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Abstract: Photoresponsive biomaterials have garnered increasing attention recently due to their
ability to dynamically regulate biological interactions and cellular behaviors in response to light. This
review provides an overview of recent advances in the design, synthesis, and applications of photore-
sponsive biomaterials, including photochromic molecules, photocleavable linkers, and photoreactive
polymers. We highlight the various approaches used to control the photoresponsive behavior of
these materials, including modulation of light intensity, wavelength, and duration. Additionally, we
discuss the applications of photoresponsive biomaterials in various fields, including drug delivery,
tissue engineering, biosensing, and optical storage. A selection of significant cutting-edge articles
collected in recent years has been discussed based on the structural pattern and light-responsive
performance, focusing mainly on the photoactivity of azobenzene, hydrazone, diarylethenes, and
spiropyrans, and the design of smart materials as the most targeted and desirable application. Overall,
this review highlights the potential of photoresponsive biomaterials to enable spatiotemporal control
of biological processes and opens up exciting opportunities for developing advanced biomaterials
with enhanced functionality.
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1. Introduction

Stimuli-responsive molecules, which an external stimulus can manipulate, have re-
cently received considerable interest. The use of light as a stimulus is fascinating for its
precise spatiotemporal control and non-destructive nature, as the intensity and wavelength
can be easily regulated [1–3]. Light-responsive molecules, also known as photoresponsive
molecules, are a class of compounds that undergo reversible or irreversible structural
changes upon exposure to light. The changes in their structure can alter their physical or
chemical properties, such as solubility, polarity, or reactivity. This ability to respond to
light has made light-responsive molecules an attractive area of research in many fields,
including chemistry, materials science, and biology [4]. When chromophores are irradiated
with light of a specific wavelength, they can undergo a reversible or irreversible conversion
between isomeric forms or ring-opening/closure. One of the most studied types of light-
responsive molecules is azobenzene. Azobenzene has a unique structure consisting of two
benzene rings connected by a central nitrogen–nitrogen bond. When exposed to UV light,
azobenzene undergoes a reversible trans-cis isomerization, changing from a linear to a bent
conformation. The cis form is stable without light, but upon exposure to visible light or heat,
it reverts to the trans form. This reversible photoisomerization has led to the development
of many applications, such as molecular switches, sensors, and photoresponsive materi-
als. Among photoswitches, azobenzenes, and their heteroaromatic analogs, like stilbenes
and hydrazones, undergo double-bond isomerization. Diarylethenes undergo cyclization;
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spiropyrans follow a mixed mechanism, as they experience electrocyclization first and then
trans-cis isomerization (Figure 1) [5–7]. Spiropyran has a unique structure consisting of two
rings connected by a single carbon atom. The two rings are typically a benzene ring and
a pyran ring, giving the molecule a bicyclic structure. The spiropyran group is sensitive
to UV light; it can be converted from its closed, non-polar form (spiropyran, SP) to its
open, polar form (merocyanine, MC) when exposed to the light of a certain wavelength
(Figure 1). This ring-opening reaction is reversible and can be triggered by visible light
or heat, leading to the development of photochromic materials and sensors. Diarylethene
molecules are compounds that have been discovered relatively recently, and they possess
a distinctive characteristic of transitioning from colorless to red when exposed to light.
Diarylethene compounds provide several advantages, such as excellent thermal stability
and high quantum yield for both their isomers. Due to these properties, they are well-suited
for application in photoresponsive materials, exhibiting robust performance.
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Figure 1. Chemical structures of the most used photoresponsive molecules.

Many of these molecules exhibit positive photochromism (P-type), whereby the photo-
chemically induced species has an absorption maximum λmax (metastable) that is shifted
to longer wavelengths (bathochromic shift) compared to λmax (stable). However, if the
initial photoisomer undergoes a decolorization (bleaching) during photoisomerization,
and λmax (stable) is greater than λmax (metastable), then the molecule displays negative or
inverse photochromism (T-type) [8]. When inserted into a polymeric matrix, the conver-
sion of photochromic molecules modifies the properties of the polymer, such as polarity,
hydrophilicity, solubility, or electrical and optical properties.

Photoresponsive biomaterials are created by integrating photoresponsive molecules,
such as spiropyrans, azobenzenes, hydrazones, and diarylethenes, into biomaterials like
hydrogels, nanoparticles, or scaffolds. This development has the potential to revolution-
ize biomedicine by enabling new approaches to drug delivery, tissue engineering, and
imaging. These materials can be controlled and manipulated using light, making them
an increasingly prominent part of biomedical research in fields like tissue engineering,
dynamic hydrogels for cell encapsulation, controlled drug delivery, biosensors, and mi-
crodevices [9–11]. Additionally, photoresponsive biomaterials are versatile platforms for
various biomedical applications because they can be engineered and designed with specific
properties and functionalities.

This review aims to present recent years’ innovation on photoresponsive molecules,
with particular attention to the four classes of compounds: azobenzene, hydrazones,
diarylethene, and spiropyran. For each category of photoswitches, applications in materials
such as hydrogels, films and coatings, and metal-organic frameworks (MOFs) are explored
in detail.
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2. Azobenzene Photoswitches

Thanks to its simple molecular structure and unique characteristics, azobenzene (AB)
has probably been the most studied photoswitches since its reversible isomerization was
first reported about eight decades ago [12]. When the trans isomer, which is thermodynam-
ically stable, is exposed to UV light (λ ≈ 365 nm), it isomerizes into the cis form. The latter
isomer is metastable, i.e., spontaneously returning to the trans form once the UV source
is removed. The return to the trans form can be significantly accelerated by heating or
exposure to visible light (λ ≈ 430 nm) [13]. Moreover, they proceed with high quantum
yields and are completely reversible. The most important aspect is that the two isomers
differ significantly in their geometries and electronic properties, making AB an attractive
component for the design of photoswitchable materials [14,15]. Some materials containing
AB can convert light into mechanical energy due to the change in molecular geometry that
occurs during AB isomerization. Additionally, the molecule’s polarity undergoes a signifi-
cant change as lone electron pairs on the nitrogen atoms take on opposite orientations in the
trans configuration, resulting in a non-polar molecule. On the other hand, in the cis isomer,
the lone electron pairs arrange themselves in a way that increases the molecule’s dipole
moment, typically ranging from 3.1–4.4 D compared to 0–1.2 D in the trans configuration
(Figure 2) [14,16].
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Several studies have reported the synthesis of azobenzenes and their derivatives for
potential use in biomedical applications due to their various biological properties, ranging
from antioxidant, antiviral, and antimicrobial to antitumor and antidiabetic [13,18–21].
Introducing these molecules into polymer matrices has resulted in the development of
intelligent biomaterials, known as ‘smart’ materials. These materials can respond to light
energy and cause large-scale changes or can utilize isomerization to provide intrinsic
activities, such as antibacterial properties [22].

2.1. Azobenzene-Based Hydrogels and Particles

An interesting area of application for azobenzene as a photo-commutator is photore-
sponsive hydrogels: soft, flexible, hydrophilic polymers that swell in water. Hydrogels
have attracted particular attention for their potential biomedical applications, such as
self-healing, soft tissue engineering, drug delivery, and wound healing [23]. However,
their weak mechanical strength significantly hinders their performance. The practical and
reversible photoisomerization of azobenzene allows for the regulation of the mechanical
properties of the gel. Su et al. [24] prepared a starch-based hydrogel with an incorporated
AB based on polyvinyl alcohol and acrylic acid (Figure 3):
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Figure 3. Preparation of starch-based hydrogel containing azo and carboxyl groups [24].

This hydrogel showed a dual response: a photoresponse due to the presence of
azobenzene groups (4-hydroxy azobenzene (p-HAB)) and a pH response due to the starch-
based macromonomers and polyvinyl alcohol (PVA).

