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Abstract: Background: Considerations about implant surface wear and metal particles released
during implant placement have been reported. However, little is known about implant surface macro-
and microstructural components, which can influence these events. The aim of this research was to
investigate accurately the surface morphology and chemical composition of commercially available
dental implants, by means of multivariate and multidimensional statistical analysis, in order to
predict their effect on wear onset and particle release during implant placement. Methods: The
implant surface characterization (roughness, texture) was carried out through Confocal Microscopy
and SEM-EDS analysis; the quantitative surface quality variables (amplitude and hybrid roughness
parameters) were statistically analyzed through post hoc Bonferroni’s test for pair comparisons.
Results: The parameters used by discriminant analysis evidenced several differences in terms of
implant surface roughness between the examined fixtures. In relation to the observed surface quality,
some of the investigated implants showed the presence of residuals due to the industrial surface
treatments. Conclusions: Many structural components of the dental implant surface can influence
the wear onset and particles released during the implant placement.

Keywords: implant surface; roughness; osteointegration

1. Introduction

Dental implants are commonly used in daily practice for functional and aesthetic
rehabilitation after tooth loss [1]. Titanium and its alloy are the most commonly used
materials due to their biocompatibility, mechanical characteristics and chemical stability [2].
However, many studies do not focus on the properties of dental implant materials when
they are broken down to smaller particle [3–5]. As a consequence of implant placement,
microfractures and compression can occur at the bone side and the implant surface can
be simultaneously subjected to a combination of torsional and frictional forces, which
may alter the original implant surface. [5,6]. Stress concentration on the implant surface
can destroy the titanium oxide layer on the implant and wares the cover favoring the
release of titanium particles in the surrounding tissues [7]. However, little is known
about macro and microstructural components of the dental implant surface which can
influence the wear onset and the particles released during implant placement. In order
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to increase the contact area between the living bone and the fixture, manufacturers have
introduced many surface treatments, namely chemical (acid-etching) and mechanical
(sandblasting) or a combination of the two [8–15]. Rough titanium implant surfaces can
also be obtained through material addition, using technologies such as Thermal Spray
Processing (usually Titanium Plasma Spray, TPS), sometimes mixed with the previously
mentioned techniques [16]. Among the available chemical methods, etching has become
widely accepted and is based on the controlled corrosion of the implant surface through
strong acids (hydrofluoric, nitric, sulfuric) [17]. This has been reported to produce micro-
holes (dimples) with 1.5–2 µm in size on the implant surface, which assist osteointegration
by increasing the available surface area for the attachment of bone tissue [17,18]. Mechanical
grinding based methods mainly refers to sandblasting in this scenario, which involves the
projection of abrasive ceramic particles such as alumina, titanium dioxide and calcium
phosphate, ranging in size between 25 and 75 µm, through a suitable carrier fluid, which is
typically air [19]. The TPS technique also ensures a very rough surface (macro-roughness
of up to 240 µm and the micro-roughness approximately 40 µm), based on the overlapping
droplets of solidified titanium [16]. These different manufacturing techniques promote
different surface topographies at both the micro- and nano-scales and superficial chemical
compositions. At present, none of the previous industrial techniques proposed to increase
surface roughness is able to prevent the release of titanium particles from the implant
surface following insertion into the bone [19]. Suarez-Lopez Del Amo et al. evidenced
how all system showed small angular or round elongated titanium debris especially in
the crestal part of the osteotomy site [19]. Deppe et al. reported how during implant
placement, the surfaces obtained with subtractive modifications appeared to suffer less
wear and particle loosening than surfaces with additive modification [20,21]. Wennerberg
et al. found that moderately rough surface presented more titanium release from implant
surface than smooth surface their size decreased with the increase of distance from the
titanium implant [22]. Generally, these particles are highly difficult to eliminate from the
peri-implant tissues and their concentration can be able to procure local inflammation and
modify the osteoblast and osteoclast balance [7]. These particles, in fact, have been proved
to inhibit the differentiation of osteoblast precursor cells and promote the bone resorption
function of the osteoclast by inducing the differentiation of osteoclast [7]. They may also be
transported away from the bone-implant interface causing inflammation in distant tissues,
with potential systemic involvement [5]. Pathological alterations of the peri-implant tissue
could also be caused by factor other than the implant material itself. A titanium surface
can be contaminated by various substances used in the manufacturing process, such as
cutting fluid, sandblasting powder or etching agents [23,24]. The aim of this research was to
investigate accurately the surface morphology and chemical composition of commercially
available dental implants, in order to predict their effect on wear onset and particle release
during implant placement.

