not promote

any effect of bone resorption.

Table 1. Mechanical properties of the materials simulated in this study.

Material Elastic modulus (GPa) Poisson ratio

Titanium 110 0.3

Zirconia 200 0.3

Estelite P Block (Block composite resin) 13.8 0.3

Resin cement 5 0.3

Cortical bone 13.7 0.3

Trabecular bone 5.5 0.3

https://doi.org/10.1371/journal.pone.0285421.t001

Fig 3. Meshing process and boundary conditions simulated in the present study.

https://doi.org/10.1371/journal.pone.0285421.g003
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Fig 4. Section plane for von-Mises Stress contour plots for the crown according to different conditions. A) Composite resin with

prosthetic screw, B) Composite resin without prosthetic screw and C) Zirconia with prosthetic screw and D) Zirconia without

prosthetic screw.

https://doi.org/10.1371/journal.pone.0285421.g004
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Discussion

Morse-taper implants are a design of dental implant system that uses a tapered connection

between the implant and the abutment. The Morse-taper connection was originally developed

in the 19th century for use in machine tools and has since been adapted for use in dental

implants [20, 21]. Morse-taper implants offer several advantages over other implant systems:

Fig 5. Section plane for von-Mises Stress contour plots for the abutment according to different conditions. A)

Composite resin with prosthetic screw, B) Composite resin without prosthetic screw and C) Zirconia with prosthetic screw

and D) Zirconia without prosthetic screw.

https://doi.org/10.1371/journal.pone.0285421.g005
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they provide a strong and stable interface between the implant and the abutment, which can

increase the longevity of the restoration [19–22]. Additionally, Morse-taper implants can be

placed using a single-stage surgical procedure, which can reduce overall treatment time and

improve patient comfort [19–23].

Prosthetic screw failure can occur in dental implant treatment when the screw that connects

the dental prosthesis to the implant becomes loose or fractured [24]. This can lead to implant

instability, implant fracture, or other complications that can compromise implant treatment

success. To limit fixation screw complications, an alternative has been manufactured to screw-

retained implant systems (ie, implant abutment connections without screws) [23]. There are

several potential causes of prosthetic screw failure, including inadequate tightening torque,

incorrect screw positioning, misalignment of implant components, fatigue or corrosion of

screws, or excessive forces on the prosthesis [24]. The present study complements this infor-

mation, showing that the abutment screw concentrate stress during loading. So, the both null

hypotheses have been rejected: the screw effect inside the connection is negligible; 2) crown’s

material modulus does not influence the implant-bone interface.

Solid abutments are a type of dental implant abutment that is made from a single piece of

material, designed to provide a stable, strong foundation for dental restorations, such as

Fig 6. Section plane for von-Mises Stress contour plots for the prosthetic screw (in the models that contain this structure) according to different

conditions. A) Composite resin with prosthetic screw, B) zirconia with prosthetic screw.

https://doi.org/10.1371/journal.pone.0285421.g006
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crowns or bridges that are attached to dental implants [25]. Because they are made from a sin-

gle piece of material, they are less prone to mechanical failure or loosening than multi-piece

abutments. However, solid abutments may not be appropriate for all patients or implant sys-

tems. In addition, solid abutments can still have threads in their structure being more difficult

to remove than other types of abutments, making them less suitable for patients who may need

future implant follow-up [25, 26].

Fig 7. Section plane for von-Mises Stress contour plots for the implant according to different conditions. A)

Composite resin with prosthetic screw, B) Composite resin without prosthetic screw and C) Zirconia with prosthetic

screw and D) Zirconia without prosthetic screw.

https://doi.org/10.1371/journal.pone.0285421.g007
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In this sense, abutments without screws can theoretically offer several advantages over tra-

ditional screw-retained abutments. Because there is no screw, the abutment can be designed

with a more anatomically contoured shape, which can improve the aesthetics and function of

the implant-supported prosthesis [26]. Furthermore, non-screw abutments can eliminate the

risk of screw loosening or component failure, which can improve the long-term stability and

Fig 8. Section plane for equivalent strain contour plots for the bone tissue according to different conditions. A)

Composite resin with prosthetic screw, B) Composite resin without prosthetic screw and C) Zirconia with prosthetic

screw and D) Zirconia without prosthetic screw.

https://doi.org/10.1371/journal.pone.0285421.g008
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success of implant treatment [23]. In the present study, the bone tissue was similar between

models with and without prosthetic screw, regardless the crown’s material.

