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Abstract: Macro and trace elements are important regulators of biological processes, including
those ones linked to reproduction. Among them, Ca, Cu, Fe, K, Mg, Mn, Na, Se, and Zn ensure
normal spermatic functions. Hence, the aim of this study was to evaluate the concentrations of
26 macro and trace elements (Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni,
Pb, Rb, Sb, Se, Sn, Sr, U, V, and Zn) in blood serum and also in semen of healthy young men,
homogeneous for age, anthropometric characteristics, and lifestyle, living in three highly polluted
areas in Italy. Furthermore, a comparison among three geographical areas was performed to highlight
any difference in the investigated parameters and, overall, to speculate any correlations between
chemical elements and semen quality. Statistically significant differences (p < 0.05) among the three
areas were found for each investigated element, in both semen and serum samples, where inter-area
differences were more evident in semen than in blood serum, suggesting human semen as an early
environmental marker. Considering the homogeneity of three cohorts, these differences could be
due more to environmental conditions in the recruiting areas, suggesting that variations in those
involved in reproductive-associated pathways can have an impact on male fertility. Nevertheless,
more research is needed to evaluate threshold values for sperm dysfunction and male infertility.
Actually, the role of different dietary intake and environmental exposure underlying the observed
differences in the recruiting areas is under further investigation for the same cohort.

Keywords: trace elements; ICP-MS; semen quality; male fertility; dietary intake; environmental exposure

1. Introduction

Varying concentrations of different minerals, known as trace elements, are found
in the body and are essential for maintaining normal growth and development of living
tissues [1–3]. Examples of essential trace elements include minerals such as Iron (Fe),
chromium (Cr), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mb), cobalt (Co),
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and iodine (I). While these elements only account for 0.01–0.02% of the total body weight,
they play significant roles such as enzyme catalysts or in oxidation–reduction reactions
for energy metabolism [4]. Iron in particular is a vital component in haemoglobin and
myoglobin for the transport of oxygen [5].

Thus, the necessity or requirement to set a level for daily intake arises to meet physio-
logical needs and, thereby, to reduce the risk of nutrient deficiency or excess [4,6].

All trace elements can be potentially toxic if consumed at high levels for prolonged
periods, which can result in impairment of normal physiological functions and/or the
development of pathological conditions [7,8].

The potential for trace elements to act as toxicants on human health is of particular
interest due to their extensive use in various industrial processes, which can result in their
release into the environment, causing bioaccumulation and poisoning within our bodies.
Trace elements found with increasing frequency in nature with recognised harmful impacts
on living beings include elements such as arsenic (As), lead (Pb), and mercury (Hg) [9].

The toxicity of trace elements is correlated with several factors, such as age at exposure,
gender, and capacity for biotransformation, all of which are host-based factors that can
affect the toxicity mechanism [10]. In addition, lifestyle factors, such as smoking or alcohol
ingestion, can affect the level of metal intoxication or exposure. Cigarette smoke itself
contains many toxic metals [11], such as cadmium, and is considered the main source of
cadmium exposure [12].

In recent years, the incidence of human male reproductive disorders has been increas-
ing worldwide [13]. An extensive number of studies have suggested that this decline in
semen quality may be due to exposure to environmental pollution [14,15]., The increased
number of fertility disorders is potentially correlated with the widespread exposure of the
general population to metalloid and metal species [16,17]. For instance, excessive exposure
to an essential element such as Cu(II) may lead to oxidative damage, with adverse effects
on spermatogenesis [18,19]. Recently, the existence of copper-dependent oxidative DNA
damage was demonstrated, triggered by the recognition by Cu(II) of the arginine residues
of sperm H1 histones, and not somatic H1 histones, providing a new insight into the
mechanisms of copper toxicity [20].

Oxidative stress conditions can affect human sperm function and quality, even though
reactive oxygen species (ROS) are needed to regulate normal sperm physiology [21,22].
Hence, human semen is seen as an early and sensitive biomarker of environmental exposure
to pollutants, which may lead to a better understanding of how environmental toxicants
can affect healthy humans [16,23,24].

The aim of this study was to evaluate blood serum and semen levels for trace elements
in healthy young men homogeneous for age, anthropometric characteristics, and lifestyle,
living in three highly polluted areas in Italy, and to determine how the environmental
conditions of the recruitment areas influence the bioaccumulation of these trace elements.
The concentrations of 26 chemical elements (Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K,
Li, Mg, Mn, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, U, V, and Zn) were determined by inductively
coupled plasma mass spectrometry (ICP-MS) in human blood serum and semen to evaluate
any differences in bioaccumulation in the two fluids, and to consider any correlations
between chemical elements and semen quality.