L. Dai et al. [25] reported a new photoresponsive hydrogel (PR-gel) (Figure 4) devel-
oped by integrating 4arm-polyethylene glycol (PEG) and azobenzene, as photoswitches,
into cellulose nanofibrils (CNFs).
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Figure 4. (a) Structures of polymers 4arm-PEG and the synthetic procedure of Azo-NHS and
(b) Schematic illustration of the preparation procedures of PR-gel [25].

Under UV irradiation, the photoisomerization of azobenzene in the PR-gel caused
softening of the hydrogel, allowing the photocontrolled release of bovine serum albumin.
The hydrogel also exhibited good mechanical strength, stability, and reversible structure
recovery, as well as biocompatibility. Zhao et al. [26] have functionalized a PEG hydrogel
with orthofluoroazobenzene as a crosslinker. Upon irradiation with blue and green light,
this hydrogel showed a reversible photo-modulation of its elasticity (Figure 5).
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light-emitting diodes (LEDs) irradiation [26].

This system avoided UV light irradiation, which affects the photostability of materials
and can also be a problem for their use in biological applications. More recently, a new
class of hydrogel, supramolecular hydrogels, has been developed. These are formed by the
self-aggregation of low molecular weight compounds through a combination of non-covalent
interactions. Since these are weak interactions, they can be easily broken when exposed to
light. Among the possible non-covalent interactions, host-guest interaction is an important
one. Thanks to their low toxicity, the most used guest molecules are cyclodextrins (β-CD).
When the azobenzene is in the trans configuration, it enters the cyclodextrin cavity. Following
UV irradiation, when the azobenzene is in the cis configuration, it exits from the cavity [27].

Y. Kim et al. [28] introduced multifunctional gels that contained a host-guest complex
between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and β-cyclodextrin,
linked via disulfide bonds with agarose.

The resulting hydrogels showed self-healing properties through host-guest complex-
ation and gel-sol transition following UV light-induced azobenzene isomerization. The
self-regeneration capacity was confirmed through tensile tests, and drug release was
accelerated by 80% within 3 h using UV light. The hydrogels were non-cytotoxic and
had the potential as biomedical materials for the development of drug delivery systems.
Rosales et al. [29] reported the design of hyaluronic acid-based hydrogels that used light to
reversibly modulate the hydrogel properties through supramolecular crosslinking formed
by azobenzene linked to β-cyclodextrin (Figure 6a). The mechanical properties of the hy-
drogel and network connectivity could be modified by altering the binding affinity between
azobenzene and β-cyclodextrin using different wavelengths of light. The hydrogels had
potential applications in drug delivery and mechanobiology, as they allow for temporal
regulation of the material properties. In the same way, in a recent paper by Gao et al. [30],
a hyaluronic acid-based supramolecular gel was formed using an amphiphilic azobenzene
(APA) and β-cyclodextrin (Figure 6b). The hydrogels exhibited a photo- and thermo-
responsive sol-gel transition due to host-guest interactions between Azo and β-CD and
intermolecular hydrogen bonds of hyaluronic acid.

Furthermore, the release of Rhodamine B from the hydrogel could be controlled by
irradiation with UV light or high temperature. In the work of Salzano de Luna et al. [31],
the design of a supramolecular hydrogel formed by self-assembly between azobenzene-
4,4′-dicarboxylic acid (AZO) and cetyltrimethylammonium bromide (CTAB) in a molar
ratio of 2:1 CTAB: AZO was reported (Figure 7).
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Figure 7. Chemical structures and schematic of the self-assembly of CTAB and AZO molecules [31].

The hydrogels showed self-healing capabilities when left at rest after stress-induced
damage. The AZO isomerization induced by light also gave the gel a light-responsive
property. To avoid using a UV light for excitation, Mandl et al. [32] modified a supramolec-
ular hydrogel composed of an azobenzene-modified poly(acrylic acid) copolymer and
deoxycholate-β-cyclodextrin with lanthanide-doped nanoparticles (LiYF4:Tm3+/Yb3+)
(Figure 8), which emitted UV light upon NIR excitation. A complete gel-sol transition
was observed within 60 min with irradiation at 980 nm.

Polymer particles with sizes ranging from nano to micrometer have practical uses
in various fields, such as adhesives, cosmetics, inks, and paints, as well as potential ap-
plications in the environmental, optical, electrical, and medical areas. Polymer particles
with well-designed surfaces have potential applications in drug delivery. Photorespon-
sive polymer particles that change in response to light enable the regulation of drug
delivery [33,34]. Zhao et al. [35] showed the development of nanocapsules consisting of
polymers functionalized with azobenzene groups and up/down conversion nanoparticles
(U/DCNPs), which emitted in the UV/visible region following excitation in the NIR, trig-
gering the photoisomerization of the azobenzene groups in the polymer structure (Figure 9).
As a result, the nanocapsules could decompose and change from large initial sizes (ap-
prox. 180 nm) to small U/DCNPs (approx. 20 nm). The polymeric species, poly(diallyl
dimethylammonium chloride) (PDADMAC) and poly[1-(4-(3-carboxy-4-hydroxy-phenyl
azo) benzenesulfonamide)-1,2-ethanediyl] (PAZO) with positive and negative charges,
respectively, were assembled layer by layer through electrostatic interaction on the surface
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of colloidal SiO2 nanoparticles. The composites were anchored with negative charges to
U/DCNPs.
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to scattered polymers and 20 nm U/DCNPs by [35].

The advantages of these nanocapsules were their ability to avoid biological barriers
and ensure a prolonged circulation time in the blood. They could also accumulate in cancers
four times more effectively than in normal tissues and, after NIR-induced dissociation,
could be rapidly eliminated from cancers within one hour and release loaded drugs for
chemotherapy. In recent work, Zhou et al. [36] used upconverting nanoparticles coated
with photoswitchable azobenzene and cyclodextrin and loaded with microglia activator,
bacterial lipopolysaccharide (LPS). NIR light-induced photoisomerization of the Azo group
and subsequent dissociation of β-CD produced the release of LPS.
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2.2. Azobenzene-Based Films and Coatings

When azobenzene is incorporated into a polymer matrix to form a thin film or
coating, it can exhibit interesting and functional properties. For example, the photoi-
somerization of the azobenzene can lead to changes in the surface topography and wet-
tability of the coating, which can be exploited in various applications such as optical
data storage, photoresponsive adhesives, and responsive membranes. Wang’s research
group [37] synthesized a light-reactive surface with switchable adhesive and antibac-
terial properties. The azo-functionalized polymers, poly(6-((2,6-methoxyphenyl)azo-4-
(2′,6′-dimethoxy)phenoxy)propyl dimethylaminoethyl methacrylate-coDMAEMA) (mAzo-
PDMAEMA) and poly(6-((2,6-dimethoxy phenyl) azo-4-(2,6-dimethoxy) phenoxy)hexyl
acrylate-co-acrylic acid) (mAzo-PAA) exhibited antimicrobial and bioadhesive properties
respectively, while the substrate was β-CD-grafted silica (Figure 10a).
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surface to realize their multiple functions [38].

Light irradiation, resulting in the isomerization of the azobenzene moiety, promotes or
hinders surface coating via host-guest interaction between azobenzene and cyclodextrin. In
the field of surfaces with antibacterial properties with potential biomedical and surgical appli-
cations, Ni et al. [38] have developed an intelligent triple-function surface (Figure 10b,c) by
integrating temperature-reactive poly(N-isopropyl acrylamide) (polyNIPAM), photoreactive
Azo/CD complex, hydrophilic segments of poly(2-hydroxyethyl methacrylate) (poly HEMA).

