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In this work, we propose a multilayer control protocol for synchronization of network dynamical systems under limited
resources. In addition to the layer where the interactions of the system takes place, i.e., the backbone network, we
propose a second, adaptive layer, where the edges are added or removed according to the edge snapping mechanism.
Different from classic edge snapping, the inputs to the edge dynamics are modified to cap the number of edges that
can be activated. After studying local stability of the overall network dynamics, we illustrate the effectiveness of the
approach on a network of Rössler oscillators, and then show its robustness in a more general setting, exemplified with
a model of the Italian high-voltage power grid.

In biology, adaptation describes the process that permits a
structure to cope with changes to the environmental con-
ditions. This concept has inspired a plethora of appli-
cations in artificial systems, including optimization algo-
rithms and artificial intelligence. In the context of dynam-
ical systems, adaptation allows to design controllers that
are able to readjust the intensity and modalities of their
inputs as a function of the system operating conditions.
More specifically, adaptation has been used in networks of
coupled dynamical systems to control synchronization, by
incorporating updating mechanisms for the network de-
scribing the interactions between the units composing the
system. Most of the works on this topic have considered
models where the network evolution is not constrained.
However, towards realistic applications, one should ac-
count for limitations on the available resources and, there-
fore, on the number of connections between the units in
the system. A few researches have analyzed this problem,
focusing on phase (Kuramoto) oscillators. Here, we study
the more general case of networks with arbitrary dynam-
ics incorporating an adaptive strategy that limits the num-
ber of connections each unit can have.

I. INTRODUCTION

Adaptive networks can be described as an ensemble of dy-
namical units coupled over a graph topology, whose structure
coevolves with the dynamics taking place at each unit1,2. The
idea of associating dynamics not only to the nodes but also
to the edges of a network can be traced back to the pioneer-
ing work of Šiljak3, who later formalized the concept of dy-
namic graphs4. The key feature of these graphs is that weights
can dynamically evolve (with a dependence described by a
differential equation) and adjust in response to some exter-
nal driver. However, dynamic graphs do not incorporate any
growth mechanism, which, instead, is taken into account in
the Holland’s notion of complex adaptive systems5. Both the
adaptation and the growth mechanism in networks are framed
into the more general framework of the evolving dynamical

networks, where the network dynamics take place within the
set of admissible generalized dynamic graphs, possibly having
different size6,7.

In the last decades, the descriptive power of adaptive net-
works has been used to represent, analyze, and control both
natural and artificial systems. Indeed, many social and bi-
ological interacting systems possess the ability of reshaping
the structure of interactions by forming or suppressing inter-
connections among their constituents and/or modulating their
strength8, and therefore can be readily described as adap-
tive networks9. Inspired by natural systems, adaptive net-
works have also been employed to design control mecha-
nisms for artificial systems, whereby tuning the weight of
a link or rewiring the structure of the interactions facilitates
the achievement of a desired collective behavior for the net-
work system7. In particular, synchronization, i.e., the pro-
cess through which interacting oscillators converge to a com-
mon trajectory, is a collective behavior that is often targeted
in adaptive networks10.

Adaptation may be incorporated in a network in different
ways. In a first bulk of work, the network structure is as-
sumed constant, whereas the weights of the edges are adapted
to foster network synchronization. First, centralized adapta-
tion strategies have been proposed, framing for all network
links the same weight updated simultaneously with a law that
depends on global information on the state of all nodes11,12.
An alternative decentralized approach, which does not re-
quire a global information exchange between all the network
nodes, prescribes that each node dynamically negotiates with
its neighbors the intensity of their mutual coupling, depend-
ing on the mismatch between their states, so that an adaptive
coupling is associated to each node or link in the network10,12.

Later work then considered that not only the edge weights
can be modulated, but also the network structure itself can
be dynamically updated, with connections added or removed
toward synchronizing the dynamics taking place at each
node7,13. This approach has been, for instance, pursued
in coupled Kuramoto oscillators, showing the emergence of
structures at meso- and macro-scales14,15. Notably, the adap-
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tive laws proposed in these works incorporate constraints on
the overall intensity of the coupling. For more general in-
dividual dynamics, possibly exhibiting chaotic oscillations,
the so-called edge snapping mechanisms was proposed to de-
scribe the activation or deactivation of a given edge, whose
state evolution was described as that of a mass in a double-
well potential, driven by the mismatch between the states of
its endpoints7. The presence of inertia in the edge dynamics
implies that an edge is only activated if this mismatch is suf-
ficiently high and persistent, thereby preventing the activation
of edges due to temporary, short perturbations.

The edge snapping mechanism was successfully employed
to describe the dynamics that lead to the emergence of a
steady-state topology in complex networks. Interestingly,
when applied to capture the influence dynamics in financial
networks, the emerging degree distribution reproduced that
observed in corporate elite networks16,17. From a control per-
spective, edge snapping can also be viewed as a control mech-
anism, where the network topology continues to evolve until
synchronization or pinning control is achieved7,18. Nonethe-
less, towards its application in technological contexts, it is
necessary to consider the presence of possible limitation of
the available resources, which prevent the activation of an ex-
cessive number of edges. Indeed, depending on the initial con-
ditions, networks with large steady-state average degree may
emerge19.

