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Abstract. Let Ω ⊂ R
n, n ≥ 2, be a non-empty, bounded, open and convex

set and let f be a positive and non-increasing function depending only on
the distance from the boundary of Ω. We consider the p-torsional rigidity
associated to Ω for the Poisson problem with Dirichlet boundary condi-
tions, denoted by Tf,p(Ω). Firstly, we prove a Pólya type lower bound
for Tf,p(Ω) in any dimension; then, we consider the planar case and we
provide two quantitative estimates in the case f ≡ 1.
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1. Introduction

Let Ω ⊂ R
n, n ≥ 2, be a non-empty, bounded, open and convex set and let

p ∈ (1,+∞). We consider the Poisson equation for the p−Laplace operator,
defined as

−Δpu := −div
(
|∇u|p−2∇u

)
,

with Dirichlet boundary condition:
{

−Δpu(x) = f(d(x, ∂Ω)) in Ω
u = 0 on ∂Ω,

(1)

where f : [0, RΩ] → [0,+∞[ is a continuous, non-increasing and not identi-
cally zero function, d(·, ∂Ω) : Ω → [0,+∞[ is the distance function from the
boundary defined as

d(x, ∂Ω) := inf
y∈∂Ω

|x − y| (2)

and RΩ is the inradius of Ω, i.e.

RΩ = sup
x∈Ω

d(x, ∂Ω). (3)
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This class of functions, depending only on the distance, are the so called web
functions, see as a reference [7]. A function u ∈ W 1,p

0 (Ω) is a weak solution to
(1) if and only if

∫

Ω

|∇u(x)|p−2∇u(x)∇ϕ(x) dx =
∫

Ω

f(d(x, ∂Ω))ϕ(x) dx ∀ϕ ∈ W 1,p
0 (Ω).

The (f, p)-torsional rigidity of Ω, that we denote by Tf,p(Ω), is defined
as

Tf,p(Ω) = max
ϕ∈W 1,p

0 (Ω)
ϕ �≡0

(∫

Ω

f(d(x, ∂Ω))|ϕ(x)| dx

) p
p−1

(∫

Ω

|∇ϕ(x)|p dx

) 1
p−1

(4)

and, if up ∈ W 1,p
0 (Ω) is the unique solution to (1), we have

Tf,p(Ω) =
∫

Ω

fup dx.

For the sake of simplicity, when f ≡ 1 in Ω, we set Tp(Ω) := T1,p(Ω) and, if we
are also in the case p = 2, we set T (Ω) := T1,2(Ω). We recall that the quan-
tities T (Ω) and Tp(Ω) are usually called, respectively, torsional rigidity and
p−torsional rigidity and so, by analogy, we have chosen the above terminology
for Tf,p(Ω).

In what follows, we denote by |Ω| and P (Ω) respectively the Lebesgue
measure and the perimeter of Ω in the sense of De Giorgi. In [17] the author
gives some estimates on the torsional rigidity T (Ω). In particular, he proves
that, among all bounded, open and convex planar sets, the following inequality
holds

T (Ω)P 2(Ω)
|Ω|3

≥ 1
3
, (5)

and equality is asymptotically achieved by a sequence of thinning rectan-
gles. Moreover, Makai in [15] proves that among all bounded, open and convex
planar sets, the following upper bound holds

T (Ω)P 2(Ω)
|Ω|3

≤ 2
3
, (6)

which is sharp on a sequence of thinning triangles (for the exact definition of
thinning domains see Definition 11). Estimates (5) and (6) are generalized to
the p−Laplacian in [9]. More precisely, the authors prove that, in the class of
bounded, open and convex planar sets,

1
q + 1

<
Tp(Ω)P q(Ω)

|Ω|q+1 <
2q+1

(q + 2)(q + 1)
, q =

p

p − 1
, (7)

where the lower and the upper bounds hold asymptotically on a sequence of
thinning rectangles and on a sequence of thinning isosceles triangles, respec-
tively. In [8] the authors generalize the lower bound (7) in every dimensions,
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Figure 1. Minimal width and diameter of a convex set.

proving that for open, bounded and convex sets Ω ⊆ R
n, it holds

Tp(Ω)P q(Ω)
|Ω|q+1 >

1
q + 1

, (8)

and they extend this result also to the anisotropic case.
We also recall that in [6] the authors consider the functional

Hk(Ω) =
P (Ω)T k(Ω)

|Ω|αk
, αk = 1 + k +

2k − 1
n

,

and prove that, among bounded, open and convex sets in R
n, this functional

is bounded if and only if k = 1/2. More precisely, they prove the following:

1√
3

≤ H 1
2
(Ω) ≤ 2nn3n/2

ωn

(
n

n + 2

) 1
2

, (9)

where ωn is the Lebesgue measure of the unit ball. We note that, in the planar
case, the lower bound in (9) coincides with the one given in (5), while the
upper bound is strictly larger than the one given in (6). It is conjectured that,
in the higher dimensional case, the upper bound is

H 1
2
(Ω) ≤ n

(
2

(n + 1)(n + 2)

) 1
2

.

