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Abstract: Fluctuation-induced forces are a hallmark of the interplay between fluctuations and
geometry. We recently proved the existence of a multi-parametric family of exact representations of
Casimir and Casimir–Polder interactions between bodies of arbitrary shape and material composition,
admitting a multiple scattering expansion (MSE) as a sequence of inter-body and intra-body multiple
wave scatterings. The approach requires no knowledge of the scattering amplitude (T-matrix) of the
bodies. In this paper, we investigate the convergence properties of the MSE for the Casimir–Polder
interaction of a polarizable particle with a macroscopic body. We consider representative materials
from different classes, such as insulators, conductors, and semiconductors. Using a sphere and a
cylinder as benchmarks, we demonstrate that the MSE can be used to efficiently and accurately
compute the Casimir–Polder interaction for bodies with smooth surfaces.

Keywords: Casimir–Polder force; scattering expansion; surface integral equation; silicon; gold; polystyrene

1. Introduction

Following the seminal paper of Hendrick Casimir, who discovered that two discharged
perfectly conducting parallel plates at zero temperature attract each other with a force
originating from quantum fluctuations of the electromagnetic (EM) field [1], Evgeny Lifshitz
successfully used the then-new field of fluctuational electrodynamics to compute the
Casimir force between two parallel, infinite surfaces of dispersive and dissipative dielectric
bodies at finite temperature [2]. By taking the dilute limit for one of the two bodies, Lifshitz
could also compute the Casimir–Polder (CP) force between a small polarizable particle and
a planar surface. Lifshitz’s results remained unsurpassed for a long time, because it was not
understandable how to extend his computation beyond planar surfaces. Computing the
Casimir and CP interactions in non-planar geometries is actually a notoriously complicated
problem, due to the collective and non-additive character of dispersion forces. For many
years, the only method to estimate dispersion forces in non-planar setups was the Derjaguin
additive approximation [3], the so-called Proximity Force Approximation (PFA), which
expresses the Casimir force between two non-planar surfaces as the sum of the forces
between pairs of small opposing planar portions of the surfaces. Because of its simplicity,
the PFA is still often used to interpret modern experiments with curved bodies; for reviews,
see [4–9].

A significant step forward in the study of curved surfaces was made in the 1970s by
Dieter Langbein, who used scattering methods to study the Casimir interaction between
spheres and cylinders [10]. The remarkable study of Langbein went quite unnoticed, and it
was quickly forgotten. A new wave of strong interest in the problem arose at the beginning
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of this century, spurred by modern precision experiments on the Casimir effect [11–18].
The intense theoretical efforts that were put forward culminated in the discovery of the
scattering Formula [19–21]. According to this formula, which was initially devised for
non-planar mirrors [22,23], the interaction between dielectric bodies is expressed in terms
of their scattering amplitude, known as T-operator. While this formalism has been the basis
of the theoretical advancements made in recent years, its practical use is limited by the
feature that the T-operator is known only for highly symmetric bodies, such as spheres
and cylinders, or for a few perfectly conducting shapes [24]. Remarkably enough, it has
been found that the scattering formula can be computed exactly for the sphere–plate and
sphere–sphere systems for Drude conductors in the high temperature limit [25,26]. By
improved numerical methods, the scattering formula for a dielectric sphere and a plate at
finite temperature can be computed with high precision also for experimentally relevant
small separations [27]. To note, however, is that the precision of current experiments using
a simple enough sphere–plate geometry has not yet reached the point where deviations
from the PFA to be observed.

As mentioned above, the practical use of the scattering approach is limited to the
few simple shapes for which the scattering amplitude is known. A more fundamental
limitation of the scattering approach is that interlocked geometries evade this method due
to lack of convergence of the mode expansion [28]. The necessity of theoretical formulations
for a precise force computation in complex geometries has become urgent lately, because
recent experiments using micro-fabricated surfaces [28–30] have indeed shown large devia-
tions from the PFA. Theoretical progress has been made for the special case of dielectric
rectangular gratings by using a generalization of the Rayleigh expansion in Refs. [31–33].
On a different route, a general approach has been devised for gently curved surfaces, for
which a gradient expansion can be used to obtain first order curvature corrections to the
proximity force approximation for the Casimir force [34–37]. In this approach, the Casimir
energy is expanded in powers of derivatives of the height functions of the surfaces, whose
coefficients can be computed analytically by matching the gradient expansion with the
perturbative expansion of the energy in the common domain of validity of both expansions.