2. Materials and Methods

All the examined implants had a tronco-conical shape; only the In-Kone implant
(Global D, France; for short, A) was made of titanium Grade 4 (CPTi), whereas the Premium
fixture (Sweden & Martina, Artigianale Cornegliana, Italy; for short, B) and Globalwin
implant (Biosafin, Trezzano Rosa, Italy; for short, C) were of titanium Grade 5 (Ti6Al4V),
and the Roxolid SLActive fixture (Straumann, Basel, Switzerland; for short, D) was made
of titanium zirconium alloy (Ti-Zr alloy). Fixtures B, C, and D had a sandblasted/etched
surface treatment, while implant A had a sandblasted/double-etched surface treatment.
Table 1 reports the main information of the investigated implants and Figure 1 illustrates
their related low magnification images (6.7×), obtained with a Nikon SMZ745T stereomi-
croscope (Nikon, Tokyo, Japan). For the experimental analysis, three implants for each
manufacturer were considered. Table 2 reports the mechanical properties of titanium Grade
4 (CPTi) and titanium Grade 5 (Ti6Al4V) [9].
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Table 1. Dental implants selected for surface texture investigations.

Implant Material Surface Treatment Length
(mm)

Diameter
(mm)

A CP Ti Sandblasting + double etching 8.5 4.5
B Ti 6Al4V Sandblasting + etching 8.5 3.8
C Ti 6Al4V Sandblasting + etching 11.5 3.75
D Ti-Zr alloy Sandblasting + etching 12 3.3
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Figure 1. Low magnification images of the investigated dental implants: (A) = Global D;
(B) = Sweden & Martina; (C) = Globalwin; (D) = Straumann (Magnification 6.7×).

Table 2. Mechanical properties of CPTi and Ti6A14V.

Material UTS (MPa) YS0.2 (MPa) E (GPa) EL (%)

CpTi 660 590 105 20

Ti6A14V 950 880 113.8 14

This comparative study evaluated implant surfaces with different characterization
(roughness and texture, surface morphology and chemical composition). The quantitative
surface description (roughness, texture) was analyzed through a Leica DCM3D Confocal
Microscope (Leica Microsystems, Wetzlar, Germany), equipped with the surface process-
ing software LeicaMap v7® (Leica Microsystems, Wetzlar, Germany). In first instance,
the 3D surfaces of the implants were acquired at low magnification (10×), along their
longitudinal axes. The latter were expressed as colour-coded 3D plots and subsequently
elaborated with LeicaMap v7® to perform an analysis of the thread geometry and step
of each implant considered by extracting profiles along the implants axes and using the
distance measuring function. Subsequently, higher magnification acquisitions (50×) were
performed on the same implants to evaluate the surface roughness, considering an area of
500 × 500 µm2 taken between two threads. For each implant, six primary profiles were
extracted perpendicularly to the implant longitudinal axes within the acquired area, having
an evaluation length of 500 µm. The subsequent roughness profiles, obtained after the
application of a Gaussian filter with a 0.08 mm cut-off, were used to evaluate the following
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parameters according to the ISO 4287 standard [25]: mean arithmetic height (Ra), maximum
peak-to-valley distance (Rz), maximum peak height (Rp), maximum valley depth (Rv),
profile skewness (Rsk) and profile kurtosis (Rku). It is worth to highlight that the first four
parameters are descriptive of the height amplitude of the topological events (peaks and
valleys) whereas the Rsk and Rku, referred as hybrid parameters, are representative of the
symmetry of the peaks and valleys distribution and their tailness, respectively [9,26].

