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a b s t r a c t

We investigate the convergence rate of the solutions of one and two-dimensional
Poisson-type PDEs where the Dirac delta function, representing the forcing term, is
approximated by several expressions.

The goal is to see if the solution to a Poisson’s equation converges when solved by
a numerical method, with a source or sink approximated using a delta proposed in the
literature. We will look at two parameters, how fast it converges, by estimating the
order of convergence, and how well, by calculating the error between the analytical
form and the numerical result. We investigate smoothed discrete delta functions based
on the Immersed boundary (IB) approach, and we revisit their definitions, as in level
set methods, by expanding their support for assessing higher-order of convergence in
PDE solutions. We developed a Python package utilizing FiPy, a PDE solver based on
the finite volume (FV) technique, and accelerated the solver with the AmgX package,
a GPU solution. We have observed that when the support is wider, better results may
be achieved. Moreover, the overall trends of error and the convergence rate in the 2D
configuration differ from the 1D problems.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Flows generated by single/distributed sources, such as those determined by well(s), are of central interest in reservoir-
ngineering and hydrology [1,2]. The equivalent problem is encountered in many other branches of physics, and therefore
t represents a topic of wide interest for the applications. Many analytical (closed form) solutions for such flows have
een derived in the past. These solutions have served as a basis for solving many practical problems. However, there
re numerous applications where the complexity of the boundary conditions as well as the spatial variability of the input
arameters [3], de facto defies any attempt to get analytical solutions unless one develops a completely different procedure
hich in any case is of limited applicability [4,5]. In these cases, one must resort to numerical methods.
In the present paper, we deal with a steady flow driven by a Dirac distribution. As it is well known, such a configuration

ives rise to an elliptic PDE with a singular forcing term at the right-hand side. We aim at setting up a procedure to gain
an accurate numerical approximation of the δ-function.

Common approximations methods for Dirac delta distributions are immersed boundary (IB) methods [6], or level set
methods [7] and vortex (VOF) methods [8]. Lee et al. [8] present a brief review on the numerical methods for regularized
Dirac delta functions. The level set method formulation utilizes Dirac delta which is supported on curves or surfaces. In
a standard approach of the level set, the surfaces or curves are implicitly described as the zero level set of a continuous
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function, regularized before being shown on the computational grid. An elastic boundary is represented by a set of
Lagrangian points in the immersed boundary technique, and the singular force at the Lagrangian points is given by the
generalized Hooke’s law. Using a delta function, this force is distributed to the surrounding Eulerian points.

Paper’s structure and contributions. This paper presents a brief background on Dirac delta functions approximations,
including preliminary definitions, as well as the most relevant literature and examples. Then the paper presents the main
result, the convergence test conducted on two Poisson’s PDE, a one-dimensional and a two-dimensional, and the Python
code that generated all the results. We argue that, while the Dirac delta approximations proposed in the literature over
the last 20 years are capable of producing good results in a 1D context, there is still potential for improvement in 2D
scenarios. Final remarks on the resulting experimental setup are given in the conclusion.

2. Mathematical background

In this section we discuss some theoretical results about the Dirac delta approximations. The goal of numerically solving
a PDE with a sink or source is to approximate the delta distribution δ using alternative distributions δϵ for ϵ > 0, with
the property that δϵ → δ in some reasonable sense and that the solution of such PDE L converges L(δϵ) → L(δ). These
approximations are known as regularizations [9]. The function δϵ(r) is known as discrete delta function regularization of
the Dirac delta function. The discrete delta function is assumed to be represented by a tensor product of a single-variable
kernel φ(r) defined on the real line,

δh(x) =
1
hn

n∏
i=1

φ

(xi
h

)
, x = (x1, . . . , xn)T (1)

where h is the mesh size of a uniform Cartesian grid. This representation is not required, but it substantially simplifies
the study, by focusing on the single-variable kernel φ(r).