A breakthrough occurred in 2013 [38] when it was shown that surface integral-
equations methods [39,40], which have been used for a long time in computational elec-
tromagnetism, can also be used to compute, at least in general, Casimir interactions for
arbitrary arrangements of any number of (homogeneous) magneto-dielectric bodies of any
shape. The formulation in [38] expresses Casimir forces and energies as traces of certain
expressions involving a surface operator, evaluated along the imaginary frequency axis.
The surface operator consists of linear combinations with constant coefficients of free Green
tensors of the EM field of N + 1 homogeneous infinite media, having the permittivities of the
N bodies, and of the medium surrounding them. A potential problem with the approach of
Ref. [38] is that the expression for the Casimir interaction contains the inverse of the surface
operator, which has to be computed numerically by replacing the continuous surfaces with
a suitable discrete mesh. This operation replaces the surface operator by a large matrix
whose elements involve double surface integrals of the free Green tensors over all pairs of
small surface elements composing the mesh. The generation of the matrix is time consum-
ing because of the strong inverse-distance cubed singularity of the surface operator in the
coincidence limit. In addition, the size of the non-sparse matrix for sufficiently fine meshes
can quickly exceed the memory-usage limit, preventing the matrix numerical inversion.

Inspired by earlier papers of Roger Balian and Bertrand Duplantier on the Casimir
effect for perfect conductors [41,42], we have recently derived a multiple scattering ex-
pansion (MSE) of Casimir and CP interactions for magneto-dielectric bodies of arbitrary
shape [43,44]. Similar to Ref. [38], in the MSE approach the interactions have the form of
traces of expressions involving the inverse of a surface operator, M(iξ), evaluated along
the imaginary frequency axis. A crucial difference with respect to Ref. [38] is that the MSE
kernel M has the form of a Fredholm surface integral operator of the second kind,

M = I−K . (1)
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Here, I and K represent the identity and the surface scattering operator (SSO), respectively.
The Fredholm form implies that the inverse M can be computed as a power

(Neumann) series,
M−1 = I+K+K2 + . . . , (2)

which converges, provided that the spectral radius of K is less than one. Hence, one obtains
an expansion of Casimir and CP interaction in the powers of K, which can be interpreted
as an expansion in the number of scatterings off the surfaces of the bodies. Specifically, the
MSE has the form of an iterated series of surface integrals of elementary functions, running
over the surfaces of the bodies. Let us note that a particular choice of the free coefficients
in the kernel K exists, such that the kernel has a weak 1/|u − u′| singularity, where u
and u’ are the points on the surface. The weak singularity feature should simplify and
expedite numerical evaluations on a mesh. An additional advantage implied by the MSE,
if implemented on a mesh, is that one does not need to store the matrix for K in memory,
since its elements can be computed at the moment of performing the matrix multiplication.

Considering specifically the CP interaction of a polarizable particle with a dielectric
body, let us note that the problem has been studied by many authors in the past, using
a variety of methods. A distinction can be made between approaches devised for bodies
of special shapes, as opposed to formulations that can handle bodies of arbitrary shapes.
The first group includes spheres and cylinders, for which the scattering formula leads to a
simple exact expression for the CP energy in terms of the exactly known T-operator [45–48].
This group also includes the computation of the exact CP interaction between an atom and
a rectangular dielectric grating [32,49], based on the Rayleigh expansion. Regarding the
second group of approaches, it has been shown [50,51] that the gradient expansion [34–37]
can be used to compute the leading and the next-to-leading curvature corrections beyond
the PFA for the CP energy of an atom in front of a gently curved surface of any shape.
A numerical time-domain approach to compute the CP interaction of an atom with an
arbitrary micro-structured body has been recently discussed [52]. Let us stress that this
elegant approach offers the possibility of dealing with a broad range of dielectric materials,
including inhomogeneous and possibly non-local materials.