Subjects recruited for this study were the participants of the randomized controlled
trial titled “Effects of Lifestyle Changes on Semen Quality in Healthy Young Men Living in
Highly Polluted Areas”, a FAST study (registered on ClinicalTrials.gov Protocol Registration
and Results System (PRS) n. J59D1600132001) [25] whose detailed data in results obtained
on the semen quality are given in Montano et al. (2021) [26].

2. Materials and Methods
2.1. Reagents and Materials

All reagents used were of analytical grade and for ultra-trace analysis (Sigma Aldrich,
Ultrascientific, Merck). Certified reference materials (CRMs) were provided by the Euro-
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pean Commission, Joint Research Centre, Institute for Reference Materials and Measure-
ments (IRMM).

2.2. Ethical Statements

All methods were performed in accordance with the guidelines and regulations con-
tained in the Declaration of Helsinki [27].

All experimental protocols were approved by the Ethics Committee of Southern
Campania with protocol number 325 (29 November 2017) and by that of Brescia Province
with protocol number 2980 (13 March 2018),and were accepted by the Italian National
Institute of Health (20 December 2017).

The FAST study was registered on ClinicalTrials.gov with NTC number NCT04012385 [25].
All recruited donors signed their informed consent before their visit with an andrologist
and sample collection.

2.3. General Description

A detailed description of the population studies, recruitment and inclusion/exclusion
criteria, and sample collection and processing are described in Montano et al. (2021) [26].
In brief, the recruitment was conducted from April 2018 to January 2019 as part of the
enrolment of the FAST study “Effects of Lifestyle Changes on Semen Quality in Healthy
Young Men Living in Highly Polluted Areas” [25].

All recruited subjects were informed of the study objectives and gave their signed
consent before sample collection. At enrolment, upon andrological and nutritional visits
(data were collected by questionnaire), a blood sample and a semen sample were taken
from 323 young healthy men aged between 18 to 22 years old. In addition, other inclusion
criteria were normal weight and waist circumference, normal sperm count, daily alcohol
intake of less than 5 alcohol units a week, daily smoking of less than 5 cigarettes, and
having lived in one of the recruitment areas for at least 5 years.

The Italian geographical areas chosen for subject recruitment are located between
the National Priority Sites (SIN, so called “National Interest Sites”), which represent very
large, polluted areas classified by the Italian State and which require remediation of the
soil, subsoil, and underground and surface waters to avoid environmental and health
damage and areas involved in illegal waste dumping practices [28]. The areas selected for
the recruitment are shown in Figure S1.

Samples from the first site came from the SIN called Brescia-Caffaro (BSC, n = 142),
located in the city of Brescia, a highly industrialized city in the Lombardy Region (northern
Italy); this area has a high level of environmental pollution, caused by the activities of a
chemical factory, which produced Polychlorinated Biphenyls (PCBs) and PCB mixtures,
such as Fenclor and Apirolio, between 1930 and 1984 [29,30].

Samples of the second area came from the Sacco River Valley (SRV, n = 54), Lazio Re-
gion (central Italy), located near Rome, which is heavily polluted by industrial waste from
a chemical industrial plant, contaminated by beta-hexachlorocyclohexane (β-HCH), a per-
sistent organic compound belonging to the group of hexachlorocyclohexane isomers [31].

Samples from a third area came from the municipalities belonging to the “Land of
Fires” (LF, n = 127), a highly polluted area between the northern city of Naples and Caserta,
Campania Region (Southern Italy), known for illegal waste dumping and toxic fires [32].
Many studies have focused on the environmental illegal waste problem in this area, which
causes negative effects on human health [33].

2.4. Semen and Serum Collection

Semen and blood serum samples were collected at the structures of the Brescia Hospi-
tal, “Medicina Futura” Center of Acerra, “Villa dei Fiori” Clinic of Acerra and AVIS sections
of Ferentino and Frosinone.

Semen samples were collected in a sterile container through masturbation, after a
period of abstinence from sexual activity of 3 to 5 days. A portion of 600 µL was frozen
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within 30–40 min after collection and delivered to the laboratory for the quantification of
trace elements.

Peripheral venous blood samples were collected using metal-free needles and syringes,
and, after clot formation, serum was obtained through centrifugation at 3000 rpm for 15 min
at room temperature. A 1 mL aliquot of serum was transferred into a metal-free vial, frozen,
and delivered to the laboratory for the determination of trace elements.