Moreover, we observe that the lower bound in (9) is asymptotically
achieved by a sequence of thinning cylinders. More precisely, denoting by wΩ

the minimal width and by diam(Ω) the diameter of the set (see Section 2 for
the exact definitions and Fig. 1), we give the following

Definition 1.1. Let Ωl be a sequence of non-empty, bounded, open and convex
sets of Rn. We say that Ωl is a sequence of thinning domains if

wΩl

diam(Ωl)
l→0−−→ 0, (10)

(see Fig. 2). In particular, if l > 0 and C is a bounded, open and convex
set of R

n−1 with unitary (n − 1)-dimensional measure, then, if l → 0, the
sequence

Ωl = l−
1

n−1 C ×
[
− l

2
,
l

2

]
(11)

is called a sequence of thinning cylinders. Moreover, in the case n = 2, the
sequence (11) is called sequence of thinning rectangles.
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Figure 2. Thinning cylinders.

The first result that we prove is a lower bound for the (f, p)-torsional
rigidity, which generalizes the lower bound in (7). The hypothesis that f is a
web function allows us to use the method of proof contained in [17].

Theorem 1.1. Let Ω be a non-empty, bounded, open and convex set of R
n,

n ≥ 2, and let f : [0, RΩ] → [0,+∞[ be a continuous and non-increasing
function such that f 
≡ 0. Then,

Tf,p(Ω) ≥ cp

μq+1
f (Ω)

f(0)P q(Ω)
, (12)

where

cp =
p − 1
2p − 1

, q =
p

p − 1
,

and

μf (Ω) =
∫

Ω

f(d(x, ∂Ω)) dx.

Moreover, the equality sign is asymptotically achieved by a sequence of
thinning cylinders.

We stress that both the estimate and the constant in Theorem 1.1 are
independent of n.

In the second part of the present paper, we focus our study on the case
f ≡ 1 and we obtain some quantitative estimates. We define the following
functional

Fp(Ω) =
Tp(Ω)P q(Ω)

|Ω|q+1
, q =

p

p − 1
, (13)

which is scaling invariant, since for every t > 0

|tΩ| = tn|Ω|, P (tΩ) = tn−1P (Ω)

and
Tp(tΩ) = tn+qTp(Ω).
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We can rewrite inequality (12), in the case f ≡ 1, as follows

Fp(Ω) ≥ cp.

From Theorem 1.1, it follows that along a sequence of thinning cylinders
{Ωl}l∈N defined in (11), we have

Fp(Ωl)
l→0−−→ cp.

This leads to the following stability issue: if Fp(Ω) is close to cp, can we
say that Ω is close in some sense to a cylinder? The following result gives us
information on the nature of the geometry of Ω: when Fp(Ω)−cp is sufficiently
small, the set Ω is a thin domain, in the sense that the ratio wΩ/diam(Ω) is
small.

The main novelty of the present paper consists indeed in the following
quantitative results of the Pólya estimates (5) and the Pólya type lower bound
in (7) by means of suitable deficits. For completeness, we recall some standard
references about isoperimetric quantitative results, see for example [4,5,10–
12,16]. The main difference between these results and ours is that the equality
in Pólya’s estimates is achieved asymptotically for a sequence of thinning cylin-
ders. Hence, the proof of quantitative result must take into account that we
do not have a minimum, as in the classical isoperimetric stability results.

Theorem 1.2. Let Ω be a non-empty, bounded, open and convex set of Rn and
let f ≡ 1. Then,

Fp(Ω) − cp ≥ K(n, p)
(

wΩ

diam(Ω)

)n−1

, (14)

where K(n, p) is a positive constant depending only on p and the dimension
of the space n. In particular, in the case n = 2, the exponent of the quantity

wΩ

diam(Ω)
is sharp.

We prove a second quantitative result in the case p = 2 and n = 2.

Theorem 1.3. Let Ω be a non-empty, bounded, open and convex set in R
2, let

f ≡ 1 and let p = 2. Then, there exists a positive constant K̃ such that

F2(Ω) − c2 =
T (Ω)P 2(Ω)

|Ω|3 − 1
3

≥ K̃

(
|Ω � Q|

|Ω|

)3

, (15)

where Ω � Q denotes the symmetric difference between Ω and a rectangle Q
with sides P (Ω)/2 and wΩ containing Ω.

We prove the first quantitative result (14) starting from the proof of
Theorem 1.1, estimating the remainder term with geometric quantities. Finally,
in order to prove Theorem 1.3, we use Steiner formulas (see Section 2.2 and
the references therein).