In this paper, we investigate the power of the MSE in the computation of CP interac-
tions. In its present formulation, the MSE allows one to deal with homogeneous and local
magneto-dielectric bodies of any shapes, which is the situation of interest in experiments
carried out so far. In [43], we showed that only a few terms of the MSE are sufficient to
obtain a fairly accurate estimate of the Casimir energy between a Si wedge and a Au plate.
The purpose of the present study is to investigate the convergence properties of the MSE
for the CP interaction between a polarizable isotropic particle and a dielectric body. We
use as benchmarks two shapes that can be solved exactly by using the scattering approach,
namely a sphere or a cylinder. We consider different types of materials for the sphere
and the cylinder in order to see how the material properties of the bodies affect the rate
of convergence of the MSE. We demonstrate that, in all the cases considered, the MSE
converges quite fast and uniformly with respect to the particle-surface separation. Since
there is no reason to expect that the convergence properties of the MSE bring whatever
difference for bodies that are smooth deformations of a sphere or a cylinder, we argue that
the findings of the current study imply that the MSE can be used to efficiently compute the
CP interactions for compact and non-compact dielectric bodies with smooth surfaces of an
arbitrary shape.

2. Casimir–Polder Energy of a Polarizable Particle and a Magneto-Dielectric Body

We study the CP interaction between a small polarizable particle and a magneto-
dielectric body (see Figure 1). The optical response of the particle is described by its
(complex) electric, α(ω), and magnetic, β(ω), polarizability tensors, where ω is the fre-
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quency. It is known [6,44] that the CP energy can be expressed in terms of the scattering
Green tensor Γ(r, r′) evaluated at the particle’s position r0, as

ECP = −4πkBT
∞

∑′

n=0
κn

3

∑
i,j=1

[
αij(i ξn)Γ

(EE)
ij (r0, r0; κn) + βij(i ξn)Γ

(HH)
ij (r0, r0; κn)

]
, (3)

where kB is Boltzmann constant, T is the temperature, ξn = 2πnkBT/h̄, with h̄ the reduced
Planck’s constant and n = 0, 1, 2 . . ., are the Matsubara frequencies, κn = ξn/c with c the
speed of light, the prime in the sum indicates that the n = 0 terms has to be taken with a
weight of 1/2. The superscripts ’EE’ and ’HH’ denote the electric and the magnetic fields,
respectively. Here, only one scattering at the particle is considered, which is completely
justified for particles that are much smaller than the distance from the surface, d. However,
multiple scatterings at the body need to be considered. Using the surface integral-equation
formulation of EM scattering by a dielectric body [44], one can show that Γ(r, r′) can be
expressed as a surface integral extending over the surface, S, of the body,

Γ(r, r′) =
∫

S
dsu

∫
S

dsu′ G0(r, u)(I−K)−1(u, u′)M(u′, r′) , (4)

where K(u, u′) denotes the following SSO,

K(u, u′) = 2P(Ci +Ce)−1n(u)×
[
CiG1(u, u′)−CeG0(u, u′)

]
, P =

( 0 −1
1 0

)
, (5)

M(u, u′) is the surface operator,

M(u, r) = −2P(Ci +Ce)−1Ce n(u)×G0(u, r) , (6)

In Equations (4)–(6), G0 and G1 are the empty-space Green tensors for the homogenous
media with the permittivities ϵ0 and ϵ1 and the permeabilities µ0 and µ1, respectively (see
Appendix E of Ref. [44] for the definition of G0 and G1), while n(u) is the outward unit
normal vector to the surface S at point u. The action n(u)× on the 3 × 3 matrices G(pq)

1

and G(pq)
0 (p, q ∈ {E, H}) is respectively defined by (n(u)×G(pq)

1 )v ≡ n(u)× (G(pq)
1 v) and

(n(u)×G(pq)
0 )v ≡ nσ(u)× (G(pq)

0 v), for any vector v. To note is that K and M depend on
four arbitrary coefficients, which must form two invertible diagonal 2 × 2 matrices, Ci and Ce.

R

d

Figure 1. Configuration of a dielectric body (sphere, cylinder) of radius R with the permittivity ϵ1 and
permeability µ1 interacting with a polarizable particle at position r0 outside the object at a distance d
from the surface. ϵ0 and µ0 denote, respectively, the permittivity and permeability of the surrounding
medium. M, G0 and K are the operators of the multiple scattering expansion. u, u’ and u” mark some
positions on the surface of the dielectric body. The arrows denote ordering of the operators. See text for
more details.