Specifically, the hydration layer generated by the hydrophilic segments of poly(2-
hydroxyethyl methacrylate) (PHEMA) prevented bacterial adhesion and subsequent prolif-
eration. In contrast, the synergistic effect of the poly(N-isopropylacrylamide) (PNIPAM)
chain and the dissociation of the host-guest azobenzene/cyclodextrin (Azo/CD) complex
significantly promoted the release of bacteria in response to temperature change and UV
light. Thus, the resulting surface simultaneously displayed three successive antimicrobial
functions: it resisted ∼84.9% of the initial bacterial attack, killed 93.2% of the inevitably
adhered bacteria, and released over 94.9% of the killed bacteria even after three cycles.
Based on the same concept is the surface recently developed by Zheng et al. [39]. The
material consisted of an azo-functionalized antibacterial and antifouling polymer, poly((2-
(methacryloxy)ethyl)) trimethyl ammonium chloride (Azo-PMETAC), and an azo-modified
polymer (sulfobetaine methacrylate) (Azo-PSBMA). The two polymers were anchored to a
poly(2-hydroxyethyl methacrylate) (PHEMA) surface containing cyclodextrin groups.
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The authors demonstrated that the new material, with excellent antibacterial prop-
erties, not only inhibited bacterial growth, but upon isomerization of the azobenzene
units, the polymer structure broke down, and all bacteria on the surface were released.
Furthermore, following irradiation with visible light at 450 nm, the surface could regain
antibacterial properties. Antimicrobial polymer films are also used in food packaging
to reduce waste and increase the quality standards of perishable products [40,41]. In a
paper by Marturano et al. [42], the use of photoreactive nanocapsules containing thyme
essential oil as functional coatings for polyethylene and polylactic acid films to obtain active
antimicrobial packaging was reported (Figure 11). The role of the azobenzene molecule
was to promote the release of the active ingredient.
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Figure 11. Antimicrobial active packaging based on polyethylene and polylactic acid films function-
alized with photoreactive nanocapsules with thyme essential oil [42].

The effectiveness of the light-triggered release system was confirmed by the eight-fold
increase in the concentration of thyme oil in the headspace of the films after UV exposure
compared to non-irradiated films.

2.3. Azobenzene-Based MOFs

Azobenzene units are usually integrated into metal-organic-frameworks (MOFs) struc-
tures as pore-filling guests, pendant groups, or scaffold backbone incorporation to obtain
the photoswitchable azobenzene-containing MOFs, as represented in Figure 12 [43,44].
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Photoswitchable azobenzene-containing MOFs have potential applications in the
separation of gas or liquid mixtures due to light-induced adjustment of the pore size [45].
Prasetya et al. [46] have synthesized a new generation-2 light-responsive MOF, Azo-MOF-1,
with an azobenzene photoresponsive compound. The presence of the azobenzene group in
Azo-DMOF-1 was also beneficial in making the MOF photoresponsive toward CO2, which
was applicable for low-energy CO2 capture and, also, CO2/N2 selectivity. At the same time,
Jiang et al. [47] have developed photoresponsive metal-organic frameworks (PMOFs) for
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CO2 adsorption by introducing tetraethylene pentamine into azobenzene-functionalized
MOFs (Figure 13).
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sites and photoresponsive molecules driven by photoisomerization [47].

Amines are specific active sites for CO2 and help to capture CO2 selectively. The iso-
merization of azobenzene triggered by UV/Vis light significantly regulates the electrostatic
potential of amines, modulating the adsorption of CO2 on strong, active sites.

In recent work, Chen et al. [48] have developed a novel photoswitchable metal-organic
framework (MOF) thin film (Cu2(AzoBPDC)2 with azobenzene photoswitches side groups
to realize the reversible remote-controlled switching.

Thanks to the reversible photoisomerization of the azobenzene moiety under UV
(365 nm) and Visible (450 nm) irradiation, the authors have obtained the remote-control
mode for the diffusion flow of polar gas molecules in MOF thin film. In fact, when the
azobenzene switched to the cis state, the diffusion flux of the polar molecules significantly
increased, but that of the non-polar molecules did not change. In another work [49], the
diffusion behaviors of CO2 and N2 gases on a series of MOFs systems based on Mg-MOF-74-
III as a platform and a chain containing arylazopyrazole, modified with methylene amine
as the functional molecule have been investigated. The diffusion of CO2 was regulated by
cis-to-trans isomerization of the functional unit.

Another application of photoresponsive azo-based MOFs was dye adsorption. In a
work of Mogale et al. [50], two microporous photoresponsive azobenzene dicarboxylate
MOFs of Al3+ (Al-AZB) and Zr4+ (Zr-AZB) (Figure 14a) were synthesized for the adsorption
of Congo red (CR) dye. The Al-AZB demonstrated more effective adsorption of CR in
comparison to the Zr-AZB due to much higher surface area, pore volume, and pore size.
Conversely, Zr-AZB exhibited a faster dye removal. The results demonstrated the efficacy
of synthesized photoreactive MOFs as highly capable materials for dye adsorption. For
the same purpose, Parsa et al. [51] have developed a fluorescence sensor, 2D-metal-organic
framework (TMU-54), containing the azobenzene group for the determination of quinone,
1,8-dihydroxyanthraquinone (danthron) (Figure 14b).
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Figure 14. Chemical structure of (a) azobenzene dicarboxylic acid ligand and its respective MOFs
(Al-AZB and Zr-AZB) by Mogale et al. [50]; (b) 1,8-dihydroxyanthraquinone, azobenzene (Al-AZB)
and stilbene-based (Al-STB) MOFs [51,52].

Investigations revealed that Lewis basicity and electron donation of azobenzene
significantly affected danthron sensing by TMU-54. Aluminum-based MOFs containing
azobenzene and stilbene dicarboxylic acid as linkers were studied by Ernst H.G. Langner’s
research group [52] in recent work for celestine blue dye adsorption. Both azobenzene-
based MOF (Al-AZB) and stilbene dicarboxylic acid-based MOF (Al-STB) (Figure 14b)
exhibited favorable characteristics that make it efficient in adsorbing celestine blue from
a solution, thanks to hydrogen bonding interaction. While azobenzene linker displayed
trans-cis photoisomerization when exposed to UV and ambient light, stilbene linker did not
show photoisomerization and only the trans isomer was observed, even after prolonged
exposure to UV irradiation at 365 nm.

3. Hydrazone Photoswitches

Hydrazones are organic compounds that contain a carbon–nitrogen double bond
(C=N) that links a hydrazine functional group (-NHNH2). They can be considered deriva-
tives of hydrazine (H2NNH2) in which one of the hydrogen atoms has been replaced by
a carbonyl group (C=O). Hydrazones can be synthesized by the condensation reaction of
a hydrazine derivative with a carbonyl compound such as an aldehyde or a ketone. This
reaction is typically catalyzed by an acid catalyst, such as hydrochloric acid or sulfuric
acid [53]. Hydrazones have a wide range of applications, including as intermediates in the
synthesis of pharmaceuticals, as ligands in coordination chemistry, and as chromogenic and
fluorogenic sensors for various analytes [54]. They also exhibit biological activities, such as
antitumor, antimicrobial, and antiviral properties. Hydrazones can undergo trans-to-cis
isomerization of the C=N bond upon light exposure (Figure 15).
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Hydrazones also undergo photochromism, the reversible change of color or absorbance
upon irradiation with light. The photochromic behavior of hydrazones is typically at-
tributed to the formation of a tautomeric form upon photoisomerization, which has a
different absorption spectrum than the original form. The tautomeric form can then revert
to the original state upon removal of the light source. As a result, hydrazone photoswitches
have been adopted in various adaptive materials, such as liquid crystals, hydrogels, actuat-
ing polymers, and nanoparticles for drug release [55].