The implants surface analysis was carried out also using a Hitachi TM3000 SEM
(Hitachi, Tokyo, Japan) equipped with a 15kV electron beam and an Oxford Instruments
Swift ED 3000 EDS probe (Oxford Instruments, Abingdon, UK), in order to compare the
quantitative results obtained from confocal microscopy with a qualitative evaluation of
the surface morphology deriving from the different surface treatments applied to the
selected implants. To this aim, images at 1500× magnification were taken in the same areas
investigated through confocal microscopy and EDS analyses were carried out in order to
highlight any effect of the surface treatments on the superficial chemical composition of
the implants.

The quantitative variables obtained from confocal microscopy (i.e., the amplitude
parameters Ra, Rz, Rp, Rv, and the hybrid parameters Rsk, and Rku) were statistically
described in terms of mean, standard deviation (SD), and 95% Confidence Interval (CI).
The two-way analysis of variance (ANOVA) test to compare the values under investigation
was performed. To test the multiple comparisons of the difference of means, Bonferroni’s
post hoc test was used.

In order to model the dependent categorical variable (implant manufacturer) based on
its relationship to one or more predictors, the Discriminant Analysis (for short, hereafter,
DA) was used. Given a set of independent variables, the DA attempts to find linear
combinations of those variables that best separate the groups of cases. DA was performed
by entering all variables and by selecting, through a “stepwise” method, the best set
of discriminating variables. The criterion for controlling the stepwise selection was the
maximum Wilks’ lambda defined as:

λ = (Variance Between groups)/(Variance Within group).

This test takes into consideration the differences between all the centroids and the
cohesion (homogeneity) within the groups. A maximal solution would require testing
every possible subset to determine which would produce the very best results.

The mathematical objective of DA is to weight and linearly combine the discriminating
variables in some fashion so that the four groups of manufacturers were forced to be
as statistically distinct as possible [27]. The statistical theory of DA assumes that the
discriminating variables have a multivariate normal distribution and that they have equal
variance-covariance matrices within each group. In practice, the technique is very robust
and these assumptions need not be strongly adhered to. The discriminant scores were
derived by maximizing the quadratic distance of Mahalanobis from the centroid of the
two clusters [28]. The p-value level for significance was 0.05, all p values are two-sided.
Statistical analysis was performed with the software IBM SPSS Statistics, v.20.0 (IBM Corp.
Armonk, NY, USA).

3. Results
3.1. Confocal Microscopy

Figure 2 shows the 3D colour-coded surface plots of the different implants, used to
analyze the implant texture features. From the plots, it is evident that the implants are quite
different between each other in different aspects, the first notable one being the presence of
a double threaded profile in the A implant and the different thread geometries between the
implants (also visible in Figure 1). According to the procedure described in the previous
section, a single profile along the implants axes was extracted through the LeicaMap v7 ®

software for each implant. Their comparison is illustrated in Figure 3. The results showed
the thread pitch of 1 mm for A, B and C fixtures; only the D fixtures presented a thread
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pitch of 0.8mm. Moreover, the thread geometries were different, being triangular for the C
and D implants, square for the B implant and hybrid (double square + single trapezoidal)
for the A implant.
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Figure 2. Surface texture comparison of the dental implants acquired with a Leica DCM3D microscope
(Leica Microsystems, Wetzlar, Germany): (A) = Global D; (B) = Sweden & Martina; (C) = Globalwin;
(D) = Straumann (10× magnification).

Concerning roughness, the results of ANOVA (Table 3) and Bonferroni’s multiple
comparisons (Table 4) show a significant difference between the B implant which, in
particular, presented the lowest significant mean of roughness (Ra = 0.550, Rz = 3.450,
Rp = 1.756, and Rv = 1.656, p < 0.001) and D implant representing its highest counterpart
(Ra = 2.139, Rz = 11.856, Rp = 6.044, and Rv = 5.811, p < 0.001).
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Table 3. ANOVA results (amplitude parameters).

Sum of Squares df Mean Square F Sig.