The existence of an MSE follows from the Fredholm type of the operator (I−K)−1 in
Equation (4), which permits an expansion of Γ(r, r′) in powers of K. This in turn leads to
an MSE expansion of the CP energy in Equation (3) in terms of the number of scatterings at
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the surface of the body. It is useful to show the first terms of the MSE of the CP energy for
the simple case of a particle having an isotropic electric polarizability, αij = α δij with δij
the Kronecker delta, and a negligible magnetic polarizability, β,

ECP = −4πkBT
∞

∑′

n=0
κn α(i ξn)

{
∑

p=E,H

∫
S

dsutr
[
G(Ep)

0 (r0, u; κn)M(pE)(u, r0; κn)
]

+ ∑
p,q=E,H

∫
S

dsu

∫
S

dsu′ tr
[
G(Ep)

0 (r0, u; κn)K(pq)(u, u′; κn)M(qE)(u′, r0; κn)
]}

+ · · · , (7)

where the symbol ’tr’ denotes a trace over the tensor spatial indices. Since the kernels K and
M are combinations of free-space Green tensors G0 and G1, which are elementary functions
of the coordinates, it is understandable that the CP energy involves an iterated series of
integrals of elementary functions running over the surface, S, of the body. Since the Green
tensors decay exponentially with distance for imaginary frequencies, one immediately sees
from Equation (7) that the CP interaction is dominated by the region of the surface that
is most closer to the particle. However, one notes that, for the classical term n = 0, the
Matsubara frequency vanishes and the operators decay only according to a power law.

3. Equivalent Expressions of the SSO

It has to be noticed that different choices of the matrices for the interior, Ci, and
the exterior, Ce, coefficients lead to equivalent SSO, in the sense that the right-hand side
of Equation (4) provides different representations of the same scattering tensor for all
coefficients [44], given that neither the interior nor the exterior matrices vanish, and that
the sum Ci +Ce is invertible. This in turn also implies that the CP energy is independent
of the values of these coefficients. However, at any finite order of the MSE, the CP energy
does depend on the chosen coefficients, which implies that the rate of convergence of the
MSE depends in general on this choice. This important property gives one the possibilities
of optimizing convergence of the MSE by suitably choosing the coefficients, dependent
on the optical properties of the surfaces. Among the infinite number of the choices for the
coefficients, there are two cases which we consider of most importance and describe in
detail here.

C1. When the two surface positions, u and u′, are close one to another, the SSO has, in
general, a 1/|u − u′|3 singularity. However, a unique choice of the coefficients exists
[53], for which the singularity is reduced to a weaker 1/|u − u′| divergence. The
coefficient matrices ensuring this remarkable property are

Ci = diag(ϵ1, µ1) , Ce = diag(ϵ0, µ0) . (8)

The corresponding surface operator K has unique mathematical properties (see
Section 6 of Ref. [44]).

C2. A fully asymmetric, material independent choice of coefficient matrices is

Ci = diag(1, 0) , Ce = diag(0, 1) . (9)

For good conductors, one observes relatively fast convergence of the MSE with this
choice what is consistent with the observation made in Ref. [42].

4. Results and Discussion

The MSE of the CP energy (7) converges if all eigenvalues of the SSO K are less than 1
in modulus which to be called here the boundedness property. No a general bound on the
eigenvalues of K was possible to be derived. However, we can prove [44] the boundedness
property for the choice case C1 of the coefficients (see Equation (8)) in the asymptotic
limit of infinite frequencies for bodies of any shape. For compact bodies, the boundedness
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property also holds in the static limit κ = 0. For the special case of perfect conductors of
compact shape, the boundedness property was proven much earlier for all frequencies [41].