The paper is organized as follows. In Section 2 we recall some basic
notions, definitions and we recall some classical results, focusing in particular
on the class of convex sets. In Section 3 we prove Theorem 1.1 and, finally,
Section 4 is dedicated to the proof of the quantitative results when f ≡ 1.
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2. Notations and Preliminaries

2.1. Notations and basic facts

Throughout this article, | · | will denote the Euclidean norm in R
n, while · is

the standard Euclidean scalar product for n ≥ 2. By Hk(·), for k ∈ [0, n), we
denote the k−dimensional Hausdorff measure in R

n.
The perimeter of Ω in R

n will be denoted by P (Ω) and, if P (Ω) < ∞,
we say that Ω is a set of finite perimeter. In our case, Ω is a bounded, open
and convex set; this ensures us that Ω is a set of finite perimeter and that
P (Ω) = Hn−1(∂Ω). Moreover, if Ω is an open set with Lipschitz boundary, it
holds

Theorem 2.1. (Coarea formula) Let Ω ⊂ R
n be an open set. Let f ∈ W 1,1

loc (Ω)
and let u : Ω → R be a measurable function. Then,

∫

Ω

u(x)|∇f(x)|dx =
∫

R

dt

∫

Ω∩f−1(t)

u(y) dHn−1(y). (16)

Some references for results relative to the sets of finite perimeter and for
the coarea formula are, for instance, [1,14].

We give now the definition of the support function of a convex set and
minimal width (or thickness) of a convex set.

Definition 2.1. Let Ω be a bounded, open and convex set of Rn. The support
function of Ω is defined as

hΩ(y) = sup
x∈Ω

(x · y) , y ∈ R
n.

Definition 2.2. Let Ω a bounded, open and convex set of Rn, the width of Ω
in the direction y ∈ R is defined as

ωΩ(y) = hΩ(y) + hΩ(−y)

and the minimal width of Ω as

wΩ = min{ωΩ(y) | y ∈ S
n−1}.

We recall the following estimate, which is proved in [2] in the planar case
and is generalized in [3] to all dimensions.

Proposition 2.2. Let Ω be a non-empty bounded, open and convex set of R
n.

Then,
1
n

≤ |Ω|
P (Ω)RΩ

< 1. (17)

The upper bound is sharp on a sequence of thinning cylinders, while the lower
bound is sharp, for example, on balls. Moreover, for n = 2, any circumscribed
polygon, that is a polygon whose incircle touches all the sides, verifies the lower
bound with the equality sign.

In the planar case the following inequalities hold true (see as a reference
[18,20,21]).
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Proposition 2.3. Let Ω be a bounded, open and convex set of R2. Then,

2 ≤ wΩ

RΩ
≤ 3. (18)

The upper bound is achieved by equilateral triangles and the lower bound is
achieved by disks.

Moreover,

(wΩ − 2RΩ) P (Ω) ≤ 2√
3
w2

Ω, (19)

with equality holding for equilateral triangles, and

|Ω| ≤ RΩ (P (Ω) − πRΩ) , (20)

with equality holding for the stadii (convex hull of two identical disjoint balls).
Eventually,

2 diam(Ω) < P (Ω) ≤ π diam(Ω), (21)
where the lower bound is asymptotically achieved by a sequence of thinning
rectangles and the upper bound by sets of constant width.

2.2. Inner parallel sets

Let Ω be a non-empty, bounded, open and convex set of Rn. We defined the
distance function from the boundary in (2) and we will denote it by d(·). We
remark that the distance function is concave, as a consequence of the convexity
of Ω.

The superlevel sets of the distance function

Ωt = {x ∈ Ω : d(x) > t}, t ∈ [0, RΩ] (22)

are called inner parallel sets, where RΩ is the inradius of Ω, and we use the
following notations:

μ(t) = |Ωt|, P (t) = P (Ωt) t ∈ [0, RΩ]. (23)

By coarea formula (16), recalling that |∇d| = 1 almost everywhere, we have

μ(t) =
∫

{d>t}
dx =

∫

{d>t}

|∇d|
|∇d| dx =

∫ RΩ

t

1
|∇d|

∫

{d=s}
dHn−1 ds

=
∫ RΩ

t

P (s) ds;

hence, the function μ(t) is absolutely continuous, decreasing and its derivative
is μ′(t) = −P (t) almost everywhere. Moreover, it is possible to prove that the
perimeter P (t) is non increasing and absolutely continuous, as a consequence
of the concavity of the distance function and the Brunn-Minkowski inequality
for the perimeter (see [19] as a reference).

Finally, let us consider the case n = 2. For Ω non-empty bounded, open
and convex set of R2, the Steiner formulas for the inner parallel sets hold (see
[22]):

P (t) ≤ P (Ω) − 2πt ∀t ∈ [0, RΩ], (24)

μ(t) ≥ |Ω| − P (Ω)t + πt2 ∀t ∈ [0, RΩ], (25)
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equality holding in both (24) and (25) for the stadii (see [9]).
As a consequence of the Alexandrov-Fenchel inequality and the isoperi-

metric inequality for the quermassintegrals (see [19]), we have

− P ′(t) ≥ n(n − 1)ω
1

n−1
n

(
P (t)
n

)n−2
n−1

, (26)

that, for n = 2, reads
− P ′(t) ≥ 2π, (27)

with equality if Ω is a ball or a stadium.

3. Proof of Theorem 1.1

In this Section we prove Theorem 1.1. Since the proof is quite long, we split it
in two parts: firstly we prove inequality (12) and, then, we prove its sharpness.