Ra

Between Groups 23.176 3 7.725 68.678 0.000

Within Groups 7.649 68 0.112

Total 30.824 71

Rz

Between Groups 667.486 3 222.495 66.342 0.000

Within Groups 228.057 68 3.354

Total 895.543 71

Rp

Between Groups 177.046 3 59.015 60.571 0.000

Within Groups 66.253 68 0.974

Total 243.299 71

Rv

Between Groups 160.334 3 53.445 55.551 0.000

Within Groups 65.421 68 0.962

Total 225.755 71
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Table 4. Results of Bonferroni’s post hoc test (amplitude parameters).

Ra
Mean (SD)

A
1.272 (0.3121)

B
0.550 (0.1098)

C
1.150 (0.2792)

D
2.139 (0.5124)

A Mean difference, p value = 0.7222, <0.001 0.1222, 1.00 −0.8667, <0.001
B Mean difference, p value = = −0.6000, <0.001 −1.5889, <0.001
C Mean difference, p value = = = −0.9889, <0.001

Rz
Mean (SD)

A
6.339 (1.6807)

B
3.450 (0.7422)

C
6.317 (2.4120)

D
11.856 (2.4120)

A Mean difference, p value = 2.8889, <0.001 0.0222, 1.00 −5.5167, <0.001
B Mean difference, p value = = −2.8667, <0.001 −8.4056, <0.001
C Mean difference, p value = = = −5.5389, <0.001

Rp
Mean (SD)

A
3.044 (0.7702)

B
1.756 (0.5055)

C
3.167 (1.0460)

D
6.044 (1.3980)

A Mean difference, p value = 1.2889, 0.001 −0.1222, 1.00 −3.0000, <0.001
B Mean difference, p value = = −1.4111, <0.001 −4.2889, <0.001
C Mean difference, p value = = = −2.8778, <0.001

Rv
Mean (SD)

A
3.272 (0.9940)

B
1.656 (0.3203)

C
3.161 (1.0689)

D
5.811 (1.2709)

A Mean difference, p value = 1.6167, <0.001 0.1111, 1.000 −2.5389, <0.001
B Mean difference, p value = = −1.5056, <0.001 −4.1556, <0.001
C Mean difference, p value = = = −2.6500, <0.001

Figures 4 and 5 illustrate the comparison of the amplitude parameters (Ra, Rp, Rv, Rz)
and the hybrid parameters (Rsk, Rku), respectively, for the different implants, obtained
from the 50× magnification acquisitions performed with confocal microscopy according
to the description provided in the previous section. Concerning roughness, the results of
ANOVA (Table 3) and Bonferroni’s multiple comparisons test (Table 4) show a significant
difference between the B implant which, in particular, presented the lowest significant
mean of roughness (Ra = 0.550, Rz = 3.450, Rp = 1.756, and Rv = 1.656, p < 0.001) and
D implant representing its highest counterpart (Ra = 2.139, Rz = 11.856, Rp = 6.044, and
Rv = 5.811, p < 0.001).
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On the other hand, in relation to the investigation conditions used in this work, the
dental implants produced by A and C (Table 4) led to a comparable surface quality (p = 1.00).
The hybrid parameters are reported in Figure 5. The ANOVA (Table 5) and Bonferroni’s
multiple comparisons test (Table 6) show a good symmetry of the profiles, as supported
also from the values of Rsk reported in Figure 5, which were always close to 0 and leading
therefore to unperceivable, not significant differences between the implants from this point
of view (p > 0.05).

Table 5. ANOVA results (hybrid parameters).

Sum of Squares df Mean Square F Sig.

Rsk

Between Groups 0.867 3 0.289 2.970 0.038

Within Groups 6.613 68 0.097

Total 7.480 71

Rku

Between Groups 3.836 3 1.279 2.035 0.117

Within Groups 42.723 68 0.628

Total 46.559 71

Table 6. Results of Bonferroni’s post hoc test (hybrid parameters).