2.5. Macro and Trace Elements Analysis

To evaluate differences in blood serum and semen, we grouped detected chemical
elements into five groups according to the classification used by WHO, which considers
element nutritional importance and its daily requirements [1,3]. The elements of Group
I were not the object of this study. The elements of Groups II, III, IV, and V are briefly
described below.

Group II was made up of sodium (Na), potassium (K), magnesium (Mg), and calcium
(Ca), which are also called “macro elements”. These elements play an important nutritional
role, and their daily intake is more than 100 mg/day.

Group III was made up of essential trace elements, such as copper (Cu), iron (Fe),
manganese (Mn), cobalt (Co), nickel (Ni), selenium (Se), and zinc (Zn). Their daily intake is
less than 100 mg/day, but a deficiency could cause disorders and might be fatal [1,34].

Group IV was made up of additional elements that includes elements with a not
well-defined role but which are most likely essential, such as arsenic (As), cadmium
(Cd), chromium (Cr), lithium (Li), rubidium (Rb), strontium (Sr), and vanadium (V). A
requirement of essentiality for an element is related to its role in biochemical functions.
Hence, an element could be defined as essential when the lowering of its intake results in a
strong reduction of a physiologically important function or when it is a constituent part of
an organic structure involved in a vital function [3].

Group V was made up of other non-essential elements that have an unknown role
and which could be toxic, such as aluminium, antimony (Sb), barium (Ba), beryllium (Be),
mercury (Hg), lead (Pb), and Tin (Sn) [1,34].

The listed elements were evaluated both in blood serum and semen samples. Iron
was evaluated only in semen samples, because it was shown that high dietary Fe intakes
can lower sperm concentration and motility [35]. For determination of Al, As, Ba, Be, Ca,
Cd, Cr, Co, Cu, Fe, K, Li, Mg, Mn, Hg, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, V, and Zn, 500 µL of
semen or blood serum was digested with 1 mL of HNO3 ≥ 69% (v/v) in a glass vessel in a
microwave system equipped with an autosampler for 5 min at 160 ◦C (DISCOVER SP-D,
CEM, Bergamo, Italy); after cooling, the obtained solution was taken to a final volume of
10 mL with a solution of HNO3 ≥ 2% (v/v).

After acid digestion, the samples were analysed by microwave plasma optical emission
spectrometry (MP-AES 4210, Agilent, Santa Clara, CA, USA) for the determination of Ca,
K, Mg, and Na.

The samples were tested by inductively coupled plasma mass spectrometry (ICP-MS, Au-
rora M90 Bruker, Bremen, Germany [19] for the determination of the other mentioned elements.

The difference in the number of analysed samples was because it was not possible to
perform all determinations on all samples.

A blank from collecting tubes was evaluated for the possible presence of detected
elements. A blank digestion of 1 mL of HNO3 ≥ 69% (v/v) in a glass vessel was performed
to detect metal contamination for each digestion batch of 20 samples.

After the stabilization of the instruments, a calibration curve for each element was
performed every analysis session, calculated on five concentration standard solutions
obtained from certified standard solutions. After the calibration procedure, a standard
sample was run at the start and every 20 samples in the analytical lot to verify instrument
calibration. The results of the test samples were reported considering the values obtained for
each element in the blank samples. The limit of detection (LOD) and limit of quantification
(LOQ) were calculated by method of blanks variability for each investigated metal. The
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LOD and LOQ values for each element are shown in Table S3. The limit of detection (LOD)
and limit of quantification (LOQ) in the final sample are expressed in µg/L.

Trace element measurement precision was estimated by performing at least seven repli-
cates on an unfortified blood serum sample. The sample was then fortified by known additions
of elements not contained in the unfortified sample. The obtained data are shown in Table S6.
Precision, accuracy, and recovery data were evaluated for the blood serum samples.

The accuracy of the method was evaluated by analysing two different CRMs of human
serum. Mg, Ca, and Li were evaluated with CRM BCR-304 (IRMM). Zn and Se were
analysed in CRM BCR-638 (IRMM). Detailed data are shown in Table S8. Recovery data
were evaluated for the CRMs.

The accuracy for the elements not contained in the CRMs was evaluated by replicates
of the fortified sample. These data are reported in Table S6. Precision, accuracy, and
recovery data were evaluated for the blood serum samples.

Data of precision and accuracy of the described method were in accordance with the
requirements reported in ISS Report 15/30 [36], in which a recovery between 80 and 120%
was considered acceptable and values of CV% in the range from 16 to 35% were reported
for the blood serum matrix.