Step 1: proof of inequality (12) in Theorem 1.1

Proof. Let us choose in the variational characterization (4) ϕ(x) = g(d(x)) as a
test function, where g is a positive and non-decreasing function in W 1,p([0, RΩ])
such that g(0) = 0. Then, by coarea formula (16),

∫

Ω

f(d(x, ∂Ω))ϕ(x) dx =
∫ RΩ

0

f(t)g(t)P (t) dt (28)

and ∫

Ω

|∇ϕ(x)|p dx =
∫ RΩ

0

g′p(t)P (t) dt. (29)

By (4), (28) and (29) we have

Tf,p(Ω) ≥

(∫ RΩ

0

f(t)g(t)P (t) dt

) p
p−1

(∫ RΩ

0

g′p(t)P (t) dt

) 1
p−1

. (30)

Now, if we define the following measure

μf (E) =
∫

E

f(d(x)) dx,

we have

μf (t) := μf (Ωt) =
∫

Ωt

f(d(x)) dx =
∫ RΩ

t

f(s)P (s) ds. (31)

Since f(s)P (s) is a decreasing function, we get

μf (t) ≤ (RΩ − t)f(t)P (t). (32)

From (31), we have

− μ′
f (t) = f(t)P (t) a.e. t ∈ [0, RΩ]. (33)
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Using (28), (33) and integrating by parts, we obtain
∫ RΩ

0

f(t)g(t)P (t) dt = −
∫ RΩ

0

g(t)μ′
f (t) dt =

∫ RΩ

0

g′(t)μf (t) dt.

Consequently, (30) becomes

Tf,p(Ω) ≥

(∫ RΩ

0

g′(t)μf (t) dt

) p
p−1

(∫ RΩ

0

g′p(t)P (t) dt

) 1
p−1

.

We can choose

g(t) =
∫ t

0

(
μf (s)
P (s)

)1/(p−1)

ds

and we observe that g ∈ W 1,p([0, RΩ]), since, using (32), we have

g(t) ≤
∫ RΩ

0

(RΩ − s)
1

p−1 f(s)
1

p−1 ds ≤ ‖f‖
1

p−1
L∞ R

p
p−1
Ω ∈ Lp([0, RΩ]),

g′(t) ≤ ‖f‖
1

p−1
L∞ R

1
p−1
Ω ∈ Lp([0, RΩ]).

So, we have

Tf,p(Ω) ≥
∫ RΩ

0

μ
p

p−1
f (t)

P
1

p−1 (t)
dt = − p − 1

2p − 1

∫ RΩ

0

(μ
2p−1
p−1

f (t))′

f(t)P
p

p−1 (t)
dt. (34)

Let us set cp = (p − 1)/(2p − 1). Since f(s) is a non-negative and non-
increasing function, integrating by parts in (34), we get

Tf,p(Ω) ≥ −cp

∫ RΩ

0

(µ
2p−1
p−1
f (t))′

f(t)P
p

p−1 (t)
dt = −cp

µ
2p−1
p−1
f (t)

f(t)P
p

p−1 (t)

∣
∣
∣
∣
∣

RΩ

0

+

− cp

∫ RΩ

0

µ
2p−1
p−1
f (t)

f2(t)P
2p

p−1 (t)

(
f ′(t)P

p
p−1 (t) +

p

p − 1
f(t)P

1
p−1 (t)P ′(t)

)
dt

≥ cp
µ

2p−1
p−1
f (Ω)

f(0)P
p

p−1 (Ω)
+

cp

P
p

p−1 (Ω)

∫ RΩ

0

µ
2p−1
p−1
f (t)

f2(t)
(−f ′(t)) dt,

(35)
where in the last inequality we use (32) and the fact that P ′(t) ≤ 0. Now, since
f(s) is non-increasing, we obtain the desired estimate

Tf,p(Ω) ≥ cp

μ
2p−1
p−1

f (Ω)

f(0)P
p

p−1 (Ω)
. (36)

�
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Step 2: proof of the sharpness of (12)

Proof. We prove that inequality (12) is sharp and that the optimum is asymp-
totically achieved by the sequence of thinning cylinders Ωl with unitary mea-
sure, as defined in (11), that is

Ωl = l−
1

n−1 C ×
(

− l

2
,
l

2

)

where C ⊆ R
n−1 is a bounded, open and convex set with unitary (n −

1)−measure. It is easy to verify that, for n ≥ 3,

P (Ωl) = 2Hn−1(l−
1

n−1 C) + lHn−2(∂(l−
1

n−1 C))

= 2l−1 + l
1

n−1 Hn−2(∂C),
(37)

and we observe that, in the case n = 2, we have that Hn−2(∂C) = 2.
Let u be the solution to the following p-torsion problem

{
−Δpu = 1 in Ωl

u = 0 on ∂Ωl,

such that ∫

Ωl

u dx = Tp(Ωl),

and let us consider the following function, depending only on the last compo-
nent xn of x ∈ R

n,

v(x) =
p − 1

p

[(
l

2

) p
p−1

− |xn|
p

p−1

]

,

satisfying
{

−Δpv = 1 in Ωl

v ≥ 0 on ∂Ωl.