Functions φ(r) is frequently found in literature, e.g. [10], to satisfy a subset of the following properties:

1. φ(r) is continuous for all real r;
2. φ has compact support, i.e.,

φ(r) = 0 for |r| ≥ rs,

where rs is the radius of the support;
3. φ satisfies the sum of squares condition:∑

l∈Z

φ(l − r)2 = K , ∀r ∈ R , for some constant K ;

4. φ satisfies the jth order moment conditions, when φ satisfies∑
l∈Z

φ(l − r) = 1 if j = 0∑
l∈Z

(l − r)jφ(l − r) = K if j > 0

as K = 0 up to j. If φ verifies the moment conditions up to order m − 1, we can say that φ is of moment order m;
5. φ satisfies the even–odd condition:

∑
i even φ(r − i) =

∑
i odd φ(r − i) =

1
2 for all r;

We can observe that:

1. To avoid abrupt jumps in interpolation, φ continuity is assumed.
2. For computational efficiency a φ with compact support is required. This also ensures that each point influences a

finite number of grid points, regardless of mesh spacing h. The compact support criterion also means that the sums
in the definitions of moment order have a finite number of terms.

3. The sum of square indicates that the coupling of φ(r) between any two locations r1, r2 is just a function of r1−r2 [11].
4. The moment condition assures that interpolation operations conducted using discrete delta functions are accu-

rate [12].
5. The even–odd condition implies the 0-th order moment. In [10] the authors extended this condition to what they

called the smoothing order condition and showed that it suppresses high-frequency errors and prevents Gibbs-type
phenomena. Note that φ is of smoothing order s ≥ 1 if there is a function ψ(r) of compact support such that

φ(r) =
1
2s

s∑
l=0

(
s
l

)
ψ(r − l)

where
(s) is the binomial coefficient.
l

2
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In the following paragraph, we present an alternate formulation of delta approximations, i.e. the level set technique,
hich is denoted in the literature as ϕ. Before we observe that the delta approximations φ can be dilated and scaled by
positive integer λ to create a new function φ′ as λφ′(λx) = φ(x). The new φ′ meets the same requirements as φ.
Typically, the discrete approximants δϵ are piecewise smooth functions selected to ensure that these criteria are

satisfied. It is most practical to deal with continuous δϵ functions in computations, and we can define an approximation
delta functions δϵ in a different form:

δϵ(x) =

{
1
ϵ
ϕ

( x
ϵ

)
, if |

x
ϵ
| ≤ rϕ

0, if |
x
ϵ
| > rϕ

(2)

where ϕ is a re-scaled version of φ. This formulation can be used to define the immersed boundary (IB) method or the level
set method (for a review on the numerical methods for regularized Dirac delta functions see [8]). In the IB method, the
elastic boundary is represented by a collection of Lagrangian points, and the singular force at these points is distributed to
the surrounding Eulerian points using a delta function. Whereas, in the level set technique, delta functions are frequently
employed to spread a singular force.

• In the level set method, the support is rϕ , and ϵ is proportional to the grid size, that is, ϵ = kh for a positive number
k, possibly indicating the moment order.

• In the immersed boundary method, ϵ = h and for all x
h = r , where r is the parameter representing the position of

the submerged boundary point and is scaled with respect to the grid size h, the approximation can be written as
φ(r), and the support rφ is usually equal to 1, 1.5, 2, 2.5.

o be consistent with formulation (1), we can actually define, for (2), 1
kϕ(

x
kh ) = φ( x

kh ). In Section 3.3 we will re-scale the
arious delta approximations using k by extending IB based approximations with a level set approach.
In the following examples, we see that ϕ(x) is a scaling of φ(x) in the variable x and not of the function coefficient.

B and level set approximations result as being scaled versions of the same formalism but, to the best of the authors’
nowledge, there is no systematic study of how IB behave when scaled. One of the goals of this research is to show what
appens to IB approximation when they are scaled. When available in the literature, we provide the link between IB and
evel set formulations, following that, we present solely IB methods.