3.1. Hydrazone-Based Hydrogels and Particles

One example of a photoresponsive hydrazone biomaterial is a hydrogel that can
undergo reversible changes in its mechanical properties upon exposure to light. This
hydrogel is made by crosslinking a hydrazone-containing polymer with a light-sensitive
crosslinker, which can be activated by UV light. When the hydrogel is exposed to UV light,
the crosslinker forms additional crosslinks within the polymer network, leading to a stiffer
and more stable hydrogel. However, when the light is removed, the crosslinks break down,
and the hydrogel returns to its original, softer state.

In a recent work by Wang [56], hydrazone molecules have been used to create poly-
meric vesicles capable of releasing cargo molecules on demand by responding to specific
stimuli. The synthesis of amphiphilic block copolymers based on oligo(phenylactic acid)
(OPLA) monodispersed molecular weight, with hydrazone photoswitches at particular
locations, was reported in the paper. Upon light irradiation, the OPLA block (Figure 16)
changed its conformation thanks to hydrazone photoswitches E-Z isomerization. In addi-
tion, the position and number of hydrazonic photoswitches in the monodisperse OPLA
block were important factors for the reversible shape transformation of the polymer vesicles
from an isotropic to an anisotropic morphology.

Ravoo and co-workers [57] have developed versatile photoresponsive gels using
tripodal low molecular weight gelators (LMWGs) with a cyclohexane-1,3,5-tricarboxamide
(CTA) core that induced self-assembly of supramolecular polymers through face-to-face
hydrogen bonding and planar conformation. The CTA core was substituted with three
arylazopyrazole (AAP) arms to make the gels photoresponsive and coupled AAP to the core
through hydrazones, allowing the hydrogelator and the resulting photoresponsive hydrogel
to be assembled and disassembled using dynamic covalent chemistry (see Figure 17).
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The researchers employed UV and visible light irradiation to control the stiffness of
the hydrogels. They observed that the E conformation of the hydrogelators, which was
more stable and planar, exhibited a higher storage modulus. In contrast, the Z isomer of
both G2 and G3 caused a disruption of the planarity and the additional π-π interactions
provided by AAPs, leading to a lower storage modulus and a softer gel.

Recently, Borelli et al. [58] have developed stress-relaxing hydrogels that combine
biopolymer and synthetic macromer components to form hybrid networks. The hyaluronic
acid was functionalized with an aldehyde or hydrazide groups to produce covalent hy-
drazone networks. Then, the authors used poly(ethylene glycol) functionalized with
bicyclononyne and heterobifunctional small molecule crosslinkers that contained azide
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and benzaldehyde moieties (Figure 18) for stabilizing covalent networks. By adjusting the
composition of the gels, the researchers could control the characteristic timescale for stress
relaxation and the degree of stress relaxation that occurred.
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The authors aimed to develop a photoresponsive hydrogel with tunable properties for
the expansion and release of MSCs, mesenchymal stem/stromal cells, used in cell therapies.

Guo et al. [59] have developed a photochromic nanoparticle system (LSNP) that could
be used to monitor their localization in tumor cells to improve the precision of controlled
drug release, thus enhancing the efficiency of drug delivery. Their system was formed
by assembling amphiphilic copolymers modified with fluorescent bistable hydrazone
photoswitches (Figure 19).
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Figure 19. Schematic illustration of the switchable hydrazone-based molecule upon 450 nm irradia-
tion, leading to the disruption of the nanoparticles and subsequent triggering of drug release [59].

The intrinsic emission of the hydrazone switch allowed for the observation of the
particles being taken up by cells and their subsequent distribution within the cells. Upon Z
to E photoswitching of the hydrazone switch within the nanoparticles, the particles ex-
panded, leading to drug release and accompanied by emission quenching. The degree of
quenching was used as an internal indicator to determine the amount of drug released.
Khosravi et al. [60] reported the fabrication of immunomagnetic nanoparticles using a rho-
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damine hydrazone immunosensor (see Figure 20) for separating Mycobacterium avium spp.
paratuberculosis (MAP) bacteria from bovine feces, milk, and colostrum.
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netic particles [60].

Fe nanoparticles with diethylene triamine pentaacetic acid (DTPA) or ethyl (dimethyl
aminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) as linkers were coupled
with purified antibodies from hyperimmunized sera.

3.2. Hydrazone-Based Films and Coatings

In films and coatings, hydrazone groups are incorporated into the polymer matrix,
either as pendant groups or as crosslinking agents. Upon exposure to UV or visible light,
the double bond in the hydrazone group undergoes a photochemical reaction, leading
to the formation of a new chemical bond and a change in the structure and properties
of the material. This change can include a change in color, transparency, mechanical
properties, or even chemical reactivity. For example, a photoresponsive coating containing
hydrazone groups may change from opaque to transparent upon exposure to UV light or
from soft to hard upon exposure to visible light. Hydrazone-based photoresponsive films
and coatings have potential applications in a variety of fields, including sensors, smart
windows, optical storage devices, and drug delivery systems [54,61]. They offer advantages
such as high sensitivity, fast response times, and low toxicity, making them attractive for
use in biomedicine and other sensitive applications [62].

Zhang et al. [63] have used photoswitchable hydrazone to develop a new photoflu-
orochromic AIE system. They introduced luminogenic units with aggregation-induced
emission (AIE) characteristics into the photoresponsive hydrazone to construct three AIE-
active and photofluorochromic compounds, namely TPAHPy, TPAHB, and TPAHPyMe,
incorporated into polybutadiene (PB) films to fabricate high-resolution, rewritable, and
intensity-variable photopatterns (Figure 21).
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TPAHPy was an excellent and reversible photoswitch with efficient fluorescence
and fast photoisomerization. The TPAHPy/PB films were used to create detailed and
quantitatively described images, which could be rewritten and had variable intensity.

Aprahamian and co-workers [64] reported a series of polyacrylate- and polymethacry-
late-based polymer films having bistable hydrazone photoswitches as pendants. In their
work, a correlation was observed between the Z/E isomer ratio and the Tg value of films:
an increase in the amount of the E isomer in the polymer resulted in a noticeable rise
in Tg, which could reach up to 22 ◦C. They believed that this was due to the increased
order induced by the hydrazones during the Z→E photoisomerization process, which
led to a novel photo-hardening effect. Ma et al. [65] have developed two hydrazone-
based photoswitches with excellent reversible photoisomerization properties and extremely
long thermal stability. The authors have used this compound in the polymer matrix to
fabricate transparent polymethylmethacrylate (PMMA) thin films and demonstrated that
the excellent photochromic behavior could be further enhanced by coordinating them with
various zinc salts. This coordination allowed for easy tuning of emission color during the
intramolecular charge transfer (ICT) process. As a result of these properties, it was possible
to create invisible, multicolor luminescent patterns using rewritable printing. The printed
images had high resolution, excellent stability, and long retention times, making them ideal
for anti-counterfeiting and ultrahigh density data storage applications.

4. Diarylethene Photoswitches

Diarylethene molecules (DAE) are a relatively recent class of compounds with the
unique property of changing color from colorless to red. They belong to the P-type pho-
tochromic molecules, which are photochemically reversible but thermally irreversible [66].
This means that once the photogenerated right-side isomers are formed, they are highly
stable and do not easily revert to the left-side isomers in the dark at room temperature
(Figure 22). Diarylethenes are derived from stilbene, featuring five-membered heterocyclic
rings, such as thiophene or furan rings, in place of the phenyl rings found in stilbene. These
modifications increase thermal stability for both the open and closed-ring isomers, making
diarylethenes highly suitable for repeated cycles of coloration and discoloration [67,68].
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Diarylethenes offer several benefits, including a high quantum yield and excellent
thermal stability for both isomers. These qualities make them ideal for photoresponsive
materials, as they exhibit strong performance. One area where they have been particularly
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useful is in supramolecular systems, where they can regulate photoresponsive assembly,
induce morphological alterations, and trigger the gel-to-sol transition [54].