The comparison principle, see [13], ensures that u ≤ v in Ωl and, as a
consequence,

Tp(Ωl) =
∫

Ωl

u dx ≤
∫

Ωl

v dx

=
p − 1

p

∫

l
− 1

n−1 C

∫ l
2

− l
2

[(
l

2

) p
p−1

− |xn|
p

p−1

]

dxn dHn−1

= 2
p − 1

p
l−1

∫ l
2

0

[(
l

2

) p
p−1

− x
p

p−1
n

]

dxn

= 2
p − 1

p

[
1 − p − 1

2p − 1

]
l−1

(
l

2

) 2p−1
p−1

= 2cpl
−1

(
l

2

) 2p−1
p−1

.

(38)
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By (38) and (37), we have

Tp(Ωl)P
p

p−1 (Ωl) ≤ 2cpl
−1

(
l

2

) 2p−1
p−1 (

2l−1 + l
1

n−1 Hn−2(∂C)
) p

p−1

= cp

(

1 +
l

n
n−1

2
Hn−2(∂C)

) p
p−1

.

Now, since f(x) ≤ f(0), we have that, for every bounded, open and convex set
Ω,

Tf,p(Ω) ≤ f
p

p−1 (0)Tp(Ω). (39)

It follows that

Tf,p(Ωl)P
p

p−1 (Ωl) ≤ f
p

p−1 (0)Tp(Ωl)P
p

p−1 (Ωl)

≤ cpf
p

p−1 (0)

(

1 +
l

n
n−1

2
Hn−2(∂C)

) p
p−1

.
(40)

Moreover we observe that, if f never vanishes, we can use its monotonicity
property to bound μf from below in the following way:

μf (Ω) =
∫

Ω

f(d(x)) dx ≥ f(RΩ)|Ω|,

obtaining

Tf,p(Ω) ≥ cp
f

2p−1
p−1 (RΩ)|Ω|

2p−1
p−1

f(0)P
p

p−1 (Ω)
. (41)

Joining (41) and (40), we obtain

cp
f

2p−1
p−1 (RΩl

)
f(0)

≤ Tf,p(Ωl)P
p

p−1 (Ωl) ≤ cpf
p

p−1 (0)

(

1 +
l

n
n−1

2
Hn−2(∂C)

) p
p−1

.

Eventually, passing to the limit when l → 0, observing that lim
l→0

RΩl
= 0 and

that f is continuous, we have

Tf,p(Ωl)P
p

p−1 (Ωl) −→ cpf
p

p−1 (0).

�

Remark 3.1. If we assume that f : [0, RΩ] → [0,+∞[ is a function in
L∞([0, RΩ]), then, using the variational characterization (4) and the result
(8) proved in [8], we have

Tf,p(Ω) ≥
(

inf
t∈[0,RΩ]

f(t)
) p

p−1

Tp(Ω) ≥
(

inf
t∈[0,RΩ]

f(t)
) p

p−1

cp
|Ω|

2p−1
p−1

P (Ω)
p

p−1
(42)

and the sharpness of (42) can be proved in an analogous way as in (12).
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4. The quantitative results

Proof of Theorem 1.2

Proof. Let us start by proving (14) in the case n = 2. If f ≡ 1, (35) becomes

Tp(Ω) ≥ cp
|Ω|

2p−1
p−1

P
p

p−1 (Ω)
+ cp

p

p − 1

∫ RΩ

0

(
μ(t)
P (t)

) 2p−1
p−1

(−P ′(t)) dt. (43)

Joining (17), (18), (27) and (43), we have that

Tp(Ω)P
p

p−1 (Ω)

|Ω|
2p−1
p−1

− cp > cp
p

p − 1
P

p
p−1 (Ω)

|Ω|
2p−1
p−1

∫ RΩ

0

(
μ(t)
P (t)

) 2p−1
p−1

(−P ′(t)) dt

≥ π

2
p

p−1

p

2p − 1
P

p
p−1 (Ω)

|Ω|
2p−1
p−1

∫ RΩ

0

(RΩ − t)
2p−1
p−1 dt

≥ π

2
p

p−1

(p − 1)p
(3p − 2)(2p − 1)

RΩ

P (Ω)

(
RΩP (Ω)

|Ω|

) 2p−1
p−1

≥ π

2
p

p−1

(p − 1)p
(3p − 2)(2p − 1)

RΩ

P (Ω)
.

Hence, by applying (21) and (18) we get

Fp(Ω) − cp ≥ K(2, p)
wΩ

diam(Ω)
, (44)

where

K(2, p) =
(p − 1)p

2
p

p−1 3(3p − 2)(2p − 1)
. (45)

We now prove that the exponent of
wΩ

diam(Ω)
in (44) is sharp. In order

to do that, we only need to find a sequence {Ωl}l∈N of convex sets with fixed
measure such that

M
wΩl

diam(Ωl)
≥ Fp(Ωl) − cp,

for some positive constant M . Let 0 < l < 1, we consider the following rectan-
gle

Ωl =
(

− 1
2l

,
1
2l

)
×

(
− l

2
,
l

2

)

and we notice that its inradius and area are RΩl
= l

2 and |Ωl| = 1. Let u be
the unique solution to {

−Δpu = 1 in Ωl

u = 0 on ∂Ωl

and let us consider the following function

v(y) =
p − 1

p

[(
l

2

) p
p−1

− |y|
p

p−1

]

,
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which solves {
−Δv = 1 in Ωl

v ≥ 0 on ∂Ωl.