With notation (2), the narrow linear 2-point hat function δLh, with ϵ = h, is defined as

φL
1(r) = 1 − |r| = ϕL

1(ξ ) = 1 − |ξ |

where r = x/h = ξ and rφL1 = 1.
The wider 4-point hat function δL2h, with ϵ = 2h, is defined as

φL
2(r) =

1
2

−
1
4
|r|; ϕL

2(ξ2) =
1
2

· (1 − |ξ2|) =
1
2
φL
1(r/2)

where r = x/h, ξ2 = x/2h, and rφL2 = 2, which is equivalent to the 2-point as being shorted and wider, by having
δL2h = 1/hφL

2(r) for |r| ≤ 2 on support 2 or, equivalently, δL2h = 1/(2h)ϕL
2(ξ2) for |ξ2| ≤ 1.

Most commonly used delta functions are the 4-point cosine function φcos
2 (r) =

1
4 (1−cos( πr2 )), with rφcos2

= 2 equivalent
o ϕcos(ξ ) =

1
2 (1 − cos(πξ )). In either case,

δcos(x) =

{
1
4 (1 − cos( πx2 )), if |

x
h | ≤ 2

0, otherwise. δcos(x) =

{
1
ϵ
1
2 (1 + cos( πx

ϵ
)), if |

x
ϵ
| ≤ 1

0, otherwise.

nother kind of delta approximations are the smoothed versions, introduced in [6] as an IB method. An example is the
moothed 2-point function φ∗

1 (r):

φ∗

1 (r) =

{ 3
4 − r2, if |r| ≤ 0.5
9
8 −

3
2 |r| +

r2
2 , if 0.5 < |r| ≤ 1.5

with support rφ∗
1

= 1.5. More regular functions can be obtained by changing the support size or adding/deleting conditions.
Another approach discussed in [9], provides a solution based on shifted Legendre polynomials. The authors observed that,

h is restricted to be a sufficiently smooth and integrable function and is compactly supported inside a set of diameter
ess than h, it will satisfy the moment conditions; however, the number m of moment conditions satisfied depends on
he choice of smoothness parameter. As long as the approximations we want are also polynomials, the shifted Legendre
olynomials give a strong foundation for addressing the moment problem. Hosseni et al. [9] obtains δh(x) as a scaled, even
xtension of φ(r) = ηm,p(r) where ηm,p is a polynomial of degree p and moment m, e.g. η2,2(r) obtained for a 1D space is
he polynomial 9/2 − 18r + 15r2.

A Legendre polynomial expansion may be used to express the approximate delta function (ADF) of order N explicitly.
n [13] is described a finite-order polynomial that has the same integral features as the Dirac delta function when
ombined with a finite-order polynomial integrand over a finite domain, so

δ̃N (x, z) =
1
h

N∑
(2i + 1)Li(ξ )Li(η), ξ =

x
h/2

, η =
z

h/2
,

i=0

3
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where Li(ξ ) represents for the Legendre polynomial of order i.
Final remark can be given on the assessment of convergence of such Dirac delta approximations. According to [7], for

very narrow support, the δϵ function is not sufficiently resolved to examine the error by breaking it into an analytical
nd a numerical part. For a very narrow support, the error must be studied explicitly, taking into consideration the
omputational grid’s discrete impacts. Such approximations must be studied with narrow ϵ proportional to h, usually
= mh, m = 1, 2 or 3. This strategy works well in one dimension, when the one-dimensional delta approach complies
ith certain moment criteria. However, the extension to a multi-dimensional system can cause O(1) errors, as proven

for the Γ curve of /R2 [12]. To achieve convergence, δϵ must be increased and be selected to scale with h algebraically.
Moreover, even if the error is theoretically O(hm) for certain m, it is not so constantly and this may influence in numerical
tests the comparing of errors for convergence on finer grids. The formal order can be estimated by averaging over
numerous shifts in the grid [7].

3. Main results

In our research, we estimate the order of convergence of two boundary value problems with a delta function as the
right-hand side, one in one dimension and the other in two dimensions.