4.1. Diarylethene-Based Nanoparticles

The study of Dèbarre and co-workers [69] described the synthesis of silica nanoparti-
cles functionalized with a diarylethene-based derivative that retained its photochromic and
fluorescence properties (Figure 23). For the first time, fluorescence correlation experiments
were used to observe the photoinduced ring-closure reaction. The authors suggested a
model to explain the emission dynamics of the particles based on a photoinduced intercon-
version between the inactive and photoactive conformers.
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Figure 23. (a) Schematic steps to prepare photochromic silica nanoparticles with (b) azido-
functionalized surface and (c) photochromic-functionalized surface [69].

These particles could be helpful in imaging or bioimaging. Kim et al. [70] developed
a new strategy for color-specific photoswitching, in which blue emission was selectively
and completely switched, and orange emission was unaltered. The authors used a two-
component system in polymer nanoparticles, composed of 3,3′-(perfluorocyclopent-1-ene-
1,2-diyl)bis(2-ethylbenzo[b]thiophene 1,1-dioxide) (DBTEO) (Figure 24a) as a photoswitch-
able blue emitter and 3-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol
(HPNIC) (Figure 24b) or Nile Red (Figure 24c) as an orange emitter, respectively.

Switching between UV and visible light, the system achieved 100% on/off blue emis-
sion of diarylethene, while the orange emission of the ESIPT dye remained unaltered. For
the same bioimaging application, the new thermostable photoswitchable red fluorescent
polymer nanoparticles (TPFPNs) were developed by Tian et al. [71]. The TPFPNs described
in the article incorporate a red fluorescence dye, 1,6,7,12-tetra(p-tBu-phenoxy)-3,4,9,10-
di(anhydride) perylene (TBPDI), as the donor and a photochromic diarylethene derivative
(DTEDA) as the acceptor (Figure 25). Upon exposure to UV light, DTEDA underwent a
structural change from an opened-ring state (DTEDA-o) to a closed-ring form (DTEDA-c),
which triggered a fluorescence resonance energy transfer (FRET) from TBPDI to DTEDA-c.
This caused the red fluorescence to transition to a quenching state. In addition, TPFPNs
were successfully used for reversible fluorescence bioimaging in Zebrafish.
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The main feature of upconverting nanoparticles (UCNPs) is to efficiently absorb
near-infrared light and transfer the upconverted excitation energy to activate appropriate
photoswitches, such as diarylethene DAE, by UV or visible light. Lanthanide-doped
upconverting nanoparticles (UCNPs) doped with either Er/Yb or Tm/Yb ion couples,
specifically hexagonal-phase NaYF4 nanoparticles, are highly effective for sensitizing
photochemical reactions. While most studies on these UCNPs have focused on their visible
emissions, only a few have explored their UV upconversion emissions, due to the UV
radiation is not feasible, such as in biological tissues and fluids [72,73].
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4.2. Diarylethene-Based Films and Coatings

Photoreactive diarylethene-based films and surfaces undergo a reversible photochem-
ical reaction, changing their optical and surface properties upon exposure to light. The
transition between these two isomers results in a change in the chemical and physical prop-
erties of the material, including color, fluorescence, wettability, adhesion, and mechanical
properties. Thin films and surfaces made of diarylethene derivatives have been widely in-
vestigated for their applications in photonic devices, optical data storage, sensors, switches,
and micro/nanoelectronics. These materials can be deposited onto various substrates,
including glass, silicon, and polymers, using various techniques, such as spin coating,
dip coating, and Langmuir-Blodgett deposition. The resulting films and surfaces exhibit
excellent stability, high photoresponsiveness, and good reversibility, making them ideal
candidates for various photo-actuated applications. Jiang et al. [74] have recently developed
a new photoswitchable multilayer fluorescent polymer PMFP, obtained by copolymeriza-
tion of butyl acrylate (BA) and styrene (St) with two fluorescent photochromic monomers,
sulphonyl diarylethylene-linked 4-hydroxybutyl acrylate (SDTE) and spiropyran-linked
methacrylate (SP8) (Figure 26).
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Figure 26. Chemical structure and photoisomerization of two photochromic fluorescent monomers
to a photoswitchable multistate fluorescent polymer that can reversibly switch between multiple
emission states (non-emission, red and green) [74].

By changing the irradiation light, the ring-closed, non-fluorescent spiropyran units
(SP8-c) and the ring-opened diarylethene units (SDTE-o) were converted to their corre-
sponding fluorescent states. Furthermore, due to the FRET from the diarylethene core
excited to the spiropyran, the emission of the polymer in the film was reversibly switched
between non-emitting and emitting states in red or green (see Figure 26). The same au-
thors [75] designed polymeric films based on photoswitchable polyurethanes via covalent
bonding of photochromic diarylethene DTE-CH2OH (Figure 27). Upon irradiation with
UV light, the colorless DTE–PU film changed to red and could be reversibly switched to its
original state via illumination with visible light. The DTE-PU films exhibited rapid and
reversible isomerization and more than 20-fold photo reversibility, as well as long-term
optical stability. In addition, photowritten patterns on the films remained stable for over
two weeks. This made the films promising candidates for various applications, such as
optical archiving.
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Figure 27. Chemical structures of PU (DTE–PU) film and its photo-switching behavior [75].

The work of Fu et al. [76] reported two diarylethene-based conjugated polymer
networks DPP-1 and DPP-2 (Figure 28), obtained by Schiff-base polymerization of the
photochromic unit, 1,2-bis(5-formyl-2-methylthiophen-3-yl)perfluorocyclopentene (DEA-
CHO), and conjugated polyamine tetra(p-aminophenyl)methane (TAPM) or 1,3,5-tris(4-
aminophenyl)triazine (TAPT).

Molecules 2023, 27, x FOR PEER REVIEW 23 of 38 
 

 

 
Figure 28. Chemical structures of DPP-1 and DPP-2 obtained [76]. 

The authors observed an ultrafast photochromic transition between the yellow open 
form and green closed form of DPP-1 and DPP-2 through alternating UV and visible irra-
diation. Additionally, they created DPP-1/PMMA and DPP-2/PMMA films by incorporat-
ing diarylethene-based conjugated polymer networks into a PMMA matrix, which also 
exhibited fatigue resistance and photochromic reversibility. 

4.3. Diarylethene-Based MOFs 
Photoresponsive diarylethene-based metal-organic frameworks (MOFs) show ad-

vantageous properties and numerous potential practical applications. Due to the intrinsic 
porosity that characterizes metal-organic-frameworks, most highlighted examples can be 
applied in selective adsorption or controlled cargo release and data storage and optoelec-
tronics [77–79]. Butova and co-workers [80] reported a new photosensitive MOF, modified 
UiO-66-NH2, one of the most popular MOFs, with diarylethene molecules (DAE, 4-(5-
methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione), 
obtaining a highly crystalline porous compound (Figure 29). 

 
Figure 29. Scheme of DAE transformations inside DAE-UiO-66 pores under UV-light and visible 
light [80]. 

The DAE molecules inside UiO-66-NH2 pores had an open conformation. With visi-
ble light irradiation at 450 nm, the DAE molecules changed their conformation in closed 
form. The authors demonstrated that this transformation could stimulate the hydrogen 

Figure 28. Chemical structures of DPP-1 and DPP-2 obtained [76].

The authors observed an ultrafast photochromic transition between the yellow open
form and green closed form of DPP-1 and DPP-2 through alternating UV and visible
irradiation. Additionally, they created DPP-1/PMMA and DPP-2/PMMA films by incorpo-
rating diarylethene-based conjugated polymer networks into a PMMA matrix, which also
exhibited fatigue resistance and photochromic reversibility.