Rsk
Mean (SD)

A
−0.222 (0.3318)

B
0.033 (0.3565)

C
0.011 (0.2349)

D
0.044 (0.3110)

A Mean difference, p value = −0.2556, 0.099 −0.2333, 0.168 −0.2667, 0.075
B Mean difference, p value = = 0.0222, 1.000 −0.0111, 1.000
C Mean difference, p value = = = −0.0333, 1.000

Rku
Mean (SD)

A
2.806 (0.5955)

B
3.456 (0.9972)

C
3.111 (0.9869)

D
3.078 (0.4360)

A Mean difference, p value = −0.6500, 0.099 −0.3056, 1.000 −0.2722, 1.000
B Mean difference, p value = = 0.3444, 1.000 0.3778, 0.944
C Mean difference, p value = = = 0.0333, 1.000
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In terms of profile kurtosis, the results reported in Figure 5 show that the B implant
had the highest value (Rku = 3.456) among the selected implants, despite it represented
the lowest roughness case, whereas the other implants had comparable values which were
also higher than 3. According to the significance of the Rku parameter [25] and within the
case study, the results suggested that the surface treatments of the different dental implants
led to the formation of sharp peaks. Moreover, the sharpness of the peaks is a roughness
scale-independent factor, justifying the results obtained for the B surface in terms of high
Rku and low Ra.

The stepwise procedure begins by selecting the single best-discriminating variable
(i.e., Ra) according to determined criterion (i.e., maximize Wilks’ lambda). A second
discriminating variable (i.e., Rz) is selected as the variable best able to improve the value
of the discrimination criterion in combination with the first variable. The third variable is
similarly selected according to its ability to contribute to further discrimination. At each
step, variables already selected may be removed if they are found to reduce discrimination
when combined with more recently selected variables.

The changes in Wilks’ lambda and their associated chi-square tests of statistical sig-
nificance as the information in successive discriminant functions is removed are shown
in Table 7. This indicates that considerable discriminating power exists in the variables
being used (the larger lambda is, the larger discriminant power is present). A very large
significant lambda was found in the first and in the second function. This indicates that
it would not be useful to derive the third and last discriminant function, since it would
not significantly add to the ability to discriminate between the groups. Consequently, the
remaining computations were based on only the first two functions.

Table 7. Discriminating power of discriminant functions for Wilks’ lambda.

Test of Function(s) Wilks’ Lambda Chi-Square df Sig.

1 through 2 0.198 110.283 6 0.000

2 0.816 13.794 2 0.001

Nearly all of the variance explained by the model is due to the first two discriminant
functions, as shown in Table 8.

Table 8. Eigenvalues and percent of variance explained by the first two models.

Eigenvalues

Function Eigenvalue % of Variance Cumulative %

1 3.133 93.3 93.3

2 0.225 6.7 100.0

The classification results are reported in Table 9; the overall classification rate is quite
high, meaning that 72% of selected original grouped cases are correctly classified.
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Table 9. Classification results of the DA.

Classification Results a

Manufacturer
Predicted Group Membership

Total
A B C D

Original

Count

A 11 2 4 1 18

B 0 18 0 0 18

C 5 3 8 2 18

D 2 0 1 15 18

%

A 61.1 11.1 22.2 5.6 100.0

B 0.0 100.0 0.0 0.0 100.0

C 27.8 16.7 44.4 11.1 100.0

D 11.1 0.0 5.6 83.3 100.0
a. 72.2% of original grouped cases correctly classified.

The DA identified a binomial (Ra and Rz), whose orthogonal combination allowed
us to correctly classify 61% of A, 100% of B, 44% of C, and 83% of D (Table 9). Both C
and A implants showed a lower homogeneity of the Ra and Rz parameters. D had, on
average, the highest values, B had, on the other hand, the lowest values. Figure 6 shows
the all-groups scatter plot.
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3.2. SEM-EDS

The quantitative results obtained from confocal microscopy were corroborated by the
qualitative morphology analysis carried out with SEM-EDS application. According to the
SEM images reported in Figure 7, it is conceivable that the same conclusions drawn from
the quantitative analysis could also be drawn in this case concerning the surface quality
comparison between the implants. More specifically, the differences in the effect of the
surface treatments on the surface morphology are clearly visible and they describe well the
different surface roughness measured for the selected implants. For instance, A implant
presented deeper dimples on the surface due to the double etching after sandblasting
whereas the D implant had the most jagged surface. Moreover, the B implant showed the
flattest surface with also the smallest dimples. However, the A and C implants presented a
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different surface morphology, despite the quite similar roughness values: this result could
be due to the different sandblasting conditions effects on the two implants, as supported
for instance by the presence of deeper craters on the surface of the C implant, which were
not observed on A.
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Figure 7. SEM images of the investigated dental implants (1500× magnification) (A) Global D;
(B) Sweden & Martina; (C) Globalwin; (D) Straumann.