In this paper, we propose to overcome this problem for a
general complex network model, whereby we modify the edge
snapping dynamics to explicitly account for constraints on the
number of activated edges. Towards this aim, we adopt a mul-
tilayer framework as in Ref.20,21. In this general framework,
a layer represents the physical system to control, while the
others implement the different functionalities of the control
law, such as, for instance, the modes of a distributed propor-
tional, integral and derivative controller. Synchronization in
multilayer networks has been also studied in the case where,
instead, the layers represent different types of interactions ex-
isting in the physical system22–25.

In more detail, here we consider that the system is com-
posed by two layers. The first layer constitutes the (static)
backbone network, whereas the second is a switching adap-
tive control layer that determines the additional edges to be
activated. Different from classic edge snapping, here i) edges
are activated or deactivated through a discontinuous output
function of the edge state, and ii) the input to the snapping
dynamics is designed to regulate the trade-off between the
need of activating new edges to foster synchronization and
that of avoiding activating an excessive number of edges. In-
deed, the discontinuous, binary edge output function allows
each node to independently count the number of incident acti-
vated edges, whereas the input to the edge dynamics allows to
asymptotically constrain the degree of each node. We analyt-
ically show that, under suitable assumptions on the individual
dynamics and coupling strength, locally asymptotically stable
steady-state network configurations exist. Furthermore, we
provide a lower bound on the coupling strength, below which
the snapping dynamics cannot induce synchronization among
the network nodes.

The effectiveness of the approach is demonstrated on net-
works of chaotic Rössler oscillators. Then, we aim at char-
acterizing the robustness of the proposed modified edge snap-
ping mechanism in a more general modeling setting. Toward
this goal, we consider a model of the Italian high-voltage
power grid, and test its ability of reacting to faults. In this
context, we evaluate how the control layer is capable of re-
configuring following a fault at a given line.

II. MULTILAYER NETWORK MODEL

A. Node dynamics

Let us consider an undirected multilayer network composed
by N systems, whose dynamics are given by

ẋi(t) = f (xi)+ k
N

∑
j=1

ab
i j(h

b(x j(t))−hb(xi(t)))

+q
N

∑
j=1

ac
i j(t)(h

c(x j(t))−hc(xi(t))), i = 1, . . . ,N,

(1)

where xi ∈ Rn is the state of the i−th node, and f : Rn → Rn

is the vector field describing the individual dynamics. The in-
teraction between the units takes place on two layers, a back-
bone layer describing the pre-existing connections between
the units, and an additional control layer to be appropriately
designed. The topology of the backbone layer is described by
the backbone adjacency matrix, whose element ab

i j is 1 if there
is a backbone link between units i and j, whereas it is 0 oth-
erwise; k is the strength of the coupling in the backbone layer,
whereas hb : Rn → Rn is the inner coupling function of the
backbone layer. Similarly, the inner coupling of the control
layer is described by hc : Rn → Rn, with a coupling strength
given by the scalar q. Different from the backbone network,
the topology of the control layer is time-varying, and is de-
scribed by a time-varying adjacency matrix Ac(t) whose ele-
ment i j is denoted ac

i j(t), and is 1 if an edge of the control
layer connects nodes i and j at time t, whereas it is 0 other-
wise.

B. Design of the control layer topology

The scope of the control layer is to simultaneously reach
the following, possibly contrasting goals

lim
t→+∞

(xi(t)− x j(t)) = 0, i, j = 1, . . . ,N, (2a)

lim
t→+∞

N

∑
j=1

ac
i j(t)≤ d̄i, i = 1, . . .N, (2b)

that is, to synchronize the network topology and asymptoti-
cally limit to d̄i the degree of node i in the control layer, for
i = 1, . . . ,N.

Here, we propose to attain this objective in a fully dis-
tributed fashion by dynamically updating the topology of the
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(a) (b)

FIG. 1. Schematic illustration of the proposed multilayer network model and examples of adaptation of the control layer in a network of
Rössler oscillators, In panel (a), the control layer is obtained without limiting the resources, and setting the backbone and control gains as
k = 0.2 and q = 0.2 respectively, and yields a control topology with dM = 10 and ⟨d⟩ = 6.34, whereas in panel (b) the resources are limited
by setting d̄ = 6, thereby inducing a control layer with dM = 6 and ⟨d⟩= 5. The figure shows the one-by-one node control which connects the
control and backbone layers, identified by the letters c and b, respectively.

control layer according to a suitable modification of the classic
edge snapping approach19, whereby we associate a dynamical
system to each pair of nodes in the network. Namely, for each
pair i j, we introduce a state variable σi j ∈ R, whose dynam-
ics can be viewed as the motion of a mass in a double well
potential, whereas the binary output of the pair i j will be the
element ac

i j(t) of the adjacency matrix of the control layer, that
is,

σ̈i j(t)+ζ σ̇i j(t)+
∂

∂σi j(t)
V (σi j(t)) = ui j(t), (3a)

ac
i j(t) = Θ(σi j(t)−0.5), (3b)

where ζ is the damping, V (σi j) : R→ R is a double-well po-
tential, ui j(t) is a time-varying input driving the edge dynam-
ics, and Θ is the Heaviside function. In general, the potential
V (σi j) is selected so that the homogeneous equation associ-
ated to (3a) has two locally stable equilibria in 0 and 1, and an
unstable equilibrium in 0.5. As in standard edge snapping, we
select

V (σi j) = bσ
2
i j(σi j −1)2, (4)

where b is a positive scalar that modulates the height of the
barrier between the two stable equilibria.