4.3. Diarylethene-Based MOFs

Photoresponsive diarylethene-based metal-organic frameworks (MOFs) show advan-
tageous properties and numerous potential practical applications. Due to the intrinsic
porosity that characterizes metal-organic-frameworks, most highlighted examples can be
applied in selective adsorption or controlled cargo release and data storage and optoelec-
tronics [77–79]. Butova and co-workers [80] reported a new photosensitive MOF, modified
UiO-66-NH2, one of the most popular MOFs, with diarylethene molecules (DAE, 4-(5-
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methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione), ob-
taining a highly crystalline porous compound (Figure 29).
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Figure 29. Scheme of DAE transformations inside DAE-UiO-66 pores under UV-light and visi-
ble light [80].

The DAE molecules inside UiO-66-NH2 pores had an open conformation. With
visible light irradiation at 450 nm, the DAE molecules changed their conformation in
closed form. The authors demonstrated that this transformation could stimulate the
hydrogen adsorption-desorption process. Visible light irradiation increased the H2 capacity
of modified MOF, while UV light decreased it. Diarylethene molecules were also used in
Sato et al. work [81] to develop a photochemically crushable and regenerative metal-organic
framework (DTEMOF) by a combination of a photochromic ligand PyDTEopen and 5-nitro
isophthalate (nip2−) with Cd2+, reported in Figure 30:
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tion. (b) A typical procedure for the synthesis of DTEMOF [81].

The obtained DTEMOF colorless crystals could accommodate guest molecules in its
pores, and when DTEMOF was exposed to UV light, its crystalline structure was con-
verted into a homogeneous, blue-colored solution thanks to ring-closing isomerization of
photochromic DTE. After exposure to visible light, the colorless MOF was regenerated.
Li et al. [82] incorporated photochromic DAE into lanthanide MOF, and they chose Eu3+

ions to have a luminescent host MOF. The emission band of the ion overlapped with the ab-
sorption spectra of closed-form DAE but did not with the absorption spectra of open-form
DAE. Therefore, reversible switching of DAE between its two forms could provide remote
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control of the luminescence of its host MOF. When exposed to UV radiation at 300 nm,
the DAE component within the MOF underwent photocyclization, causing the powder’s
color to shift from white to blue. Repeated exposure to UV and visible light 20 times
resulted in a slight decrease in the photoluminescence intensity, demonstrating fatigue
resistance. MOFs are also emerging as an essential class of biomedical nanomaterials due
to their porosity, biocompatibility, synthetic tunability, and structural regularity. MOFs can
integrate nanoparticles and/or biomolecules. More importantly, the stimulus-responsive
release offers an excellent opportunity for precise imaging-guided tumor treatment for
all-in-one theranostics [83,84].

5. Spiropyran Photoswitches

Spiropyran is a photochromic molecule that exhibits reversible changes in color or
optical properties upon exposure to light of specific wavelengths. Spiropyran molecules
typically exist in two forms: a colorless, non-planar, closed-ring form and a colored, pla-
nar, open-ring form. When exposed to ultraviolet (UV) light or visible light of a specific
wavelength, spiropyran molecules undergo a photoisomerization reaction, transforming
the non-planar, colorless form into the planar, colored form (Figure 31) [85]. The photoiso-
merization process involves breaking a carbon-oxygen bond in the spiro ring and forming
a new carbon-carbon bond. This leads to a significant change in molecular geometry and
electronic structure. The colored form of spiropyran (SP) is called merocyanine (MC), which
absorbs light in the visible region and has a distinct color depending on the substituents on
the molecule. Upon exposure to light of a different wavelength, the merocyanine form can
undergo a reverse reaction, or thermal relaxation, to convert back to the spiropyran form [2,8].

Molecules 2023, 27, x FOR PEER REVIEW 25 of 38 
 

 

wavelength, spiropyran molecules undergo a photoisomerization reaction, transforming 
the non-planar, colorless form into the planar, colored form (Figure 31) [85]. The pho-
toisomerization process involves breaking a carbon-oxygen bond in the spiro ring and 
forming a new carbon-carbon bond. This leads to a significant change in molecular geom-
etry and electronic structure. The colored form of spiropyran (SP) is called merocyanine 
(MC), which absorbs light in the visible region and has a distinct color depending on the 
substituents on the molecule. Upon exposure to light of a different wavelength, the mer-
ocyanine form can undergo a reverse reaction, or thermal relaxation, to convert back to 
the spiropyran form [2,8]. 

 
Figure 31. Spiropyran photoisomerization process and isomers characteristics. 

The photoresponsive effect of spiropyran has numerous potential applications in ar-
eas such as photochromic materials, optical storage, photonic devices, sensors, and actu-
ators. For example, spiropyran-based materials can be used as reversible optical switches 
or sensors, as the color change can be used to indicate the presence or absence of a partic-
ular stimulus. In addition, spiropyran can be incorporated into polymers, films, or sur-
faces to create photoresponsive coatings that can be tuned to respond to specific wave-
lengths of light [86]. Spiropyran-based compounds have been studied extensively for their 
potential use in biomaterials due to their reversible photochromic properties, biocompat-
ibility, and ease of functionalization [87,88]. 

  

Figure 31. Spiropyran photoisomerization process and isomers characteristics.

The photoresponsive effect of spiropyran has numerous potential applications in areas
such as photochromic materials, optical storage, photonic devices, sensors, and actuators.
For example, spiropyran-based materials can be used as reversible optical switches or
sensors, as the color change can be used to indicate the presence or absence of a particular
stimulus. In addition, spiropyran can be incorporated into polymers, films, or surfaces to
create photoresponsive coatings that can be tuned to respond to specific wavelengths of
light [86]. Spiropyran-based compounds have been studied extensively for their potential
use in biomaterials due to their reversible photochromic properties, biocompatibility, and
ease of functionalization [87,88].

5.1. Spiropyran-Based Hydrogels and Particles

Hydrogels have a high-water content and share similarities with the extracellular ma-
trix, allowing them to potentially function in aqueous environments and exchange fluids.
A recent work by Aggarwal and co-workers [89] reported a new hydrogel based on the
concept of origami that could mimic the complex functions of living organisms. Their pho-
toactive hydrogel displayed various dynamic shape changes using a single material upon
irradiation with local light. The hydrogel was created using spiropyran photoswitches with
N-isopropylacrylamide (NIPAM) monomer and N,N′-methylenebisacrylamide (MBAAm)
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crosslinker. The hydrogel sheet demonstrated 83% contraction of the original size upon irra-
diation and recovered the original swelling state in the dark. Furthermore, this contraction-
expansion process was found to be highly reversible by alternately switching the light
on and off.

Vales et al. [90] have developed light- and acid/base-reactive hydrogels based on
spiropyran-modified poly(hydroxyethyl methacrylate) p(HEMA) with methacrylamide-
chitosan (Figure 32).
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Figure 32. Preparation of SP-functionalized chitosan-IPN hydrogels and the structural conversion of
SP with light and gases [90].

When exposed to UV light, SP changes into MC. Treating MC with HCl vapor resulted
in the protonation of MC, turning it into MCH+ and causing the hydrogel to change from
purple to yellow. To retrieve the MC isomer, MCH+ was deprotonated by treating it with
NH3 vapor.

In the work of Zhang et al. [91], a hydrogel made of poly(vinyl alcohol) (PVA) was created
with unique fluorescence properties by incorporating dual fluorescent nanoparticles (DCFNs)
composed of spiropyran-modified β-cyclodextrin (β-CD-SP) and nitrobenzoxadiazolyl (NBD)
derivates. The SP portion of the nanoparticles functioned as an acceptor, which enabled the
photoisomerization process to either quench or recover the fluorescence of the NBD portion,
utilizing the fluorescence resonance energy transfer (FRET) effect (see Figure 33).
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Figure 33. Photoresponsive dual-color fluorescent PVA hydrogel based on FRET [91].