Precision and accuracy were estimated for semen samples by performing three replicates
on an unfortified semen sample. The sample was fortified by known additions for evaluating
precision data for the elements not contained in unfortified sample. In addition, recovery
was evaluated by three replicates of the fortified sample. The obtained data are available in
Table S7. Precision, accuracy, and recovery data were evaluated for the semen samples.

2.6. Data Analysis

All the data of semen and serum analyses were collected in a database with Microsoft
Excel. Data analysis was carried out using the Stata 14.2 software (Stata Corp, College
Station, TX, USA).

First, an analysis of the distribution of all detected trace elements in the serum and
semen of the donors of the whole cohort and the three subgroups living in the three different
areas was performed to evaluate median values and the range of the values’ distribution.

The Kruskal–Wallis test was carried out—for each element of the three subgroups
and in both semen and blood serum—to evaluate whether the samples originate from the
same distribution. The Kruskal–Wallis test was performed when an element was below
the LOD in less than 70% of the samples for each specific matrix. In this case, the analysis
was carried out on the values greater than the LOD. No analysis was performed when an
element was below the LOD in more than 70% of the samples.

The percentage of serum and semen samples below the LOD is shown in Table S2.
Blood serum samples below the limit of detection (LOD) are expressed in % in Table S5.
Semen samples below the limit of detection (LOD) are expressed in % in Table S5 of
supplementary material.

3. Results

The general characteristics of the young men recruited from the three polluted areas
were similar in terms of body weight, height, BMI, and abdominal circumference (Table S1);
the BMI in some boys was higher than the limit of 25 for normal weight, but in this case,
they were subjects with particularly developed muscles, and it was not due to abdominal
obesity as assessed with the measurement of abdominal circumference. Only the average
age was higher in the BSC group (Table S1).

Semen parameters including semen volume, pH value, spermatic concentration, total
motility, and sperm morphology of the subject groups were previously reported and
discussed in Montano et al. (2021) [26]. A short overview is provided in Table S2. Lifestyle
factors (PREDIMED and IPAQ scores) and semen quality parameters of subjects in each
area are reported as mean value ± standard deviation.
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Table 1 displays the median and range values for blood serum and semen of the macro
elements Ca, Mg, Na, and K in the whole cohort and in the subgroups of the three areas
investigated in this study. There was a statistically significant difference (p < 0.05) in semen
for every element among the areas. In semen samples, the BSC group had the highest
values of Ca, Mg, Na, and K compared with LF and SRV, while SRV had the lowest values.
In blood serum samples, the BSC subgroup had the lowest values compared with LF and
SRV, while SRV had the highest values.

Table 1. Concentration of Group II—macro elements (mg/L) in blood serum and semen samples of
the whole cohort (WRC) and three areas (BSC, LF, SRV), reported as median values and ranges.

WRC BSC LF SRV
n Median Range n Median Range n Median Range n Median Range p Value 1

Blood serum
Ca 330 157 52.4–4627 144 102 52.4–251 135 184 116–4627 51 188 145–3082 0.0001
Mg 330 29.8 10.7–135 144 20.1 10.7–44.1 135 32.1 22.7–119 51 41 33.4–135 0.0001
Na 256 4455 3238–10,449 70 4322 3238–6399 135 4471 3485–7383 51 4576 4115–10,449 0.0001
K 256 229 123–878 70 210 123–278 135 231 162–878 51 250 200–570 0.0001

Semen
Ca 262 488 117–1193 113 560 237–1193 94 453 133–1171 55 412 117–773 0.0001
Mg 262 128 11.6–449 113 172 25.6–441 94 120 11.6–449 55 103 19.7–251 0.0001
Na 262 4302 91.9–9745 113 4915 2397–9745 94 3960 91.9–7777 55 3900 354–6759 0.0001
K 262 1866 12.7–3879 113 2063 1074–3879 94 1712 12.7–3464 55 1632 145–3508 0.0001

n—number of donors; 1 p-values were calculated with the Kruskal–Wallis Test

Table 2 displays the median and range values for blood serum and semen of the
essential trace elements Cu, Fe, Mn, Ni, Se, and Zn in the whole cohort and in the subgroups
of the three areas investigated in this study, except for iron, which was not considered for
the serum matrix. There were statistically significant differences (p < 0.05) among the three
areas for every trace element. In semen samples, the BSC subgroup had the highest values
compared with LF and SRV, and also for these trace elements. The values of Fe, Ni, and
Zn were from two- to five-fold higher than in SRV and LF. The content of Mn, Se, and Zn
was comparable for LF and SRV. In blood serum samples, the LF subgroup had the highest
values of Cu, Mn, and Se, while Zn was comparable for BSC and LF subgroups. The SRV
subgroup had the lowest values of these five essential trace elements. Ni concentrations
are not shown in the Table 2, as they were under the LOD value in all serum samples for
the whole cohort and for each of the three subgroups.