The main difference compared with the classic edge snap-
ping stands in the selection of the input ui j, which is tailored
to avoid an excessive activation of edges in the control layer.
Towards this goal, we start by defining, for all i = 1, . . . ,N, the
variable

δi(t) = max

(
0,

N

∑
j=1

ac
i j(t)− d̄i

)
, (5)

which, when positive, is equal to the number of edges incident
at i that exceed the asymptotic bound d̄i on the degree of node
i. Then, for each pair of nodes, we define δi j(t)= δi(t)+δ j(t),

which is positive if one of the two nodes has a number of
edges exceeding the asymptotic bound (d̄i or d̄ j), that is, if it
is using more resources than those allowed. Finally, we select
the input as follows

ui j(t) = β1g(ei j(t))−β2δi j(t), (6)

where ei j(t) = x j(t)− xi(t) and

g(ei j(t)) =
∥∥ei j(t)

∥∥ , (7)

In this way, the input ui j(t) takes into account two contribu-
tions. The first term, β1g(ei j(t)), is a function of the local
synchronization error between i and j and, as β1 > 0, pro-
motes the formation of a link between the two nodes if they
are not synchronized. The second term, −β2δi j(t), is nega-
tive if one of the two nodes is using too many resources, and,
in such case, as β2 > 0, hampers the formation of the link.
The two constants, β1 and β2, can be calibrated to weigh the
importance of the two goals (2a) and (2b), respectively.

III. THEORETICAL ANALYSIS

In this section, we carry out a theoretical analysis on the lo-
cal stability of the solution of model (1), (3) that are of interest
considering the control goal stated in (2). Namely, we study
the local stability of all the solutions corresponding to i) syn-
chronous nodes, that is, x1 = . . .= xN = xs,26 and ii) constant
edge states with values σ i j being either 0 or 1, and such that
the degree bound ∑

N
j=1 ac

i j(t)< d̄i is fulfilled for all i.
Toward this goal, let us indicate with δxi = xi − xs the

transverse dynamics of the i-th unit, and let us define δσi j =
σi j −σ i j as the deviation of the edge state from the consid-
ered equilibrium σ i j. Furthermore, we can introduce δx =[
δxT

1 , . . . ,δxT
N
]T, and the vectors δσ , and δ σ̇ stacking all the
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δσi j’s and δ σ̇i j’s, respectively. Linearizing the dynamics of
(δx,δσ) around the origin yields

δ ẋ = [IN ⊗ Jf(xs)− kL(b)⊗ Jh(b)(xs)−qL(c)⊗ Jh(c)(xs)]δx,
δ σ̈ =−ζ δ σ̇ −2bδσ , (8)

where we considered that the gradient of g is naught at the
origin, and that δi j is constant (and equal to zero) around the
origin. We remark that the assumption of a zero gradient of g
at the origin is important to decouple the perturbations on the
weights of the adaptive layer. This assumption is true for g in
Eq. (7), and is therefore a design criterion for the updating law
for the adaptive weights of the proposed approach. In Eq. (8)
we denoted with Jf(xs), Jh(b)(xs), and Jh(c)(xs) the Jacobians
of the functions f , h(b), and h(c), respectively, evaluated at
the synchronization manifold xs, and with L(c) the constant
Laplacian matrix corresponding to the reference equilibrium
σ of the network edge state σ .

Notice that L(c) depends on the system evolution, and,
hence, on the updating rule for the adaptive links, the sys-
tem parameters, and initial conditions. In particular, while in
classic edge snapping all possible topologies on N nodes are
a feasible equilibrium configuration, here an admissible equi-
librium topology should be such that δi is zero for all i, as
implied by Eqs. (5)-(6), that is, the equilibrium degree (L(c))ii
of node i in the control layer should not exceed δ̄i.

Since local node and edge dynamics in (8) are decoupled,
we can study them separately. First, we notice that selecting
positive values for ζ and b yields asymptotic stability of the
linearized dynamics of δσ . We can then focus on the nodal
dynamics around the synchronization manifold.