As a result, when exposed to ultraviolet or visible light, the hydrogel emitted a red
fluorescence peak of merocyanine (MC) at 660 nm or a green fluorescence peak of NBD at
550 nm, respectively. This distinctive property made the composite hydrogel suitable for
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various applications such as sensors, optical switches, and biomimetic components. Further-
more, Zhang et al. [92] used a spiropyran-based photoacid to trigger the phase transition
of PNIPAMm using light. The hydrogel system comprised a copolymer based on poly(N-
isopropylacrylamide-co-acrylic acid) (PNIPAm-co-PAA) and spiropyran that could reversibly
release and capture H+ through a high-efficiency light-switchable isomerization (Figure 34).
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Figure 34. Scheme of the spiropyran-based photoacid that reversibly releases and captures H+ in
response to 420 nm light [92].

PNIPAm-co-PAA exhibited a lower critical solution temperature LCST pH-dependent.
The LCST can be increased or decreased by the release and capture of H+ by the photoacid,
resulting in a fast (<0.5 min) and reversible phase transition. Amer et al. [93] have used
spiropyran-conjugated N-isopropylacrylamide (NIPPAM) to create a photoresponsive
hydrogel that could self-adhere to the application site upon swelling and deswelling for
easy removal when illuminated with light.

Micro- and nanoparticles that can change their properties, such as wettability and
polarity, reversibly have garnered significant attention due to their potential use in the smart
materials field. In a recent work by Feinle and co-workers [94], the silylated spiropyran
derivative was covalently attached into porous monolithic silsesquioxane frameworks
(Figure 35). The surface showed a dependence between the predominant isomer and the
surface polarity and water wettability. Indeed, the contact angle of a drop of water on the
surface varied from 146◦ to 100◦ by irradiation with UV light.
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Figure 35. Images of SP10-MTMS before (SP) and after UV irradiation (MC) and after treating the
irradiated sample with a 1 M HCl solution (MCH+) [94].

Zhu et al. [95] have synthesized polymer nanoparticles with 40−400 nm diameter,
capable of reversible fluorescence photoswitching with alternating UV and visible light that
can have potential utility as sensitive displays and biological markers. The nanoparticles
consisted of primary monomeric units of isopropylacrylamide (NIPAM) and styrene, small
amounts of divinylbenzene (DVB) as a crosslinker, and 5-(1,3-dihydro-3,3-dimethyl-6-
nitrospiro[2H-1-benzopyran-2,2′-(2H)-indole]) ethylacrylate (SP) as a photoreactive unit.
Small amounts of butyl acrylate (BA) were added to the nanoparticles to lower their glass
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transition temperature (Tg). (Figure 36). Also, the immobilization of dye inside hydrophobic
pockets of nanoparticles improved its photostability, rendering it more resistant than the
same dyes in the solution.
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5.2. Spiropyran-Based Films and Coatings

In a recent study [96], the authors used surface-initiated atom transfer radical poly-
merization (SI-ATRP) to tether poly(N-isopropylacrylamide)-spiropyran (PNIPAAm-SP)
copolymers onto glass substrates that were previously activated using ultra-violet ozone
(UVO) irradiation. A PNIPAAm block was grafted onto the glass substrates, followed
by a second block containing mixed NIPAAm and spiropyran acrylate (SPA) to build
PNIPAAm-b-P(NIPAAm-co-SP) brushes (Figure 37).
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The effects of UVO irradiation time and spiropyran-containing block polymerization
time on cell sheet formation and detachment characteristics were evaluated. The photorespon-
siveness of SPA was analyzed using UV-visible spectroscopy, while the presence and thickness
of the grafted polymer layers were confirmed. The authors found that L929 mouse fibroblast
cells successfully formed a complete cell sheet, which could be detached in a trypsin-free
procedure by applying temperature or light stimuli. In a study by Wang [97], novel fiber ma-
terials were developed by mixing N-hydroxyethyl spiropyran (SP-OH) and polyacrylonitrile
(PAN) through physical doping and electrospinning (Figure 38).
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Figure 38. Schematic illustration of the photoresponsive wettability transition of fiber materials by
SP-OH photoisomerization [97].

These materials reversibly changed their wettability and humidity in response to
ultraviolet-visible (UV-Vis) light irradiation due to the photoisomerization mechanism of
the spiropyran chromophore. When exposed to UV light, the SP-OH molecules adopted
a colored polar open-ring state, resulting in electrostatic attraction with water. However,
they became colorless and non-polar when exposed to visible light, losing their attraction
effect. By repeatedly switching between these states, the wettability and ambient humid-
ity of the electro-spun films could be controlled. The tensile strength and the extent of
reversible changes in wettability and humidity under UV-Vis irradiation depended on
the amount of SP-OH added. Karimipour et al. [98] also utilized hydroxyl spiropyran
(SP-OH) for designing and preparing hydrochromic and photoresponsive polymers based
on poly(methyl methacrylate-co-hydroxyethyl methacrylate) (P(MMA-co-HEMA)) and
poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)), with SP-OH as a dopant.
Subsequently, the copolymers solutions with photoactive properties were utilized for the
fabrication of either nano-fibers through electrospinning (MH/SP@NF and MB/SP@NF) or
films via drop-casting (MH/SP@F and MB/SP@F) in order to explore their functionalities.
The fibers and the films demonstrated hydrochromic and humidity-responsive behavior
together with photoresponsivity, combined with improved reversibility and reusability.
In the same way, Li et al. [99] have prepared electrospun films with reversible photore-
sponsive wettability and the ability to regulate microenvironmental relative humidity
developed from acryloyl-spiropyran (SPA), acrylic acid (AA), and methyl methacrylate
(MMA) (poly(SPAx-co-AAy-co-MMAz)), represented in Figure 39.

The wettability was changed by exposing them to alternating UV and visible light
due to the reversible transition of spiropyran. Furthermore, the presence of acrylic acid
in the polymers caused a controllable “double hydrogen bonds” synergistic effect with
phenol-oxygen bonds from spiropyran units, which increased the range over which mi-
croenvironmental relative humidity was regulated. The amount of acrylic acid used
determined the color, wettability change, and the reversible variation of microenviron-
mental relative humidity regulation under UV/visible irradiation. The same authors have
constructed a photoresponsive material that could reversibly regulate the humidity of the
microenvironment [100]. The material was made by a synergistic layer (amino groups)
and a regulating layer (spiropyran compounds) on the surface of polyacrylonitrile (PAN)
electrospun membranes.
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The wettability and microenvironment humidity could be controlled by light due
to spiropyran transformation. Moreover, the amino groups on the surface assisted the
ring-opened merocyanine in absorbing water molecules, thus playing a synergistic role.

Light was also used for cell manipulation (e.g., cell release) due to its high spa-
tiotemporal precision and non-invasion [101]. Li et al. [102] in their study have designed
a new photoresponsive spiropyran-coated nanostructured surface using hydrophobic
poly(HEMA-co-SPMA) and hydrophilic poly(HEMA-co-MCMA) (Figure 40).
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This new surface showed reversible capture and release of targeted cells mediated by
photo-triggered wettability transition.

Qing Xu and co-workers [103] used spiropyran molecule in a photoresponsive con-
trolled pesticide release film system. They used PEG-supported spiropyran as a carrier and
chitosan as a film-forming additive. Acetamiprid, a new broad-spectrum insecticide with
acaricidal activity, was encapsulated in the photoresponsive film, and the authors observed
his controlled release from the biodegradable photosensitive film.