Table 2. Concentration of Group III—essential trace elements (µg /L) in blood serum and semen samples
of the whole cohort (WRC) and three areas (BSC, LF, SRV), reported as median values and ranges.

WRC BSC LF SRV
n Median Range n Median Range n Median Range n Median Range p Value 1

Blood serum
Cu 332 842 445–2049 144 786 461–2049 137 918 554–1807 51 766 445–1103 0.0001
Mn 286 4.8 0.4–35.9 124 3.9 0.4–19.5 137 6.4 1.4–35.9 25 3.1 0.8–13.1 0.0001
Se 332 103 50.3–248 144 98.4 66.5–248 137 110 85.7–162 51 91.1 50.3–122 0.0001
Zn 331 1204 618–4820 144 1285 736–4820 136 1214 710–2026 51 884 618–1358 0.0001

Semen
Cu 268 142 36.9–1085 113 165 76.6–635 100 144 44.1–1085 55 118 36.9–482 0.0001
Fe 268 1375 329–119,401 113 2662 428–47,180 100 1166 329–119,401 55 807 375–88,138 0.0001
Mn 268 10.1 2.5–133 113 12.8 3.3–108 100 8.9 2.5–133 55 7.9 2.7–50.6 0.0033
Ni 152 14.4 4.4–240 109 27.1 5.5–240 100 <4.2 - 43 7.5 4.5–66.8 -
Se 268 38.2 3.9–119 113 49.4 18.4–110 100 36.5 6.6–119 55 36.5 6.6–119 0.0001
Zn 268 91,316 48–526,312 113 130,430 400–526,312 100 59,137 48–219,654 55 68,206 200–223,536 0.0001

n—number of donors; 1 p-values were calculated with the Kruskal–Wallis Test

Additional trace elements and other non-essential ones that were taken into account
within this study were Al, As, Ba, Be, Cd, Co, Cr, Hg, Li, Pb, Rb, Sb, Sn, Sr, U, and V. Table 3
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displays the median and range values for blood serum and semen of these elements with
values above the LOD value for the whole cohort and for each of the three subgroups. In
semen samples, Al, Be, Cd, Co, Cr, U, and V showed concentrations below the LOD for the
whole cohort and for each of the three subgroups, while in blood serum samples, only Al,
Be, Co, Cr, and V were below the LOD value in all the areas.

Table 3. Concentration of Groups IV and V—additional and non-essential trace elements (µg /L) in
blood serum and semen samples of the whole cohort (WRC) and three areas (BSC, LF, SRV), reported
as median values and ranges.

WRC BSC LF SRV
n Median Range n Median Range n Median Range n Median Range p Value 1

Blood serum
As 332 2.9 0.2–97.9 144 4.8 0.3–36.9 137 2.3 0.7–97.9 51 1.5 0.2–13.7 0.0001
Ba 261 18.0 6.7–1268 129 25.6 6.7–1268 103 12.1 6.8–145 29 10.8 6.8–27.4 0.0001
Cd 105 0.7 0.4–2.7 144 <0.2 - 86 0.7 0.4–2.7 19 0.4 0.2–1.3 -
Hg 144 0.7 0.2–4.4 95 0.6 0.2–2.9 88 0.9 0.2–4.4 51 <0.2 - -
Li 317 12.5 0.7–371 136 30.3 0.7 – 106 132 11.6 1.8–22.3 49 13 8.3–371 0.0295
Pb 318 1.3 0.1–231 136 1.9 0.2–231 131 1.2 0.1–40.5 51 1 0.2–3.9 0.0001
Rb 332 159 84.2–1093 144 141 89.4–334 137 162 91.3–1093 51 194 102–289 0.0001
Sb 292 1.1 0.2–7.6 137 2 0.3–7.6 113 0.9 0.3–6.7 42 0.7 0.2–7.2 0.0001
Sn 281 1.9 0.2–36.9 96 1.2 0.2–36.9 136 2.3 0.2 – 5.1 49 1.8 0.2–3.6 0.0001
Sr 332 30.8 14.5–124 144 32.3 15.1–124 137 28.7 14.5–60.3 51 32.8 14.7–56.0 0.0019
U 193 0.3 0.2–2.5 72 0.3 0.2–2.5 96 0.3 0.2–1.5 25 0.3 0.2–0.7 0.0764