We start by observing that both L(b) and L(c) are symmet-
ric, positive semi-definite matrices, and thereby they share the
eigenvalue λ1 = 0, with associated eigenvector v1 = [1, . . . ,1]T

(for convenience we sort the eigenvalues in ascending order).
In general, the other eigenvalues and eigenvectors of the two
matrices are different, such that they cannot be simultaneously
diagonalized. Let us then consider the matrix T containing
the left eigenvectors of Lb and define the transformed variable
ξ = (T−1 ⊗ In)δx. The dynamics of ξ can be written as

ξ̇ = [IN ⊗ Jf(xs)− kdiag{λ1(L(b)), . . . ,λN(L(b))}⊗ Jh(b)(xs)

−qL̂(c)⊗ Jh(c)(xs)]ξ (9)

where L̂(c) = T−1L(c)T. Considering the spectral properties of
matrices L(b) and L(c), equation (9) can be recast as

ξ̇1 = Jf(xs)ξ1, (10)

ξ̇ j = [Jf(xs)− kλ j(L(b))Jh(b)(xs)]ξ j −q
N

∑
l=2

L̂(c)
jl Jh(c)(xs)ξl ,

for j = 2, . . . ,N. Note that the first mode is associated to
λ1 = 0 and determines the stability of the motion along the
synchronization manifold, whereas all the other modes are

transverse to this manifold. When these transverse modes
damp out, synchronization is stable, such that synchroniza-
tion stability can be assessed by characterizing the largest Lya-
punov exponent of the dynamics of ξ2, . . .ξN .

When the coupling function is the same in the two layers,
that is, h(b) = h(c), a considerable simplification takes place.
Under this assumption, in fact, we can define a new matrix
M = kL(b)+qL(c) and rewrite the first equation in (8) as

δ ẋ = [IN ⊗ Jf(xs)−M⊗ Jh(b)(xs)]δx. (11)

If k,q ≥ 0, since both L(b) and L(c) are symmetric and posi-
tive semi-definite, then also matrix M is symmetric and posi-
tive semi-definite. Therefore, we can select the transforma-
tion T as the matrix whose columns are obtained by jux-
taposing the left eigenvectors of M, and define again ξ as
ξ = (T−1 ⊗ Im)δx, thereby obtaining

ξ̇i = [Jf(xs)−λi(M)Jh(b)(xs)]ξi, (12)

where λ1(M), . . . ,λN(M) are the eigenvalues of M sorted in
ascending order, that is, 0 = λ1(M) ≤ λ2(M) ≤ . . .λN(M).
Local stability of the synchronization manifold requires that
the transverse modes in (12), i.e., those for i = 2, . . . ,N, damp
out. This condition can be checked by calculating the maxi-
mum Lyapunov exponent associated to the generic equation

η̇ = [Jf(xs)−αJh(b)(xs)]η

as a function of the parameter α , i.e., Λmax(α), and verifying
that Λmax(α)< 0 for all α ∈ {λ2(M), . . . ,λN(M)}.

The exact form of L(c) (and therefore of M) depends on the
trajectory followed by the system (1)-(3) with input as in Eq.
(6). As the input is a function only of the state variables,
the system becomes autonomous, and the trajectory it follows
only depends on the system equations, its parameters (includ-
ing the bound on available resources), and its initial condi-
tions. Since prior to the determination of the system trajectory
L(c) is not known, the eigenvalues of M cannot be calculated
and the condition λmax(α) < 0 cannot be checked. Nonethe-
less, equation (12) can still provide some a priori insights on
the stability of the synchronous manifold.

First, we point out that equation (12) has the exact form
of the Master Stability Function (MSF) that characterizes the
synchronization stability in single layer complex networks of
coupled oscillators27 and, therefore, the classification into dif-
ferent types of MSF can still be applied28. For the sake of
simplicity, let us focus on systems with type II MSF, which
represents the case of an unbounded stability region, whereby
there exists a threshold value α ∈ R such that Λmax(α) < 0
for α ∈ [α1,∞). For this class of systems, local stability of the
synchronization manifold requires λ2(M) > α1. As M is the
sum of two positive semidefinite matrices, we have that

λ2(M)≥ max{kλ2(L(b)),qλ2(L
(c)
)} ≥ qλ2(L

(c)
). (13)

Suppose now that the backbone layer is not able to en-
force local stability of the synchronization manifold, that is,
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max{kλ2(L(b)),qλ2(L(c))} = qλ2(L(c)), such that the control
problem is not trivial. A relevant degenerate case is when
there is no backbone network at all, i.e., k = 0 and the topol-
ogy is entirely dictated by the snapping dynamics; in that case
λ2(M) = qλ2(L

(c)
). Furthermore, let us remind that, accord-

ing to Eqs. (5)-(6), an admissible equilibrium configuration
for the control layers is such that each node, say i, in the con-
trol layer does not overcome the threshold d̄i introduced in
(5). Therefore, in this case a necessary condition for synchro-
nizability is the existence of an admissible equilibrium con-
figuration, fulfilling the asymptotic constraint on the maximal
number d̄ = maxi d̄i of edges incident at each node, such that
q ≥ α1/λ2(L

(c)
). Reminding that the addition of a new edge

can never decrease the Laplacian eigenvalues, and denoting
with Lreg(d̄) the class of static Laplacian matrices associated
to d̄-regular graphs (i.e. graphs such that all nodes have de-
gree d̄), we would then have that a necessary condition for
synchronization is

q ≥ α1

λ2
(
Lmax(d̄)

) ,
where

Lmax(d̄) = argmax
L∈Lreg(d̄)

λ2(L).