In terms of superficial chemical composition, the SEM-EDS analysis proved that all
the implants presented only the characteristic elements of the titanium alloys used from
the different manufacturers, as reported in Table 6. However, this conclusion was not
applicable to the D implant, for which the presence of alumina particles was detected, as
illustrated in Figure 8. The latter result, also supported by the EDS results reported in Table
10 given the high aluminium and oxygen wt%, suggests that the subsequent etching step
was not able to completely remove the abrasive particles related to the sandblasting step.
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Figure 8. Detailed SEM observation of the D implant surface, showing the presence of entrained
alumina particles after the sandblasting treatment (1500× magnification).
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Table 10. Chemical composition of dental implant surface.

Element (wt%) A B C D
(Surface)

D
(Particle)

Titanium 72.9 90.0 76.9 79.3 3.5

Aluminium 8.7 – – – 44.7

Vanadium 3.9 – – – –

Oxygen 14.5 10.0 23.1 8.7 51.4

Zirconium – – – 12.0 0.6

4. Discussion

This research investigated the surface morphology and chemical composition of
commercially available dental implants in order to predict their effect on wear phenomena
and titanium particles release during the implant insertion.

Many studies have evidenced how the implant wear, during the implant placement,
can be related the surface chemical composition and the extension of the bone–implant
contact area [29–31].

The Grade 4 titanium (CP Ti) (of the fixture A) had a low wear resistance compared to
the Grade 5 titanium (of the implants B and C), which had better mechanical properties
that prevented deformation during insertion, reducing the number of surface defects.

Implant A showed double threads for increasing the contact area with the bone and
reducing the cortical occlusal stress. This macro-morphology appeared to be more favorable
in terms of surface changes during the implant placement than the single-threaded ones,
even if it was able to ensure a faster implant insertion [32–35].

The screw pitch was considered another parameter able to influence the surface area.
Previous studies showed that implant surface area increased as screw pitch decreased,
in this condition leading to an extension of the bone–implant interface. [36,37]. Kong
et al. considered 0.8 mm as the optimal thread pitch for achieving primary stability and
optimum stress production [38]. The results show similar thread pitch dimensions between
the examined fixtures (1 mm for A, B, and C implants and 0.8 mm for the D implant).

In relation to the observed textures, the investigated implants showed a different
thread shape, which was considered another important aspect able to influence the bone–
implant contact surface. The square threads (such as those of the C and D implants),
assuring the highest contact with the peri-implant bone, can be considered more susceptible
to wear onset and the release of metal particles than the other thread designs (triangular
shape, such as those of C and D implants) during the implant placement.

The reported results evidence how the different industrial surface processing condi-
tions of titanium surfaces were able to influence the roughness and the chemical composi-
tion of the examined implant surfaces.