Semen
As 267 4.6 0.2–33.7 112 4.0 0.2–33.7 100 6.0 1.6–17.8 55 4.0 1.0–16.5 0.0001
Ba 204 74.5 26.0–19,847 49 48.4 26.0–103 100 75.2 27.6–3177 55 128.2 48.3–19,847 0.0001
Hg 120 0.5 0.2–2.7 39 0.7 0.2–1.8 81 0.5 0.2–2.7 54 <0.2 - -
Li 267 27.5 0.4–210 112 24.2 0.4–43.5 100 102 1.4–210 55 24.2 5.2–35.5 0.0001
Pb 257 2.4 0.1–48.7 102 1.6 0.1–11.5 100 3.5 0.4–22.4 55 2.4 0.5–48.7 0.0001
Rb 268 1489 214–4847 113 1504 688–2717 100 1315 328–3053 55 1733 214–4847 0.0025
Sb 100 3.9 0.2–79.4 66 4.1 0.2–14.1 34 3.1 0.3–79.4 55 <0.2 - -
Sn 260 3.5 0.2–28.4 112 3.5 3.1–27.4 94 3.5 2.4–28.4 54 2.3 3.6–8.8 0.0001
Sr 268 70.8 206–272 113 76.1 32.3–272 100 67.0 22.3–186 55 67.6 20.6–152 0.008

n—number of donors; 1 p-values were calculated with the Kruskal–Wallis Test

Statistically significant differences (p < 0.05) among the three areas were found for all
the elements for which the Kruskal–Wallis test was conducted.

In semen samples, Hg and Sb were detectable and had comparable values in BSC and
LF groups, while they were below the LOD value in the SRV group. LF presented values
of As, Li, and Pb from two- to four-fold higher than BSC and SRV. LF and SRV subgroups
were characterized by higher Ba concentration, approx. two-fold higher than BSC.

In blood serum samples, Cd was below the LOD for the BSC subgroup, while the LF
subgroup showed a concentration of 0.7 µg/L, approx. two-fold higher than SRV. Sb, detected
only in the BSC and LF subgroups in semen samples, was present above the LOD in serum
for all three groups; however, the BSC subgroup presented the highest concentration.

As shown in semen, the BSC and LF subgroups had comparable values of Hg, which
were below the LOD in the SRV subgroup. We can see an opposite trend for Ba in blood
serum, with the highest value for the BSC subgroup, approximatively two-fold higher than LF
and SRV. Li and Pb showed higher concentrations in the BSC subgroup than in LF and SRV.

In order to obtain an easier graphical representation of data comparison of the mea-
sured elements in the three different subgroups, it was decided to also report the concentra-
tions of each element as percentage relative concentrations using the following formula:

[%C]M =
[C]M × 100

[C]H
(1)

where the [%C]M values are calculated within each element for each subgroup (BSC, LF,
SRV). The subscript M identifies the subgroup under examination for that element, while
the subscript H represents the subgroup with the highest concentration for that element.
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The comparison of data in blood serum—for each element calculated with (1)—is
reported in Figure 1.
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Figure 2a clearly highlights the BSC subgroup as the one with the highest concentration
of all macro and essential trace elements in semen.

4. Discussion

This study provides a baseline composition of some trace elements in human blood
serum and semen in a young healthy Italian male population. The recruited cohort [26] was
formed by 18–22-year-old individuals of three different subgroups homogeneous for anthro-
pometric characteristics and lifestyle living in three distinct highly polluted areas of three
Italian regions (Lombardy, Lazio, and Campania). The comparative analysis conducted
among the population subgroups of this study (BSC, LF, SRV) highlights differences that
may be correlated to different dietary intake and environmental exposures. The number
of participants, although sufficient to highlight statistically significant differences, could
represent a study limitation; in particular, it is rather small in the SRV area. This was
due to the difficulty of finding students, all volunteers, that met the inclusion criteria of
this study. Moreover, in this study, we have not considered unpolluted areas because
we already reported that in the semen from the “high impact” (HI) group (in Campania
areas), higher zinc, copper, chromium, and reduced iron levels; reduced sperm motility;
and higher sperm DNA Fragmentation Index (DFI) in comparison with the “low impact”
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group (LI) was observed. Overall, several semen parameters (reduced sperm quality and
antioxidant defences, altered chemical element pattern) were shown to be associated with
residence in a highly polluted environment [16] and, in particular, in the SRV area, in which
we recently found molecular alterations and severe abnormalities in the spermatozoa of
young men [37].