Since an upper bound for the smallest non-zero eigen-
value of the Laplacian is its smallest degree, we then have
λ2
(
Lmax(d̄)≤ d̄, thereby obtaining

q ≥ α1

d̄
. (14)

When the control gain q is lower than q ∆
= α1/d̄, we can then

conclude that synchronization with limited resources cannot
be attained without either further increasing q, or relaxing the
constraint on the maximal number of edges by modifying d̄i
in Eq. (5).

IV. ADAPTIVE NETWORKS OF COUPLED CHAOTIC
OSCILLATORS

We first numerically test the effectiveness of our adaptive
strategy on a network with N = 12 Rössler oscillators coupled
only on their second state variable. Denoting with [xi yi zi]

T

the state vector of the i-th node, the network dynamics can be
written as follows:

ẋi =−yi − zi,

ẏi = xi +aRyi + k
N

∑
j=1

ab
i j(y j − yi)+q

N

∑
j=1

ac
i j(t)(y j − yi),

żi = bR + zi(xi − cR),

(15)

for i = 1, . . . ,N, with parameters aR = bR = 0.2 and cR = 9, so
that the uncoupled dynamics admit a chaotic attractor.

In our study, we have selected the backbone topology as in
Fig. 1, and fixed the coupling coefficient to k = 0.2. With this

choice, in the absence of control (q = 0), the network would
not be synchronized. For the adaptive layer, we have selected
b = 5 in (4), and β1 = 1, β2 = 2.5 in the input equation (6).

We have, therefore, evaluated whether the presence of the
adaptive control layer can enforce synchronization in the net-
work, by considering different choices for the parameters rul-
ing the control layer, and in particular q and the resource con-
straints d̄i in Eq. (5), here assumed equal for each node, that
is, d̄i = d̄ for all i. For different values of d̄ (varied between 2
and 5 with step 1), we have simultaneously monitored the syn-
chronization error E and the maximum degree dM of the final
configuration obtained in the control layer, i.e., after transient
dynamics vanished out, as a function of the control gain q.
The first parameter provides information on the level of syn-
chronization reached by the network after adaptation and is
defined as E = ⟨e(t)⟩T where

e(t) =

√√√√ 1
N(N −1)

N

∑
i=1

N

∑
j=1, j ̸=i

∥∥ei j
∥∥ (16)

and T is a sufficiently large time window, selected as T = 200s
in our simulations; dM is instead measured to verify whether
the requirement on the resource constraint has been fulfilled
or not.

As depicted in Fig. 2(a), we observe a decrease in the syn-
chronization error E as the control gain q increases, up to a
point around q = 0.1 such that, for larger q we always obtain
values of E signalling that the network can reach synchro-
nization. Below this threshold, synchronization can only be
achieved if using more resources, that is, for larger values of
d̄. This is also confirmed when looking at panel (b): for low
values of the gain, the available resources are not sufficient,
and the snapping mechanism tries to activate more edges.
Nonetheless, synchronization cannot be stably enforced, since
the violation of the asymptotic constraint on the resources,
with some δi-s in (5) being positive, pushes towards edge de-
activation.

When comparing our modified adaptive law with the clas-
sic edge-snapping approach, which operates with unbounded
resources, we observe that the latter activates a relatively high
number of links, which are not strictly required for synchro-
nizing the network, as illustrated in Fig. 3 where we plot both
the maximum degree dM and average degree, ⟨d⟩ of the con-
trol layer as a function of q. In the classic edge snapping,
there often are nodes that activate all possible links, whereby
we observe dM = N −1, see panel (a). This happens since the
initial conditions are randomly selected, and some nodes have
a high initial synchronization error, triggering the activation of
all possible connections. The new adaptation mechanism, in-
stead, explicitly takes into account in the input (5)-(6) the need
of not saturating the available resources, thereby significantly
reducing the average number of activated links, see panel (b).

To better characterize the system behavior with respect to
its main parameters, we have also studied the behavior for two
selected values of d̄ (3 and 6, respectively) by varying the con-
trol gain q between 0 and 0.2 with step 0.01, and the coupling
strength k on the backbone layer between 0 and 1 with step
0.05, and then registering the synchronization error. The color
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(a)

(b)

FIG. 2. Average synchronization error E (a) and maximum degree
dM (b) as a function of the control gain q the network of N = 12
depicted in Fig. 1 for different values of d̄. The coupling strength of
the backbone layer is set k = 0.2, and results are averaged over 10
runs for each value of q.

maps in Fig. 4 show that, for both values of d̄, synchronization
is attained in a wide region of the parameter space, where cou-
pling coefficients k and q are sufficiently high. In addition, we
observe a synergy between the two layers, whereby increasing
k reduces the minimum value of q needed to achieve synchro-
nization decreases, and viceversa.

In Eqs. (15) the same coupling function is used in the two
layers, i.e., h(b) = h(c), such that the stability of synchroniza-
tion can be studied with Eq. (12). This system has a MSF
of type II with α1 = 0.157 and, for the backbone network,
the smallest non-zero eigenvalue of the Laplacian matrix is
λ2 = 0.273. Hence, when q = 0, synchronization requires that
k > α1/λ2 = 0.575. On the contrary, when k = 0, the neces-
sary condition (14) gives, for d̄ = 6, q > 0.023 and, for d̄ = 3,
q > 0.052, in line with the colormap in Fig. 4(b).