The comparison principle gives u ≤ v in Ωl and

Tp(Ωl) =
∫

Ωl

up dx ≤
∫

Ωl

v dx.

Arguing as in (38), we have
∫

Ωl

v dx = cp

(
l

2

) p
p−1

.

On the other hand, the perimeter of the rectangle is given by

P (Ωl) =
2
l

(
1 + l2

)

and its Taylor expansion with respect to l > 0 is

P
p

p−1 (Ωl) =
(

2
l

) p
p−1 (

1 + l2
) p

p−1 =
(

2
l

) p
p−1

(
1 +

p

p − 1
l2 + o(l2)

)
.

Using (18) and (21), we get

Tp(Ωl)P
p

p−1 (Ωl) − cp ≤ cp

(
l

2

) p
p−1

(
2
l

) p
p−1

(
1 +

p

p − 1
l2 + o(l2)

)
− cp

≤ 2cp
p

p − 1
l2 ≤ 16cp

p

p − 1
RΩl

P (Ωl)

≤ 4cp
p

p − 1
wΩl

diam(Ωl)
and this concludes the proof in dimension n = 2.

Let us now prove (14) in the case n > 2. If we choose f ≡ 1, (35) becomes

Tp(Ω) ≥ cp
|Ω|

2p−1
p−1

P
p

p−1 (Ω)
+ cp

p

p − 1

∫ RΩ

0

(
μ(t)
P (t)

) 2p−1
p−1

(−P ′(t)) dt. (46)

Hence, combining (26) and (46), we have

Tp(Ω)P
p

p−1 (Ω)

|Ω|
2p−1
p−1

− cp ≥ k(n, p)
P

p
p−1 (Ω)

|Ω|
2p−1
p−1

∫ RΩ

0

(
μ(t)
P (t)

) 2p−1
p−1

P (t)
n−2
n−1 dt. (47)

Moreover, from (17), we obtain that

P (t) ≥ nωn(RΩ − t)n−1, (48)

and so, using (48) in (47), we get

Tp(Ω)P
p

p−1 (Ω)

|Ω|
2p−1
p−1

− cp ≥ k(n, p)
P

p
p−1 (Ω)

|Ω|
2p−1
p−1

∫ RΩ

0

(RΩ − t)
2p−1
p−1 +n−2

dt

= k(n, p)
(

RΩP (Ω)
|Ω|

) 2p−1
p−1 Rn−1

Ω

P (Ω)
.

(49)
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If we combine (49) with (17), with the following estimate (that can be found
in [2]):

RΩ ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wΩ

√
n + 2

2n + 2
n even

wΩ
1

2
√

n
n odd,

and with

P (Ω) ≤ nωn

(
n

2n + 2

)n−1
2

diam(Ω)n−1,

we finally get

Tp(Ω)P
p

p−1 (Ω)

|Ω|
2p−1
p−1

− cp ≥ K(n, p)
(

wΩ

diam(Ω)

)n−1

.

�

Remark 4.1. As far as the sharpness of (14) in the case n > 2, we conjecture
that the sharp exponent is 1 as in the planar case. Indeed, the minimizing
sequence {Ωl} satisfies

Tp(Ωl)P
p

p−1 (Ωl) − cp ≈ C
wΩl

diam(Ωl)
.

Remark 4.2. As already remarked in the Introduction, inequality (14) gives
information on the set Ω. Indeed, if

Fp(Ω) − cp

is small, then the ratio between wΩ and diam(Ω) has to be necessarily small,
i.e. Ω must be a thin domain. Moreover, inequality (14) tells us also that
the infimum of Fp(Ω) is not achieved among bounded, open and convex sets.
Assuming by contradiction that there exists a bounded, open and convex set
Ω̃ such that

Fp(Ω̃) = cp,

we have that
wΩ̃

diam(Ω̃)
< ε ∀ε > 0,

which is impossible.

Theorem 1.2 only tells us that any minimizing sequence of Fp(·) is a
sequence of thinning domains. On the other hand, Theorem 1.3 gives us more
precise information on the geometry of such minimizing sequence in the planar
case.
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Figure 3. Rectangle with sides P (Ω)/2 and wΩ containing Ω.

Proof of Theorem 1.3

Proof. Let Ω be a non-empty, bounded, open and convex set in R
2 and let

us consider a rectangle Q with sides P (Ω)/2 and wΩ containing Ω (see Fig.
3). Such a rectangle exists, since it is enough to choose the shorter side of Q
parallel to the direction of wΩ and to recall the lower bound in (21).