Blood serum data of the present study were compared to proposed Reference Values
of SIVR (Italian Society of Reference Values) [38] and Italian biomonitoring data of the
Italian National Institute of Health (ISS) [39,40], and also to the data of WHO [3,41] listed
in Table S9. Reference Values and biomonitoring data are expressed as µg/L for macro and
essential trace elements in blood serum in Table S10. Reference Values and biomonitoring
data are expressed as µg/L for additional and non-essential trace elements in blood serum.

Our findings show values comparable to those mentioned above for most of the macro
and essential trace elements listed in Table S9, except for Mn, which showed concentrations
higher than the reference values in the LF and BSC subgroups.

In addition, most of the additional and non-essential trace elements were found at
concentrations in agreement with corresponding reference values reported in Table S10,
except for Ba, Li, Pb, and Sb, which showed concentrations higher than the reference
values. Cd was present above the LOD in the LF and SRV subgroups, with a concentration
comparable to the highest reference value.

With regard to the BSC subgroup, industrial pressure in the city of Brescia and its
province has caused heavy metal pollution, particularly by Mn, Pb, and Ni [42–45]. The
“Land of Fires” (LF subgroup) has been extensively studied for its pollution—due to
massive landfills and illegal fires—and the high incidence of cancer [46–49].

However, trace element content is profoundly influenced by the consumption of food
and drinking water, particularly cereal and cereal-based foods and bottled drinking wa-
ter [50]. In addition, Naples and its province present a typically volcanic profile; therefore,
it is not uncommon to find geological formations containing elements such as As and
Mn, which could be a source of metals for water supplies used for drinking and irrigation
purposes [51,52].

The SRV area is notorious for its high level of industrial mistreatment of the area and
the resulting pollution mainly due to β-hexachlorocyclohexane, as well as being involved
in illegal waste trafficking [31,53,54].

Nowadays, acute metal poisoning is still common in many developing countries. In
addition, food and beverages, including drinking water and wine [55,56], can be sources
of lead exposure, while vegetables farmed near really congested roads contain increased
levels of Pb [55].

Some elements, such as Ba and Mn, were reasonably also traceable to industrial
activities [43]. Although barium is not considered a nutritive essential element, people
are exposed to this metal primarily by ingestion of food and water and inhalation of
ambient air. The Italian Ba level in tap water ranges from 0.1 to 5000 µg/L, showing high
variability due to the different kinds of soils [52]. In addition, the dietary intake of Ba can be
increased because some plants—grown in Ba-rich soils—can accumulate high levels of this
element [57–60]. Moreover, in 1977, it was estimated that—only with soluble Ba salts—up
to 75% of inhaled Ba could be absorbed into the bloodstream [61]. This could explain why,
in our study, Ba levels were higher in blood serum samples compared to reference values
for the whole cohort, with a higher concentration in the BSC group than in LF and SRV.
Our findings show a different trend in semen samples, with a concentration up to three
times higher in LF and SRV subjects compared to those of BSC. This could suggest that
semen might be one of the preferential accumulation districts of barium, showing a high
exposure to this metal which was not noticed by the differences in the blood serum.

Arsenic—despite its known toxic effects in humans—is largely used in both industry
and agriculture. Toxic exposure to arsenic has increased with the intensified consumption
of the metalloid. Several As-based pesticides have been used in agriculture [62]. Despite
the ban of inorganic arsenic, the past use of pesticides brought about elevated levels of
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arsenic and lead in soils [63], while organic arsenic compounds are still used as herbicides
today [64]. Harmless organic forms of arsenic may be contained in fish and seafood [55,56].
The reduction of antioxidant pools and the arsenic-induced formation of free radicals
show—as a net effect—a increased oxidative stress of cells [65–68].

It is worth noting that—in semen—LF subjects showed the highest value for lithium.
This element can be found in varying amounts in foods. Italian tap water values of Li range
from 5.1 to 60.8 µg/L [51]. Considering this data, a vegetarian diet—rich in grains and
vegetables—would provide more Li compared to an animal protein-rich diet. In fact, Li
content—such as that of other elements—in plants depends on its content in the surround-
ing environment [69,70]. Furthermore, it is well documented in the scientific literature how
some elements are affecting and/or contributing to some biological parameters [71]. Zinc
plays a critical role in spermatogenesis and stabilizing sperm cell membrane and nuclear
chromatin [72]. The numerous roles found for different elements are summarized in Table
S11. The elements from Ca to Zn can be defined as essential to semen because they are
deeply involved in several spermatic functions, and their possible deficiencies can bring
about pathological status. In contrast, elements As to V are not known to have a defined
role in sperm function, but some studies on how they influence sperm parameters have
been reported [73–82].