Finally, another interesting aspect to study is the effect of
the new adaptive law on the emergent topology when there is
no pristine structure of interconnections at all, namely Ab = 0.

(a)

(b)

FIG. 3. Maximum degree dm (a) and average degree ⟨d⟩ (b) of the
control layer as a function of the control gain q for the classic edge
snapping mechanism (without resource constraints) and for the pro-
posed adaptive mechanism with d̄ = 5.

This corresponds to consider a single-layer that is adaptive, as
in the original edge-snapping formulation19. We have con-
sidered an ensemble of N = 100 Rössler oscillators, starting
from an initial condition with σi j(0) = 0 for any i and j, that
is, from a configuration where all adaptive links are set to zero.
We evolved this structure with the adaptive law introduced in
Sec. II B in a total of 100 runs, for both the case of unlim-
ited resourced and of limited resources so that d̄i = d̄ = 8 for
all i in (5), and we obtained the average degree distributions
shown in Fig. 5. The notable effect of including a bound on
the available resources is to shift the mean value of the de-
gree distribution and to truncate it. In fact, while, in the case
of unlimited resources a Poissonian-like degree distribution is
obtained, when, on the contrary, resources are limited, the re-
sulting degree distribution is peaked at d = 5 and truncated at
the bound value d = d̄.
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(a) (b)

FIG. 4. Color map of the synchronization error E as a function of the control gain q and the coupling strength k of the backbone layer for
a system of coupled Rössler oscillators, for d̄ = 6 (a) and d̄ = 3 (b), respectively (all values of E larger than 1 are depicted in white). The
backbone network is shown in Fig. 1. Results are averaged over 10 runs for each pair (q,k).

FIG. 5. Degree distribution of the control layer when there is no
backbone network, namely Ab = 0, for a system of N = 100 Rössler
oscillators, with (d̄ = 8) or without (d̄ = ∞) limited resources. The
control gain is set as q = 2.5, while all the other parameters of the
updating law are as in the text. Results are averaged over 100 runs.

V. APPLICATION OF THE ADAPTIVE LAW TO THE
ITALIAN POWER GRID MODEL

In this section, we study the use of the adaptive law (3) to
control synchronization in a model of the Italian power grid,
in order to show that our approach does not apply only to the
canonical network model in Eq. (1), but also to a model that
captures more realistic complexities. In fact, the model that
we will consider in this section differs from Eq. (1) as the
system units are no more identical. In addition, the sought
synchronization property for the power grid model is phase
synchronization, rather than complete synchronization. For
this reason, the theoretical analysis presented in Sec. III can-

not be applied, but we will show that still the control law we
have proposed is effective as the key mechanisms of the adap-
tive law at work do not depend on the specific form of system
to which they are applied. Our analysis is framed in the con-
text of power grids, as for these networks the ability to recon-
figure the links in the presence of failures is paramount. In the
following, we will therefore consider a model of the Italian
power grid that includes failure mechanisms for the network
links, and test how the control layer reacts to failures at se-
lected lines.

A. Power grid model

We consider a power grid equipped with a control cyber-
layer29 with limited resources, that is, under constraints on
the number of edges that can be activated. The model we con-
sider assumes that each of the N nodes of the power system is
described by a swing equation according to the synchronous
machine representation of the power grid30,31. Each node also
receives a control input generated in a second layer, which
works in parallel with the physical one and with a control
action that is proportional to the node frequency differences.
Omitting the explicit dependence on time for brevity, the dy-
namics of the resulting system is described by the following
equations:

dθi

dt
= ωi (17)

Ii
dωi

dt
= Pi − γiωi +

N

∑
j=1

ab
i j sin(θ j −θi)+ kc

N

∑
j=1

ac
i j(ω j −ωi)

for i = 1, . . . ,N, where θi represents the voltage phase angle
and ωi the angular velocity of the i-th synchronous machine,
expressed in a reference frame rotating with angular speed
Ω = 2π f , with f being 50Hz or 60Hz, depending on the ge-
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ographical area under study; Ii and γi are the constant iner-
tia and damping coefficient associated to the i-th synchronous
machine of the power system; the power Pi is a positive con-
stant parameter for the nodes that inject the power into the
system (generators), whereas it is negative for the nodes that
absorb the power from the system (loads); the coefficients ab

i j
are the elements of a weighted adjacency matrix describing
the operative lines of the power grid topology, and are related
to the electrical quantities characterizing the nodes by the re-
lationship ab

i j = Bi jViVj, where Bi j is the susceptance between
nodes i and j, and Vi and Vj are the voltage amplitudes at
nodes i and j, respectively. The coefficients ac

i j are the el-
ements of the adjacency matrix (assumed undirected and un-
weighted) associated to the control layer, which in Ref.29 have
been considered fixed in time and with a topology equal to the
physical layer. Here, on the contrary, we let these coefficients
evolve in time according to the adaptation law (3)-(6).