Now, let σ > 0 be such that

1
43 · 6

− π2

23 · 33

σ2

K2(2)
≥ 0; (50)

1
33 · 6

− π

48
σ

K(2))
− π2

25 · 3
σ2

K2(2)
≥ 0; (51)

π

4
− π

2
√

3
σ

K(2)
≥ 4

3
√

3
, (52)

where K(2) := K(2, 2) is the constant defined in (45). If

T (Ω)P 2(Ω)
|Ω|3 − 1

3
≥ σ,

then, by (18) and (17), we have

|Q � Ω|
|Ω| =

(
P (Ω)wΩ

2|Ω| − 1
)

≤
(

3
2

P (Ω)RΩ

|Ω| − 1
)

≤ 2.

So, it follows that

T (Ω)P 2(Ω)
|Ω|3 − 1

3
≥ σ

23
23 ≥ σ

23

(
|Q � Ω|

|Ω|

)3

.

On the other hand, let us assume that

T (Ω)P 2(Ω)
|Ω|3 − 1

3
< σ. (53)

By Theorem 1.2, we have that

wΩ

diam(Ω)
≤ 1

K(2)

[
T (Ω)P 2(Ω)

|Ω|3 − 1
3

]
<

σ

K(2)
, (54)

and we observe that, by the choice of σ made in (50)-(52), a ball cannot satisfy
(53).

Now, arguing as in (34) with f ≡ 1 and p = 2, we know that

T (Ω) ≥
∫ RΩ

0

μ2(t)
P (t)

dt. (55)
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We set ρ =
P 2(Ω)

4π
− |Ω| and pR = P (Ω)−2πRΩ and we observe that they are

both strictly positive by the isoperimetric inequality and the monotonicity of
the perimeter, respectively. Using inequalities (24) and (25) in (55), we have
that

T (Ω)P 2(Ω) ≥ P 2(Ω)
∫ RΩ

0

(|Ω| − P (Ω)t + πt2)2

P (Ω) − 2πt
dt

= P 2(Ω)
∫ RΩ

0

1
P (Ω) − 2πt

(
(P (Ω) − 2πt)2

4π
−

(
P 2(Ω)

4π
− |Ω|

))2

dt

= P 2(Ω)
∫ RΩ

0

(
(P (Ω) − 2πt)3

(4π)2
− ρ

2π
(P (Ω) − 2πt) +

ρ2

P (Ω) − 2πt

)

dt

=
P 2(Ω)

2π

(
P 4(Ω) − p4

R

4(4π)2
− ρ

4π

(
P 2(Ω) − p2

R

)
− ρ2 log

(
1 − 2πRΩ

P (Ω)

))
,

(56)
and, using Newton’s formula and the Taylor series for the logarithm, we get

P 2(Ω) − p2
R = 4πRΩP (Ω) − 4π2R2

Ω;

P 4(Ω) − p4
R = 8πRΩP 3(Ω) − 24π2R2

ΩP 2(Ω) + 32π3R3
ΩP (Ω) − 16π4R4

Ω;

− log
(

1 − 2πRΩ

P (Ω)

)
=

∞∑

i=1

1
i

(
2πRΩ

P (Ω)

)i

≥ 2πRΩ

P (Ω)
+

2π2R2
Ω

P 2(Ω)
+

8
3

π3R3
Ω

P 3(Ω)
+

4π4R4
Ω

P 4(Ω)
.

(57)
By (57) and (56), dividing by |Ω|3 and subtracting 1/3, we have

T (Ω)P 2(Ω)
|Ω|3

− 1
3

≥1
3

(
P (Ω)RΩ

|Ω| − 1
)3

+ π
R2

Ω

|Ω|2
(

|Ω| − 2
3
P (Ω)RΩ

)

+
4
3
π2 R3

Ω

P (Ω)|Ω|2
(

|Ω| − 3
4
P (Ω)RΩ

)
.

(58)

As an intermediate step we want to prove the following inequality:

1
3

(
P (Ω)RΩ

|Ω| − 1
)3

+ π
R2

Ω

|Ω|2
(

|Ω| − 2
3
P (Ω)RΩ

)

+
4
3
π2 R3

Ω

P (Ω)|Ω|2
(

|Ω| − 3
4
P (Ω)RΩ

)
≥ 1

6

(
P (Ω)RΩ

|Ω| − 1
)3

, (59)

that, combined with (58), implies

T (Ω)P 2(Ω)
|Ω|3 − 1

3
≥ 1

6

(
P (Ω)RΩ

|Ω| − 1
)3

, (60)
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where we choose the constant 1/6 as an arbitrary constant less then 1/3. In
particular, (59) is equivalent to

1
6
(
P (Ω)RΩ − |Ω|

)3 + πR2
Ω|Ω|

(
|Ω| − 2

3
P (Ω)RΩ

)

+
4
3
π2 R3

Ω

P (Ω)
|Ω|

(
|Ω| − 3

4
P (Ω)RΩ

)
≥ 0. (61)

In order to prove (61), we distinguish three cases:

1) if |Ω| ≥ 3
4
P (Ω)RΩ, then (61) is trivial, since the left hand side is the sum

of positive quantities;

2) if
2
3
P (Ω)RΩ ≤ |Ω| <

3
4
P (Ω)RΩ, using (18), (21), (50) and (54), we have

1
6
(
P (Ω)RΩ − |Ω|

)3 + πR2
Ω|Ω|

(
|Ω| − 2

3
P (Ω)RΩ

)

+
4
3
π2 R3

Ω

P (Ω)
|Ω|

(
|Ω| − 3

4
P (Ω)RΩ

)

≥ P 3(Ω)R3
Ω

(
1

43 · 6
− 2π2

33

R2
Ω

P 2(Ω)

)

≥ P 3(Ω)R3
Ω

(
1

43 · 6
− π2

23 · 33

w2
Ω

diam2(Ω)

)

≥ P 3(Ω)R3
Ω

(
1

43 · 6
− π2

23 · 33

σ2

K2(2)

)
≥ 0.