As shown in Figure 2, the BSC subgroup shows the highest values for the elements
strictly involved in all the semen functions. High concentrations of Zn, Fe, and Se are
correlated with high spermatic concentrations, while decreased concentrations of these
elements—as we noted in LF—are correlated with a lowered spermatic count [71,76,83–86].

These discoveries are in accordance with the baseline evaluation of the quality pa-
rameters of the subject reported in Montano et al. 2021 [26], in which the BSC subgroup
showed the highest sperm concentration, while LF donors showed the lowest.

Nevertheless, it was shown that high dietary Fe intakes can lower sperm concentration
and motility [35]. Moreover, high values of barium could be related to sperm morphology
and motility [74]. SRV donors displayed the highest values of Ba coupled with the lowest
values of copper. In addition, this evidence is in agreement with spermiogram analysis,
which showed the lowest percentage of cells with normal morphology and the lowest total
and progressive motility in SRV donors compared to the other groups [26].

However, our data show that some pollutants were present in both matrices, and some
of them—such as Li and Mn—were in higher concentrations in semen, which led us to
speculate that semen may be an internal site of bioaccumulation.

Cu and Se, which showed higher concentrations in blood serum than semen in the
three subgroups, might reflect a metabolic imbalance traceable to living conditions. In
addition, zinc and copper are strongly related in humans, and their interactions are pri-
marily antagonistic. Under physiological conditions, it has been shown that a constant
proportion exists between these two trace elements in blood serum; the ratio of Zn/Cu
ranges from 0.9 to 1.27. This ratio would provide useful information on semen quality.
Indeed, it has been reported that, among infertile men, blood serum zinc decreased while
the copper value increased, and the value of Zn/Cu was lower than that of fertile men [87].

In our research, we examined the blood serum Zn/Cu ratio for the whole recruited
cohort and the three subgroups, as displayed in Table S12. In the three subgroups we
noticed an increase in blood serum Zn/Cu ratio (SRV < LF < BSC).

This additional result partially agrees with some differences in semen quality parame-
ters found among the three subgroups of donors in Montano et al. (2021) [26].

This is in line with our recent studies, which have shown that copper, in the oxidation
state 2+, interacts with arginine residues of sperm H1 histones (particularly rich in arginine),
inducing oxidative DNA damage in the presence of hydrogen peroxide [20]. Moreover,
Human Protamine 2 has a strong Cu(II)-binding amino acid motif at its N-terminus (Arg-
Thr-His), which is able to mediate oxidative DNA double-strand scission and the generation
of 8-oxo-20-deoxyguanosine (8-oxo-dG) from free 20-deoxyguanosine (dG) and from DNA
by H2O2 [88,89]. Considering this evidence, and also that sperm DNA fragmentation
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is one of the primary causes of male infertility, it would be possible to hypothesize that
these proteins could trap this metal, increasing the availability of Cu(II) ions near the
binding surface of DNA. Consequently, this condition could lead to the promotion of the
Fenton reaction in DNA proximity after H2O2 addition, determining DNA breakage and
explaining the DNA oxidative damage found in spermatozoa of men living in polluted
areas and presenting a high level of copper in their semen [18,19].

Furthermore, this study provides a starting point for ongoing work to evaluate the
effect of a dietary intervention on the profile of trace elements in serum and semen. If
differences between the areas are not eliminated after dietary intervention, they may be
more closely related to environmental exposure.

5. Conclusions

In conclusion, the current results show the levels of 26 elements in both human semen
and blood serum of a population of Italian individuals who are all healthy, young men
aged 18 to 22 years, homogeneous for age, anthropometric characteristics, and lifestyle,
living in three environmentally polluted geographic areas. These differences could be
due to different dietary intake and environmental exposure in the areas of recruitment.
Nevertheless, more research is needed to evaluate threshold values for sperm dysfunction
and male infertility. According to our findings, the determination of the possibly hazardous
elements, simultaneously, in human semen and blood serum, could be useful to speculate
some correlation with environmental pollution and dietary intakes. The bioaccumulation
phenomenon of some trace elements in semen where inter-area differences are more evident
in semen than in blood serum should be further investigated in order to eventually identify
some of them as novel biomarkers of environmental exposure. This work suggests human
semen as an early environmental marker. It also underlines the need for further detailed
analysis of the pollution sources by the competent authorities.
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