While having a proof of convergence of the MSE is well desirable, from the practical
point of view it is of more need to know if the convergence is fast enough for the first few
terms of the MSE, in order to provide a good approximation of an entire series. Given the
current status of experiments, obtaining the CP energy with an error of less than a percent
would be acceptable. To investigate this problem, we consider using as a benchmark the
CP interaction of a particle with a body for which the scattering amplitude (T-matrix) is
known exactly, and then to verify in such a setup the rate of convergence of the MSE
expansion to the energy exact formula. In what follows, choose to study a dielectric sphere
and a dielectric cylinder. We consider three different materials: a conductor (gold), a
semiconductor (silicon), and an insulator (polystyrene). Since these materials have quite
different permittivities, one can check how the rate of convergence of the MSE is affected
by the magnitude of the permittivity. We compare the rate of convergence of the MSE for
the two cases of choice C1 and C2, of the free coefficients that enter in the definition of the
SSO. We Let us denote by MSEk, k = 0, 1, . . ., the estimate of the CP energy corresponding
to the inclusion of K up to the k power into the MSE (3).

4.1. Materials

In the computations here, the following expressions for the permittivities of the
materials are used:

ϵAu(i ξn) = 1 +
Ω2

p

ξ(ξ + γ)
+

6

∑
j=1

f j

ω2
j + gjξ + ξ2

, (10)

ϵSi(i ξn) = ϵ
(Si)
∞ +

ϵ
(Si)
0 − ϵ

(Si)
∞

1 + ξ2/ω2
UV

, (11)

ϵpolystyrene(i ξn) = 1 +
4

∑
j=1

f j

ω2
j + gjξ + ξ2

, (12)

where Ωp = 9 eV/h̄, γ = 0.035 eV/h̄, ϵ
(Si)
∞ = 1.035, ϵ

(Si)
0 = 11.87, and ωUV = 4.34 eV/h̄;

the oscillator parameters ωj, f j, gj for Au and polystyrene are listed in Tables 1 and 2,
respectively. The particle’s polarizability, α, is assumed to be frequency-independent.

Table 1. Oscillator parameteres for Au [54]. See Equation (10).

j ωj (eV/h̄) fj (eV2/h̄2) gj (eV/h̄)

1 3.05 7.091 0.75
2 4.15 41.46 1.85
3 5.4 2.7 1.0
4 8.5 154.7 7.0
5 13.5 44.55 6.0
6 21.5 309.6 9.0

Table 2. Oscillator parameteres for polystyrene [4]. See Equation (12).

j ωj (eV/h̄) fj (eV2/h̄2) gj (eV/h̄)

1 6.35 14.6 0.65
2 14.0 96.9 5.0
3 11.0 44.4 3.5
4 20.1 136.9 11.5
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4.2. CP Energy for a Sphere

The scattering approach yields the following Formula [45,46] for the CP interaction
energy of a polarizable particle at distance d from the surface of a sphere of radius R in
vacuum (ϵ0 = µ0 = 1):

E(exact)
CP =

kBT
a2

∞

∑′

n=0
κn α(i ξn)

∞

∑
l=1

(2l + 1) (13)

×
{

THH
l (i ξn)K2

l (κna)− TEE
l (i ξn)

[
K′2

l (κna) +
l(l + 1)

κ2
na2 K2

l (κna)
]}

,

where a = R + d, l is the multipole index, Kl(x) = xkl(x), kl(x) =
√

2
πx Kl+1/2(x) is the

modified spherical Bessel function of the third kind, K′
l(x) = dKl/dx, and THH

l , TEE
l are

the T-matrix elements (Mie coefficients) of the sphere,

THH
l (iξ) =

√
µ/ϵ Il(

√
ϵµκR) I ′

l (κR)− I ′
l (
√

ϵµκR) Il(κR)

Kl(κR) I ′
l (
√

ϵµκR)−
√

µ/ϵ Il(
√

ϵµκR) K′
l(κR)

, (14)

TEE
l (iξ) =

√
ϵ/µ Il(

√
ϵµκR) I ′

l (κR)− I ′
l (
√

ϵµκR) Il(κR)

Kl(κR) I ′
l (
√

µ/ϵκR)−
√

ϵ/µ Il(
√

ϵµκR) K′
l(κR)

, (15)

TEH
l (iξ) = THE

l (iξ) = 0 , (16)

where ξ = κc, Il(x) = xil(x), and I ′
l (x) = dIl/dx, with il(x) =

√
π
2x Il+1/2(x) the modified

spherical Bessel function of the first kind.
The matrix elements of the SSO K and the operator M can be straightforwardly

computed in the basis of vector spherical harmonics. The corresponding matrices are both
diagonal with respect to multipole indices, (l, m), −l ≤ m ≤ l, and, in addition, these
matrices are independent of m. Therefore, the matrix for K has the structure of l-dependent
4 × 4 blocks Kp,r,l,m;q,s,l′ ,m′ = δll′δmm′K(l)

p,r;q,s, where r, s = 1, 2 label the tangential fields
Y1,lm(r̂) and Y2,lm(r̂), introduced in Equation (8.1) of Ref. [42].