The one-dimensional problem is a simple boundary value problem presented in [12]:

− uxx = δ(x − 0.5); u(0) = u(1) = 0 (3)

where this equation has the solution

u(x) = G(x, 0.5) =

{
x(1 − 0.5), 0 ≤ x ≤ 0.5
0.5(1 − x), 0.5 < x ≤ 1

where G is the Green’s function.
The 2D problem, will be the same as in [14],

− ∇
2u(x, y) = δ(x, y); u(x, y) = 0 on ∂Ω (4)

where Ω = [−0.5, 0.5] × [−0.5, 0.5]; whose fundamental solution (Green function) is

u(x, y) =
ln(2|(x, y)|)

2π
,

where |·| is the order 2 norm, i.e. |(x, y)| =

√
x2 + y2.

In this section, we introduce the Dirac delta regularization’s that we used, and the numerical setups, for solving the
Poisson problem and estimate the rate of convergence of the solution. The objective is to see if a Poisson’s solution
converges with an approximated source or sink by means of a delta as suggested in the literature when solved by a
numerical method.

3.1. Dirac delta approximations

We tested the most commonly used delta functions,[8]. The 2-point hat function with semi-support 1 is compactly
indicated as p2h-s1, the 3-point function with semi-support 1.5 is written as p3-s15, the 4-point function with semi-
support 2 (p4-s2), and the 4-point cosine with semi-support length 2 is denoted as p-cos-s2. We also included the
smoothed version introduced by Yang et al. [6] in the test set, which includes the smoothed 2-point function (p*2-s15),
the smoothed 3-point function (p*3-s2), and the smoothed 4-point cosine function (p*-cos-s25) that has a support of
length 2.5. In a recent development in [11], we took the implementation of the new 5-point kernel (pg5-s25) based on
Gaussian-Like Immersed Boundary Kernels. We also tested the delta distribution regularizations proposed in [9], which are
based on Legendre and Trigonometric polynomials and have normalized support to 1. The approximations were designed
specifically for 1D and 2D spaces, and we tested them for both spaces. The results presented here encompass a cosine
approximations η1,cos (cos-1-1d) and the two Legendre approximations, η1,1 (l-1-1-1d) and η2,3 (l-2-5-1d); where
l-1-1-1d is actually the 2-point hat function p2h-s1. Another Legendre polynomial expansions were from [13]: the one
with N = 0 and z = 0 (adf-0-z0) and the one with N = 4 and z = 1 (adf-4-z1). Fig. 1 shows the profile of the
various regular functions, φi, i ∈ {l-1-1-1d, . . . , p-cos-s2} that form the delta functions, δi.

We also investigated the extra smoothing impact of a discrete delta function with greater support for all of these deltas
by multiplying h (and so the support) by multiple k between 1 and 4, spacing by ∆k = 0.1 and 0.25. Finally, as to deal
with the extension from the 1D to the 2D version of the delta approximation, we used the usual tensor product, but we
also used the observations in [9] and investigated whether there were significant differences for a scaled tensor product
or the radial form. In terms of the scaled tensor product, we defined a smaller support for the 2D case, using h̃ = h/

√
2

o to fit the square [−h̃, h̃] × [−h̃, h̃] inside the ball of radius h.
4
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Fig. 1. Example of a delta regularization, first row are in 1D, second row are drown in 2D using the tensor product. All have k = 1.

.2. Numerical issues

We examine the convergence rate of various delta approximations within a 1D or 2D known sample test in this brief
ork. We will look at two parameters: the difference between the analytical form and the numerical result, and how fast
he numerical solution converges to the analytical one.

The convergence rate is determined by adjusting the mesh width hn = 1/(29
+ 2n) for n = {0, 1, . . . , 7}. The error

between the numerical solution s and the analytical solution a is determined for each mesh with the mean absolute error
(MAE) e = E[|s − a|]. Then, between two realizations en+1 and en, an estimate of order of convergence is calculated:

qn =

log en
en−1

log hn
hn−1

(5)

Finally, for n = {2, . . . , 7}, we provide the average of all qn and the convergence estimate among the extremes q7,0. These
wo values were used to assess the convergence of the setup; in Table 1 we compactly report their average as an estimate
or the order of convergence.