Based on the reported information, a study purpose that the conical abutment alone to

secure the implant–abutment connection can eliminate the possibility of screw loosening and

fracture [23]. According to the reported in-vitro study, the survival rates of screw-retained and

screwless abutments are similar. The authors informed that the use of a screwless morse-taper

implant–abutment connection represents a valid form of treatment for single-tooth replace-

ment. According to their experiment, the used implants withstand out the average occlusal

forces even after an extended interval of artificial loading [23]. However, this is not a consensus

in the literature; another study found that the mechanical resistance of the screwless morse-

taper implant system is lower than that of the internal screw-retained implant systems, which

could result in more frequent clinical complications [22]. The present study showed that the

presence of a prosthetic screw is significant in reducing stress in the abutment connection but

increases stress in the implant. There was no difference for the crown and bone tissue.

Another parameter evaluated in this study was the crown material. When an implant is

placed in the bone, it can be subject to a variety of forces, including chewing and bite forces, as

well as other stresses caused by the oral environment [2]. The crown that is placed on top of

the implant must be able to withstand these forces without causing damage to the implant or

the surrounding tissue [3–5]. The elastic modulus of a dental crown refers to its ability to

deform under stress, and it can play an important role in the success of implant therapy [4, 11,

27]. In general, materials with a higher elastic modulus, such as zirconia, are expected to be

less likely to transfer stress to the implant and surrounding tissue, which can help reduce the

risk of implant failure or complications [4, 11, 27]. However, other studies showed that due to

the presence of cement layer, abutment, screw and other components from the implant-sup-

ported restoration, the crown’s effect at the bone level is usually insignificant [27–29]. The

present study corroborates with them, showing a similar stress pattern between both materials.

While zirconia is often chosen for its durability, the choice of restorative material should be

based on several factors, including the individual patient’s needs and circumstances, the clini-

cal requirements of the implant site, and the occlusion and bite forces of the patient [30–33].

Block composite crowns offer several advantages for implant-supported restorations: they are

less expensive, require fewer post-processing steps, and can be customized to match the color

and shape of the patient’s natural teeth, which helps to create a natural-looking smile; they are

also relatively easy to repair or replace if they become damaged or worn over time [31, 32].

One potential disadvantage of block-composite crowns for implant-supported restorations

is that they may not be as durable as other materials such zirconia [33–35]. They may also be

more prone to chipping or cracking if exposed to excessive biting forces or if the patient grinds

their teeth. Overall, composite CAD/CAM crowns can be a good option for implant-supported

restorations in certain cases, particularly for anterior teeth or when the antagonist is a compos-

ite-restored tooth [34, 35].

The biomechanics of implant-supported restorations is an important consideration in the

design and placement of dental implants to ensure long-term success and stability of the

Table 2. Stress peaks per region and microstrain in bone tissues for each evaluated model.

Crown material Prosthetic screw Crown Abutment Implant Screw Bone tissue

Zirconia Yes 64.47 MPa 99.71 MPa 112.74 MPa 88.74 MPa 8.3023e-004 mm/mm

Zirconia No 64.47 MPa 126.63 MPa 124.37 MPa - 8.6622e-004 mm/mm

Composite resin Yes 52.20 MPa 92.28 MPa 112.6 MPa 90.87 MPa 8.2918e-004 mm/mm

Composite resin No 52.21 MPa 114.25 MPa 124.18 MPa - 8.6482e-004 mm/mm

https://doi.org/10.1371/journal.pone.0285421.t002
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restoration [36]. The biomechanics of implant-supported restorations involve interactions

between the dental implant that serves as an artificial tooth root, the surrounding bone, and

the artificial tooth or denture [4]. The distribution of forces is important because excessive

stress can lead to bone resorption or implant failure over time [5]. Several factors influence the

biomechanics of implant-supported restorations, including the location of the implant in the

bone, the number and distribution of implants used, the shape and size of the implant, the

type of attachment used to connect the implant to the artificial tooth or denture, and the occlu-

sal forces generated during chewing [4–7, 10, 17–23, 25–27, 37, 38]. Additionally, the present

results showed that the presence of screw and crown stiffness also can affect the implant

mechanical behavior, however the first is more significant than the second factor. In this sense

the null hypotheses were rejected.

This study has certain limitations that need to be considered. Firstly, the force applied in

the simulation was unidirectional, whereas forces from other regions may generate different

outcomes. Moreover, the elastic modulus was isotropic, which is not the case with human tis-

sue [38, 39]. Also, there was no consideration of external factors such as saliva, pH variation,

temperature variation, or the presence of different antagonist materials. Future studies should

investigate these factors to understand the mechanical effect on the implant-supported crown.

Furthermore, the materials were considered ideals, without defects on their structure as well as

with ideal contacting surfaces. Despite these limitations, the study provides a numerically con-

trolled experiment that shows proportionality stress states that can be compared quantitatively

and qualitatively. However, further investigations are required to corroborate or not with the

present theoretical findings.

Conclusions

Based on this linear analysis, within the limits of this investigation, it is suggested that the

absence of a prosthetic screw increases stress inside the abutment and implant models, without

effect on the crown and bone tissue. Stiffer crowns concentrate more stress on their structure,

reducing the amount of stress on the abutment.
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