5.3. Spiropyran-Based MOFs

In Garg’s work [104], the spiropyran molecule was used to photo-regulate the conduc-
tion of the metal-organic framework (MOF) reversibly. The authors reported the design and
incorporation of spiropyran into the relatively hydrophobic pores of UiO-67-MOF-films
(SP@UiO-67-MOF). The increased electronic conductance in the MOF was attributed to
changes in its microstructure following the isomerization process. This led to an increase in
ionization potential, longer molecular length, and a more extensive conjugated π-electron
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system. In another work, Heinke and co-workers [105] anchored spiropyran into the pores
of a MOF, Cu2(e-BPDC)2(dabco). They studied the conductivity of guest molecules (D2O)
within the material, both in its neat form and after water loading. They found that the
neat Cu2(SP-BPDC)2(dabco) had very low conductivity, but the addition of water increased
the conductivity significantly. They also found that UV irradiation could modulate the
proton conduction of the guest molecules by switching spiropyran to its more polar isomer,
merocyanine. This effect was due to the strong bonding of merocyanine with the guest
molecules, which suppressed proton conduction. Chen and colleagues investigated the
photo modulation of proton conduction in spirogyra-encapsulated MOFs [106].

They encapsulated sulfonated spiropyran (SSP) into ZIF-8 cavities to create SSP@ZIF-
8 hybrid membranes (see Figure 41). SSP@ZIF-8 containing 10 wt.% of SPP showed
the highest proton conductivity. The phenolate moiety of merocyanine and sulfonate
groups in the ZIF-8 membrane facilitated proton conduction through the formation of
a hydrogen-bond network with water molecules inside the cavities. The high proton
conductivity decreased after being exposed to visible light and undergoing the merocyanine
to spiropyran transformation. The resulting hybrid membrane was able to switch its proton
conductivity on/off depending on the light.

Molecules 2023, 27, x FOR PEER REVIEW 32 of 38 
 

 

 
Figure 41. Chemical structures and photoisomerization process of SP and MC reported in [106]. 

In a recent work by Martin et al. [107], a correlation between photophysics and elec-
tronics was established for actinide-containing metal-organic frameworks (An-MOFs) 
based on the excitation wavelength. A stepwise approach for dynamically modulating 
electronic properties was applied to actinide-based heterometallic MOFs by integrating 
photochromic linkers, spiropyran-based linker, 4,4′-(1′,3′,3′-trimethyl-6-nitro-
spiro[chromene-2,2′-indoline]-4′,7′-diyl) dibenzoic acid (H2TNDA) (Figure 42). 

 
Figure 42. Chemical structures of MOFs components reported in [107]. 

Different methods, such as optical cycling, modeling of the density of states, conduc-
tivity measurements, and photoisomerization kinetics, have been used to understand the 
process of tailoring optoelectronic properties of An-MOFs. Additionally, the first photo-
chromic MOF-based field-effect transistor was constructed, which could change the field-
effect response through light exposure. In a recent study, Yang and colleagues [108] uti-
lized a combination of lanthanide MOF and spiropyran photochromic molecules to de-
velop intelligent fluorescent materials that have the potential for dynamic anticounterfeit-
ing applications. This approach offered several advantages, such as the ability to create 
reversible anticounterfeiting patterns. Additionally, it displayed both fluorescence and 
color changes with UV light exposure. 

Zhang and co-workers [109] incorporated a photoacid metastable state, protonated-
merocyanine, into zirconium(IV)-based UiO-topological metal-organic framework (MOF) 
material (form PAH-MOF) (Figure 43). 

Figure 41. Chemical structures and photoisomerization process of SP and MC reported in [106].

In a recent work by Martin et al. [107], a correlation between photophysics and
electronics was established for actinide-containing metal-organic frameworks (An-MOFs)
based on the excitation wavelength. A stepwise approach for dynamically modulating
electronic properties was applied to actinide-based heterometallic MOFs by integrating pho-
tochromic linkers, spiropyran-based linker, 4,4′-(1′,3′,3′-trimethyl-6-nitrospiro[chromene-
2,2′-indoline]-4′,7′-diyl) dibenzoic acid (H2TNDA) (Figure 42).
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Different methods, such as optical cycling, modeling of the density of states, con-
ductivity measurements, and photoisomerization kinetics, have been used to understand
the process of tailoring optoelectronic properties of An-MOFs. Additionally, the first pho-
tochromic MOF-based field-effect transistor was constructed, which could change the
field-effect response through light exposure. In a recent study, Yang and colleagues [108]
utilized a combination of lanthanide MOF and spiropyran photochromic molecules to
develop intelligent fluorescent materials that have the potential for dynamic anticounter-
feiting applications. This approach offered several advantages, such as the ability to create
reversible anticounterfeiting patterns. Additionally, it displayed both fluorescence and
color changes with UV light exposure.

Zhang and co-workers [109] incorporated a photoacid metastable state, protonated-
merocyanine, into zirconium(IV)-based UiO-topological metal-organic framework (MOF)
material (form PAH-MOF) (Figure 43).
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Although the PAH-MOF did not exhibit photoactivity in its solid state, it demonstrated
remarkable photochromism when suspended in acidified water and ethanol under visible
light. The observed color change was accompanied by a significant alteration in fluores-
cence, indicating the possibility of using this material for anti-counterfeiting purposes. In
addition, this study contributed to a better comprehension of the influence of MOFs on
spiropyran derivative isomerization.

6. Comparison among the Different Systems

Summarizing the data collected in this review on photoresponsive biomaterials based
on azobenzenes, diarylethenes, hydrazones, and spiropyrans, we can briefly compare the
different systems. Azobenzene-based hydrogels have shown promise in several biomed-
ical applications due to their ability to regulate the gel’s mechanical properties through
photoisomerization. Hydrazone-based hydrogels offer reversible changes in mechanical
properties through light-induced crosslinking or de-crosslinking. Spiropyran-based hydro-
gels have unique fluorescence properties and can self-adhere to the application site upon
swelling. Each type of photochromic hydrogel has advantages and can be tailored to spe-
cific applications. Micro- and nanoparticles functionalized with photochromic compounds
offer potential utility as sensitive displays, biological markers, and smart materials due to
their ability to switch properties upon light irradiation.

Azobenzene-based MOFs are often used for gas separation and dye adsorption,
diarylethene-based MOFs are usually applied in hydrogen storage and cargo release, and
spiropyran-based MOFs are often used for proton conduction and electronic modulation.
Additionally, the type of functional group incorporated into the MOF structure affects the
specific properties and applications of the resulting material. For example, incorporating
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sulfonate or phenolate groups in spiropyran-based MOFs enhances the proton conductivity,
while introducing amines in diarylethene-based MOFs promotes CO2 adsorption.

Overall, films and coatings based on azobenzenes, hydrazones, diarylethanes, and
spiropyrans offer unique opportunities for developing photoresponsive devices and smart
materials. These compounds share many common properties and applications but exhibit
distinct differences in photoisomerization behavior, chemical stability, and spectral properties.

7. Conclusions

Photoresponsive biomaterials have emerged as a promising area of research due
to their ability to regulate biological interactions and cellular behaviors in response to
light. This article provided an overview of photoresponsive biomaterials’ design, syn-
thesis, and applications, including photochromic molecules, photocleavable linkers, and
photoreactive polymers. Specific examples of azobenzene, hydrazones, diarylethene, and
spiropyran-based materials, like hydrogels and metal-organic frameworks, were discussed,
highlighting their potential for applications such as antibacterial coatings, drug delivery,
and optical sensing. The various approaches used to control the photoresponsive behavior
of these materials were also highlighted, along with their potential applications in drug
delivery, tissue engineering, and biosensing. Overall, the development of photorespon-
sive biomaterials holds great promise for advancing biomedical research and developing
advanced biomaterials with enhanced functionality.
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