In Figures 2–4, we show the ratios of the MSE for the CP energy E(MSEk)
CP and the exact

result for the CP energy E(exact)
CP obtained from Equation (13) versus d/R for Au, Si, and

polystyrene. In the case of Au, a comparison of Figure 2a with Figure 2b shows that the rate
of convergence is much faster with the asymmetric choice C2 of the coefficients. Actually,
with the C2 choice, MSE3 already differs from the energy exact values by less than one
percent for all displayed separations: specifically, the maximum error is of 0.6% for d/R = 1,
while for d/R = 0.03 the error is as small as 0.1%. In the case of Si, the performance of
the choice C1 is better than that for C2. Indeed, with the C1 choice, the maximum error
of MSE4 is 0.8% for d/R = 0.03, while the minimum error is 0.2% for d/R = 1, while for
the choice C2, the maximum error is 3.4% for d/R = 1. In the case of polystyrene, the
performance of C1 case is amazingly good, since with MSE3 the maximum error is 0.6% for
d/R = 1, while for d/R = 0.04 the error is as low as 0.003%. For polystyrene, the rate of
convergence of (C2) is instead quite poor.
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Figure 2. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for an Au sphere of radius R = 30 µm at room temperature versus d/R, where d is the
distance from the surface, for (a) C1 and (b) C2 choices. See text for details.
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Figure 3. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for a Si sphere of radius R = 30 µm at room temperature versus d/R for (a) C1 and (b)
C2 choices. See text for details.
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Figure 4. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for a polystyrene sphere of radius R = 30 µm at room temperature versus d/R, for C1
choice. See text for details.
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4.3. CP Energy for a Cylinder

Within the scattering T-matrix approach, the CP interaction energy of a polarizable
particle at distance d from the surface of an infinitely long cylinder of radius R with the
permittivity ϵ1 = ϵ permeability µ1 = µ in vacuum (ϵ0 = µ0 = 1) is

E(exact)
CP =

kBT
π

∞

∑′

n=0
κ2

n α(i ξn)
∫ ∞

−∞
dkz

∞

∑
m=−∞

(17)

×
{

TEE
kzm(iξn)

1
κ2

n

[
k2

zK′
m

2
(p0a) +

(
m2k2

z

p2
0a2

+ p2
0

)
K2

m(p0a)

]

− THH
kzm (iξn)

[
K′

m
2
(p0a) +

m2

p2
0a2

K2
m(p0a)

]

+ TEH
kzm(iξn)

4mkz

κn p0a
Km(p0a)K′

m
2
(p0a)

}
,

where a = R + d, p0 =
√

κ2 + k2
z, m is the multipole index, Km is the modified Bessel

function of second kind and K′
m its derivative, and TNM

kzm , (N, M ∈ {E, H}) are the T-matrix
elements of a dielectric cylinder [48],

THH
kzm (iξ) = − Im(p0R)

Km(p0R)
∆1∆4 + Υ2

∆1∆2 + Υ2 , (18)

TEE
kzm(iξ) = − Im(p0R)

Km(p0R)
∆2∆3 + Υ2

∆1∆2 + Υ2 , (19)

THE
kzm(iξ) = −TEH

kzm(iξ) =
Υ

√
ϵµ(p0R)2Km(p0R)2

1
∆1∆2 + Υ2 , (20)

with Im the modified Bessel function of first kind and

Υ =
mkz√
ϵµR2κ

(
1
p2 − 1

p2
0

)
, (21)

with p =
√

ϵµκ2 + k2
z and

∆1 =
I′m(pR)

pRIm(pR)
− 1

ϵ

K′
m(p0R)

p0RKm(p0R)
, (22)

∆2 =
I′m(pR)

pRIm(pR)
− 1

µ

K′
m(p0R)

p0RKm(p0R)
, (23)
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I′m(pR)

pRIm(pR)
− 1

ϵ

I′m(p0R)
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, (24)