The model also takes into account dynamical failures of the
lines by considering the flow associated at each edge (i, j),
i.e., Fi j(t) = ab

i j sin(θ j(t)−θi(t)), and checking whether it ex-
ceeds the maximum capacity of the line. Following Ref.32, the
maximum line capacity is defined as Ci j = αab

i j, and α ∈ [0,1]
is a tunable parameter. Therefore, we say that line line (i, j) is
in overload when

|Fi j(t)|>Ci j = αab
i j (18)

If this condition is met at some time t = t f , to avoid overheat-
ing due to ohmic losses the line is shutdown, by setting in the
model ab

i j = 0 for t > t f .

B. Control objective

In our analysis, we consider a fault due to some exogenous
event, located at a line (i′, j′). This fault generates a transient
where the power grid operates out of synchrony, and eventu-
ally induces a cascade of failures in other lines where the flow
overcomes the maximum capacity32,33. At the same time, the
loss of synchrony triggers the adaptive mechanisms embed-
ded in the links of the control layer and activates the control
inputs, ui = kc ∑

N
j=1 ac

i j(ω j −ωi), that attempt to restore syn-
chrony in the network, thus limiting the flows in the lines. The
effectiveness of such a control strategy in preventing the prop-
agation of the faults into a cascade of successive failures has
been demonstrated over a static topology, copy of the physical
layer, in Ref.29. Here, we show that the topology of the con-
trol layer can be adaptively selected in a decentralized fashion
to avoid the onset of cascading failures and maintain synchro-
nization.

C. The Italian high-voltage power grid

Here, we tailor the power grid model (17) to the case of the
Italian high-voltage (380kV) power grid30,34–38. This network
is assumed homogeneous and undirected, that is, ab

i j = ab
ji = k

if there is a link between i and j, and ab
i j = ab

ji = 0 otherwise.

 100 mi 

 200 km 

FIG. 6. Schematic of the Italian high-voltage (380kV) power grid.

The network consists of N = 127 nodes (34 generators and 93
loads) and L = 171 links (Fig. 6). Following Ref.29, the pa-
rameters of the swing equations modeling the dynamics of the
power grid have been set as γ = 0.1, α = 0.6, k = 15, Pi =−1
for the load nodes, and Pi = 2.735 for the generation nodes,
such that the network is balanced, i.e., ∑

N
i=1 Pi = 0. With this

parameter selection, the network is synchronized in the ab-
sence of faults. In the adaptive layer, as the controller aims
at synchronizing all the frequencies in the grid, we have con-
sidered g(ei j) as function solely of the frequency difference
between nodes i and j, that is, we have set g(ei j) = |ωi −ω j|.
As in Sec. II, the parameters of the potential function (4) have
been selected as ζ = 1, and b = 5, the control gains has been
chosen as q = 15, whereas the parameters of the control law
(3) have been set to β1 = 20, and β2 = 2.5.

D. Numerical results

First, we have analyzed the behavior of the power grid
model in the absence of control (q = 0) in the following set-
ting: the grid initially operates in synchrony, then, at time
t = t f = 1s, a fault occurs in a single line of the network, pos-
sibly triggering a cascading failure. We have numerically in-
tegrated Eqs. (17) for a total time T = 20s, while monitoring
the flows to check whether at some point in time they over-
came the line maximum capacity (Eq. (18)), thereby leading
to the failure of the line. This analysis reveals that there are
16 critical lines (i.e., lines that effectively trigger a cascading
failure). For these specific lines, we have then studied the ef-
fect of the adaptive control layer in restoring synchronization
and preventing the cascading failures.

For the purpose of illustration, let us first focus on the fail-
ure of the line (10,16) that, in the absence of control, triggers
a cascading failure of five other lines29. Without any con-
straint on the resources available at each node, the evolution
of the adaptive layer yields a structure with Lc = 251 links,
with an average degree of ⟨d⟩ = 3.95, see Fig. 7 (a). How-
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FIG. 7. Control layer of the Italian high-voltage power grid obtained
after failure of the line (10,16) (shown in red in Fig. 6) in the absence
of constraints on the available resources (a), and when d̄ is equal to
6 (b), 5 (c), and 4 (d), respectively.

ever, the large majority of these links are not strictly necessary
for control, as the use of adaptation rule (3)-(6) with finite d̄i
demonstrates. Indeed, in Fig. 7, panels (b-d), we show that
it is possible to successfully control the power grid, prevent-
ing the cascading failures and recovering frequency synchro-
nization after the initial fault, with a much lower number of
links and corresponding average degree. Specifically, we ob-
tain Lc = 49 (⟨d⟩= 0.77) for d̄i = 6, Lc = 36 (⟨d⟩= 0.57) for
d̄i = 5, and Lc = 30 (⟨d⟩= 0.47) for d̄i = 4.