The table and figure provided in this paper were obtained in Python, by creating a framework based on FiPy and
mgX. FiPy [15] is an object-oriented, partial differential equation (PDE) solver written in Python that is based on a
onventional finite volume (FV) technique. The AmgX package (pyamgx.readthedocs.io/) is a solver library designed to
ccelerate intensive linear solver simulations with NVIDIA GPUs; we configured it to be used as a solver within the FiPy
ackage, by employing an Algebraic Multigrid (AMG) technique with a l1-Jacobi smoother, a Jacobi relaxation used also
n [16]. All the tests were run by setting the desired residual at 2 · 10−5 for FiPy’s sweeps and the tolerance as 2 · 10−7

or the AmgX solver.
Other tests that are not shown here were performed by using PETSc [17] for some 1D tests, but a GPU accelerated

olver library was required for all 2D testing. The code, as well as all of the full-length tests and graphs, can be found at
he GitHub link: https://github.com/MthBr/DEDICATE.

.3. Numerical experiments

We study the order of convergence with the application of Eq. (5) by adopting varied mesh with width hn = 1/(29
+2n)

or n = {0, 1, . . . , 7}. In our simulation results, we investigate what happens when h → 0 as the mesh becomes finer, as
ell as by altering the kind of delta and the size for the support of these delta approximations. We present the results

or five different values of k = {1, 1.5, 2, 2.5, 3}, which result in five different scaled versions of the IB approximations.
In Table 1, the numerical solution converges to the analytical solution very well in the one-dimensional case, especially

or non-Legendre approximations. In the 2D instance, the cosine delta types seem non to converges to the real solution,
nd the MAE tends to stabilize when varying k. Using standard tensor product, we discovered that the best results are
btained when the support is amplified; also, the overall trends found in the 2D configuration differ from the 1D model.
ur results confirm that for most delta approximations there is an order 2 convergence for the 1D, but in the 2D case this
s not observed, and there are cases, as in adf-4-z1 with k = 2.5, where there is a high order of convergence but also
high MAE, and the numerical solution does not qualitatively adhere to the analytical solution. Maybe the best solution

or the 2D case is by using the new approach by [11], pg5-s25, when the support is three times wider (i.e. rφ = 7.5).
AE and order of convergence estimation were worst when adopting the Radial definition of the delta in 2D or applying

he scaled tensor product, as done by [9]. These results take into account that, for finite volume (FV) methods applied to
lliptic PDEs, even if the numerical solution is qualitatively similar to the analytical solution, there is an O(1) convergence
n the 2D case, a problem that has been known in literature for decades [12], but even if there have been novel Dirac
pproximations proposals, there is still much to be done.
5
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ined by the authors as well with a larger k-scaled version.
k MAE 1D q 1D MAE 2D q 2D
1 1,000E−9 −0,082721 0,015098 −0,000012
1,5 0,003694 −0,000303 0,019516 −0,000067
2 0,000001 1,997874 0,015098 0,000045
2,5 0,001103 0,003652 0,013808 0,000280
3 0,000003 1,999150 0,015099 0,000172

1 3,940E−7 1,993013 0,015098 0,000008
1,5 0,000001 1,997858 0,015098 0,000051
2 0,000002 1,998891 0,015099 0,000130
2,5 0,000004 1,999324 0,015100 0,000226
3 0,000006 1,999540 0,015101 0,000344
1 0,006856 18,071287 0,024952 2,518579
1,5 0,000182 −0,011291 0,015314 0,000032
2 0,000002 1,998812 0,015099 0,000115
2,5 0,000028 0,262111 0,015071 0,000201
3 0,002289 12,651476 0,017989 1,279456

25

1 4,880E−7 1,994366 0,015098 0,000018
1,5 0,000001 1,998152 0,015098 0,000066
2 0,000003 1,999055 0,015099 0,000152
2,5 0,000005 1,999419 0,015100 0,000257
3 0,000007 1,999608 0,015101 0,000384