Based on the results, the chemical treatment seemed to develop the coarsest surface
with a rough and sharp-cornered morphology, whilst a wavy morphology occurred with
sandblasting (Figure 4). The examined implants were treated with both etching and
sandblasting surface treatments. B and C implant surfaces showed less roughness than
A and D. Moreover, the latter presented the highest roughness, ensuring a larger contact
area between the implant surface and the surrounding bone than the other evaluated
implants [9]. Rougher implants with higher peaks were related to an increased number
of particles released at the bone–implant interface following insertion into bone [19]. The
biological/clinical value of the presence of metal friction residues on peri-implant bone
surface is not clear, although it was considered the major factor responsible for aseptic
implant loosening [39,40]. In vitro model systems showed that released titanium particles
can activate the inflammatory response, resulting in an increased secretion of IL-1B, IL-
6, and TNF-α in cultured human macrophages, which induce osteoclastogenesis and
inhibit osteblastogenesis and consequently lead to bone resorption [41–43]. Additionally,
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Petterson et al. showed that titanium particles generate a pro-inflammatory response in
macrophages, activating the cascade NLPR3 inflammasone caspade-1 and the release of
mature IL-1ß [23]. Their cytotoxic effect varied considerably in relation to the dose, size,
and geometry [44,45]. Nanoparticles were described as more biologically reactive and more
potentially harmful than microparticles because of their greater surface-to-volume ratio [23].
It was suggested that specific ions and proteins coated the TiO2 nanoparticles, favoring
their internalization by osteoblasts. Once inside the cell, nanoparticles are able to produce
DNA damage and oxidative stress [23]. Choi et al. reported how the osteoblast adhesion,
proliferation, and viability were reduced by particles of dimensions < 15 µm. Particles
with major dimensions were able to increase the expression of receptor activator of nuclear
factor kB ligand (RANKL) and the proteolytic activities of matrix metalloproteinases
(MMP) 2 and 9 [46]. The potential biological effect of the metal friction residues is also
related to their chemical composition and, consequently, to the chemistry of the implant
surface modified by the surface treatments [47–50]. Based on the results, fixtures A and D
had the advantage of assuring a higher bone–implant interface, given that peaks can be
more easily damaged during the implant insertion and thus more vulnerable to wear and
particle release. Implants with these characteristics require a precise placement without
excessive pressure against the osteotomy site [19]. This condition could also be influenced
by the manufacturer’s precision (sharpness of the cutting tool), surface deformation, and
roughness shown by the surgical drills. Elias et al. showed that surgical drills allowed for
easier and smoother insertion of the implant into the high-density bone; in this clinical
condition, the implant surface suffered less damage than in the bone types III–IV [51].

With the sandblasting process, performed with particles of different chemical compo-
sition, size, and geometry, the implant surface may retain some of the blasting particles.
In most of the investigated implants, produced by the combination of etching and sand-
blasting processes (A, B, C), no residues were identified; this is probably related to the
ability of the etching process to eliminate the contaminations procured by the sandblasting
treatments. On the contrary, implant D showed a surface contamination with the presence
of alumina particles (Figure 8), the latter being residues from the sandblasting finishing
step. Its diffusion in the peri-implant bone surface may produce biological perturbations
such as the inhibition of bone mineralization, the activation of osteoclast-like cells, and the
enhancement of the bone erosion [52,53]. Bertoldi et al. evidenced the association between
the Al wear particles with oxidative and inflammatory reactions, including iron-mediated
oxidation [54]. Other authors reported the diffusion of Al ions in the peri-implant bone as a
potential risk factor for the development of neurological disorders, including Alzheimer’s
disease and metabolic bone disease such as osteomalacia [55]. Aluminium is neurotoxic
and, in addition to genetic factors, plays a role in the development of Alzheimer’s disease
by the contribution to the formation of the characteristic beta-amyloid and neurofibrillary
tangles. Thus, a common denominator between Alzheimer’s disease and bone fragility
may be a chronic low-grade aluminium intoxication [56].

Several limitations in the current study should be taken into account and the results
need to be interpreted with caution: 1. The foreign body reaction triggered by Ti particles
is a complex host immune response process involved in various immune cell interactions;
their role was only outlined in this study. 2. The small sample size of the examined implants.

The next step in our research will be the assessment of the functionality of the exam-
ined implant surfaces by in vitro experiments with osteoblast cell cultures and possibly by
in vivo experiments in animal models.

5. Conclusions

This work examined and compared the surface characteristics of different commer-
cially available dental implants, with a focus on chemical composition and roughness
parameters, in order to predict their effect on wear and metal particle release during
implant placement.

Based on the experimental outcomes, the following conclusions can be drawn:
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• Many implant’s surface macro-components (thread design, screw pitch) and mi-cro-
components (chemical surface composition, roughness, industrial surface treatment)
can influence the surface wear during the implant placement.

• The surface wear and metal particle release during the implant placement can be also
influenced by the manufacturer’s precision (sharpness of the cutting tool), the bone
density, and implant macromorphology.

• The biological/clinical value of the presence of metal friction residues on the pe-
ri-implant bone surface is not clear, although it was considered the major factor
responsible for aseptic implant loosening.
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