Let us now illustrate the results of the analysis for each of
the 16 lines identified as critical since they trigger cascading
failures in the absence of the control layer. Table I reports,
for each line, the differentiated use of resources in four differ-
ent cases: no upper bound on the resources available at each
node as in the classic edge snapping mechanism, and limited
resources with d̄ equal to 6, 5, or 4, respectively. For each
case, the maximum node degree dM and the average node de-
gree ⟨d⟩ in the control layer have been calculated. In all the
cases, the control input was able to restore synchronization, at
the same time preventing the failure of other lines of the grid.
Moreover, we found that, in all cases where the resources were
constrained, dM was always equal to d̄, whereby the resource
constraints were always fulfilled. Furthermore, a closer look
at the parameter ⟨d⟩, quantifying how many links are activated
in the control layer (Lc = ⟨d⟩N/2), shows that the average de-
gree is typically much lower than the constraint dM , so that ad-
ditional links are only added where they are actually needed.
In addition, this parameter allowed to emphasize that some
faults require the activation of more nodes compared to other
faults. For instance, considering a resource constraint d̄ = 4,
we find that recovering from an initial fault located in the line
(59,61) requires a larger number of links Lc = 67 than from a
fault in (21,23), where Lc = 28. Although beyond the scope
of this work, it would be interesting to investigate whether and
how ⟨d⟩ or Lc can be related to the topological properties of

TABLE I. Characteristic parameters of the adaptive control layer of
the Italian high-voltage (380kV) power grid model, for different lo-
cations of initial fault and assumptions on the available resources at
each node.

Fault line d̄ dM ⟨d⟩ Fault line d̄ dM ⟨d⟩

(10,16) ∞ 125 3.95 (15,16) ∞ 124 7.69
6 6 0.77 6 6 0.38
5 5 0.57 5 5 0.35
4 4 0.47 4 4 0.27

(15,17) ∞ 123 7.59 (20,21) ∞ 124 2.27
6 6 0.43 6 6 0.54
5 5 0.36 5 5 0.68
4 4 0.28 4 4 0.52

(21,22) ∞ 117 4.06 (21,23) ∞ 125 4.00
6 6 1.18 6 6 0.74
5 5 0.98 5 5 0.57
4 4 0.79 4 4 0.44

(27,59) ∞ 122 5.76 (33,35) ∞ 126 5.81
6 6 0.83 6 6 0.47
5 5 0.85 5 5 0.46
4 4 0.69 4 4 0.46

(36,38) ∞ 123 7.67 (59,60) ∞ 123 3.97
6 6 0.47 6 6 1.78
5 5 0.47 5 5 1.07
4 4 0.36 4 4 1.13

(59,61) ∞ 124 7.67 (64,78) ∞ 123 4.27
6 6 1.42 6 6 1.37
5 5 1.13 5 5 0.93
4 4 1.06 4 4 1.09

(75,88) ∞ 121 4.25 (76,79) ∞ 122 4.24
6 6 1.15 6 6 1.37
5 5 1.54 5 5 1.23
4 4 1.09 4 4 1.06

(79,80) ∞ 123 5.78 (86,88) ∞ 123 5.81
6 6 0.74 6 6 0.69
5 5 0.85 5 5 0.68
4 4 1.02 4 4 0.60

the links where the initial fault occurs.

VI. CONCLUSIONS

In this work, we have introduced a multilayer control proto-
col for synchronization of coupled dynamical systems under
the constraint of limited resources available at each node. The
control is structured as a second layer acting in parallel to a
set of links that are fixed in time and constitute the backbone
of the network. The interactions in the control layer are adap-
tive so that they can be activated or removed as a function of
the level of synchronization and the available resources. The
adaptive mechanism we have proposed introduces a discon-
tinuous output function that, together with a modified input to
the snapping dynamics, allow to extend the classic edge snap-
ping algorithm, and incorporate constraints on the degree of
each node in the network. As the classical edge snapping,
our approach provides a fully distributed technique able to
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evolve the structure of interconnections, different from other
methods7,10–12 that only operate on the coupling gains of a
pre-existing network. However, at variance with the classical
edge snapping our approach allows to obtain synchronization
with a much smaller average degree, thus overcoming an im-
portant limitation of the previous technique.

The approach has been demonstrated and applied to a net-
work of coupled Rössler oscillators and then extended to a
more general setting exemplified with a model of the Italian
high-voltage power grid. For the network of Rössler oscilla-
tors, we have shown that suitable values of the coupling co-
efficient of the control layer guarantees the stability of the
synchronous solution, while at the same time satisfying the
constraint on the limited resources. In addition, the two lay-
ers act in synergy so that a lower control gain is required
as the coupling strength in the backbone network increases.
We have then considered a model of the Italian high-voltage
power grid, based on the swing equations and incorporating
a mechanism to account for link failures induced by the dy-
namical evolution of the grid. We have applied the key mech-
anism of our control law to this system as well, in order to test
its robustness to a more general setting that deviates from the
assumptions underlying the canonical model. The adaptive
control strategy has been shown able to guarantee synchro-
nization and prevent cascading failures, even in the case of
limited resources.

There are several directions along which our work can be
expanded. First, in all the illustrated numerical results, we
have set the same upper bound for all node degrees. How-
ever, the strategy is more general and different values for each
node can be considered, thus differentiating the amount of re-
sources available at the various nodes. A further straightfor-
ward generalization is to restrict the set of links that can be
adapted in the control layer to incorporate in the model further
constraints on the topology of the evolved network. Finally,
in all scenarios where the number of controlled nodes may
be relevant, it should be possible to apply the proposed adap-
tive control law only to a subset of the nodes of the backbone
structure.
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