6

Table 1
Mean absolute error and convergence rates for the 1D (3) and 2D (4) problems. All delta approximations were studied utilizing the support def
delta k MAE 1D q 1D MAE 2D q 2D delta k MAE 1D q 1D MAE 2D q 2D delta

adf-0-z0

1 1,000E−9 −0,082733 0,015098 −0,000012

adf-4-z1

1 0,598633 −3,954E−10 0,999123 −0,000002

p3-s15
1,5 0,020937 −10,801203 0,039177 −3,282841 1,5 1,057842 −2,009271 7,899682 −3,816873
2 0,000001 1,997945 0,015098 0,000077 2 0,117983 0,000030 0,066205 −0,000007
2,5 0,018801 −0,490432 0,030287 1,088726 2,5 0,547909 1,765054 2,242771 6,487220
3 0,000004 1,999229 0,015100 0,000248 3 0,011263 0,002364 0,012890 0,002311

l-1-1-1d

1 1,000E−9 −0,082721 0,015098 −0,000012

p*2-s15

1 1,000E−9 −0,082721 0,015098 −0,000012

p4-s2
1,5 0,013889 0,000000 0,014615 −0,000008 1,5 0,002314 −0,000365 0,017851 −0,000057
2 0,000001 1,995903 0,015098 0,000032 2 0,000001 1,997266 0,015098 0,000040
2,5 0,005001 0,000324 0,010975 0,000131 2,5 0,000502 0,006552 0,014511 0,000140
3 0,000002 1,998463 0,015099 0,000095 3 0,000003 1,998975 0,015099 0,000139

l-2-5-1d

1 0,382812 −5,782E−10 0,254817 −0,000002

p*3-s2

1 1,780E−7 1,984541 0,015098 −0,000019

pg5-s25
1,5 0,231996 −1,016E−9 0,017682 −0,000003 1,5 0,000852 0,001795 0,014099 0,000093
2 0,023927 0,000073 0,022339 0,000055 2 0,000002 1,998394 0,015098 0,000083
2,5 0,032455 −0,000057 0,029008 −0,000055 2,5 0,000153 0,035280 0,014922 0,000170
3 0,004726 0,000121 0,011033 0,000090 3 0,000004 1,999357 0,015100 0,000224

cos-1-1d

1 1,000E−9 −0,082715 0,015098 −0,000012

p-cos-s2

1 3,940E−7 1,993013 0,015098 0,000008

p*cos-s
1,5 1,000E−9 −0,082721 0,015098 −0,000012 1,5 0,000001 1,997805 0,015098 0,000045
2 3,940E−7 1,993013 0,015098 0,000008 2 0,000002 1,998889 0,015099 0,000131
2,5 0,000001 1,996293 0,015098 0,000041 2,5 0,000004 1,999322 0,015100 0,000226
3 0,000001 1,997805 0,015098 0,000045 3 0,000006 1,999540 0,015101 0,000345
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4. Conclusion

The data analysis of the convergence rate of numerous delta approximations found in the literature is presented in
his micro-article. We investigated delta regularizations, which were introduced using the immersed boundary technique,
nd assessed their order of convergence by extending their support with a non-integer k coefficient, like in the level
et method, by scaling the Dirac approximations. Instead of utilizing the typical k = 1, 2 values used in the literature,
we discovered that there can be smaller errors and a higher order of convergence with non-integer scaling values of
k. Furthermore, despite the fact that the approximations presented in the literature were designed to have either high
moment conditions or to be convergent in some aspects, there are still various constraints when it comes to solving
Poisson’s equation in two dimensions. We believe that there is still an opportunity for improvement in the quality of
delta regularizations, and that future research should investigate numerical simulations of a three-dimensional problem,
which will become more viable as graphics processing units improve and become more widely available.
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Appendix A. Supplementary material

This work is based on a Python package, available on GitHub: https://github.com/MthBr/DEDICATE
The code was developed in order to generate Table 1, and compare the performances of different types of Dirac Delta

regularization. Tests can be extended with more delta approximations and other scaled supports k ∈ R. The reader can
tune the tests with other implemented solvers, or with their own solvers, or evaluate the performance on different PDEs
that can also be time-dependent.
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