(62)

3) if
1
2
P (Ω)RΩ ≤ |Ω| <

2
3
P (Ω)RΩ, arguing as before, we have

1
6
(
P (Ω)RΩ − |Ω|

)3 + πR2
Ω|Ω|

(
|Ω| − 2

3
P (Ω)RΩ

)

+
4
3
π2 R3

Ω

P (Ω)
|Ω|

(
|Ω| − 3

4
P (Ω)RΩ

)

≥ P 3(Ω)R3
Ω

(
1

33 · 6
− π

48
wΩ

diam(Ω)
− π2

25 · 3
w2

Ω

diam2(Ω)

)

≥ P 3(Ω)R3
Ω

(
1

33 · 6
− π

48
σ

K(2)
− π2

25 · 3
σ2

K2(2)

)
≥ 0.

(63)

So, we have proved the intermediate step (60). Now, by combining (60)
and (19), we deduce

T (Ω)P 2(Ω)
|Ω|3 − 1

3
≥ 1

6

[
P (Ω)RΩ

|Ω| − 1
]3

≥ 1
6

[
P (Ω)wΩ

2|Ω| − 1 − 1√
3

w2
Ω

|Ω|

]3

. (64)
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Figure 4. Isosceles triangle Tl of base L and height l.

Using (20), (19), (54) and (52), we have

P (Ω)wΩ

2|Ω| − 1 ≥ P (Ω)RΩ

|Ω| − 1 ≥ π
R2

Ω

|Ω| ≥ π

|Ω|

(
wΩ

2
− w2

Ω√
3P (Ω)

)2

=
w2

Ω

|Ω|

(
π

4
− π√

3
wΩ

P (Ω)
+

π

3
w2

Ω

P (Ω)2

)

≥ w2
Ω

|Ω|

(
π

4
− π

2
√

3
wΩ

diam(Ω)

)

≥ w2
Ω

|Ω|

(
π

4
− π

2
√

3
σ

K(2)

)

≥ 4
3
√

3
w2

Ω

|Ω| .

(65)

Finally, by combining (64) and (65), we get the conclusion

T (Ω)P 2(Ω)
|Ω|3 − 1

3
≥ 1

6

[
P (Ω)RΩ

|Ω| − 1
]3

≥ K̃

[
|Q � Ω|

|Ω|

]3

. (66)

�
The next remark shows that a sequence of thinning triangles is not sharp

for (14) in the case n = 2 and this is the reason for which we need Theorem
1.3 to obtain more precise information.

Remark 4.3. Let us consider a sequence of isosceles triangles Tl of base L and
height l such that |Tl| = 1 (see Fig. 4).

If we compute (60) on the sequence Tl and we use (17), we get, for every
l,

T (Tl)P 2(Tl)
|Tl|3

− 1
3

≥ 1
6

(
P (Tl)RTl

|Tl|
− 1

)3

=
1
6

(67)

and, so, the quantity on the left-hand side of (67) is bounded away from zero.

Remark 4.4. We point out that
P (Ω)RΩ

|Ω| − 1 ≥ K
|Q � Ω|

|Ω| ,

in (66) is a quantitative version of the inequality in the right hand side of (17).
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Open problem 4.5. We conclude by listing the following open problems:
• We believe that the exponent 3 in the inequality (15) is not sharp: we

expect it to be 1. We clarify that in Example (4.6).
• We conjecture that the sharp exponent in (14) in the case n > 2 is 1 (see

Remark 4.1).
• The results contained in Theorem 1.3 could be studied in higher dimen-

sion and extended to the f, p-torsional rigidity. Our proof cannot be
adapted to higher dimension because in dimension n > 2 we do not
have any more Steiner formulas (24) and (25) for inner parallel sets.

Example 4.6. Let Ωl =
(

− 1
2l

,
1
2l

)
×

(
− l

2
,
l

2

)
be a sequence of rectangles of

measure 1. It is possible to give an explicit upper bound to the functional
F2(Ωl). Hence, following the computations in (38), we have

F2(Ωl) − c2 ≤ 4l2.

Considering the rectangle Q with sides P (Ωl)/2 and wΩ containing Ωl, that
is

Q =
(

−1 + l2

2l
,
1 + l2

2l

)
×

(
− l

2
,
l

2

)
,

it is straightfoward to compute

|ΩlΔQ| = 2l2.

Hence, we have

2 ≥ F2(Ωl) − c2

|ΩlΔQ| ≥ K̃ |ΩlΔQ|2 = K̃ l4.
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