∆4 =
I′m(pR)

pRIm(pR)
− 1

µ

I′m(p0R)
p0RIm(p0R)

. (25)

To notice is that, in general, the polarization is not conserved under scattering,
i.e., TEH

kzm ̸= 0 ̸= THE
kzm. This property, together with its quasi-2D shape, makes the cylinder

an important benchmark test for the convergence of the MSE.
The CP energy can be straightforwardly obtained as an MSE since the SSO K and the op-

erator M can be computed by substituting for the free Green functions in Equations (5) and (6)
an expansion in vector cylindrical waves. In Figure 5, we again show the numerical results
for the ratio of the MSE for the CP energy E(MSEk)

CP at MSE of the order k and the exact result
for the CP energy E(exact)

CP obtained from Equation (18). The materials, temperature, and
geometric lengths are the same as in the case of a sphere. For Si, one observes that the
MSE with the choice case C1 has converged at order MSE3 to the energy exact calculations
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within approximately 3%, with the largest deviations at the shortest (2.4%) and longest
(3.3%) considered separation. The deviation is minimal at intermediate distances around
d/R = 0.2, with an error of only 0.1%. Hence, the performance of the MSE for an infinite
cylinder is quite similar to a compact sphere. We do not consider the coefficients from the
C2 choice as they performed worse than the choice case C1 for a sphere. For polystyrene,
we consider again only the choice case C1, for the same reason. Due to its low dielectric
contrast, one expects the choice C1 to give good convergence of the MSE at low orders.
Indeed, the rate of convergence is quite fast so that the MSE can be terminated at the order
MSE1 already, with a maximum deviation from the energy exact value of only 1.9% at the
separation d = R. Let us note that, in general, that with the choice case C1, the lowest
order MSE0, the estimate of the energy for the cylinder is not as good as that for the sphere.
This is presumably due to arbitrarily long-range charge and current fluctuations along the
cylinder, which require at least one power of the operator K to be described properly.

○ ○ ○ ○ ○○
○

○ ○ ○ ○ ○ ○ ○○ ○

▲ ▲ ▲ ▲ ▲▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲▲
▲

● ● ● ● ●● ● ● ● ● ● ● ● ●●
●

△ △ △ △△ △ △ △ △ △ △ △ △△ △

○ MSE0

▲ MSE1

● MSE2

△ MSE3

0.05 0.10 0.50 1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d/R

E
C
P

(M
S
E
k
) /
E
C
P

(e
xa
ct
)

(a) Si T=300K R=30μm

○ ○ ○
○
○
○

○

○ ○ ○ ○ ○ ○ ○○ ○

▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲

○ MSE0

▲ MSE1

0.05 0.10 0.50 1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d/R

E
C
P

(M
S
E
k
) /
E
C
P

(e
xa
ct
)

(b) Polystyrene T=300K R=30μm

Figure 5. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (18) for (a) a Silicon cylinder and (b) a polystyrene cylinder of radius R = 30 µm at room
temperature T = 300 K, for the choice case C1. See text for details.

Finally, it is necessary to discuss the case of a metal, such as Au. As the dielectric
function diverges in the limit κ → 0, the classical term n = 0 of the Matsubara sum
resembles that of a perfect conductor. We have shown that, for a cylinder, the SSO K, for
the choice case C1, in the partial wave channel m = 0, has an eigenvalue that approaches
unity when κ → 0 and ϵ → ∞ [44]. For the choice case C2 the situation is even worse as
there is an eigenvalue approaching unity in all partial wave channels. This property is
expected to persist for all quasi-2D shapes with a compact cross section. Hence, for such
metallic shapes the classical term n = 0 cannot be obtained from an MSE. However, the
surface scattering approach as developed by us is also useful for zero frequency κ = 0
as the inverse of M = I−K can be computed directly, without resorting to an MSE. We
note that for κ = 0 the expression for K simplifies considerably, in particular in the perfect
conductor limit [44].

To conclude, we have demonstrated that the MSE provides an especially well-suited
tool to compute Casimir–Polder interactions with high precision for a quite wide range of
materials. Let us stress that this conclusion is not specific to the shapes considered here
but is expected to hold generically for any compact 3D shape or quasi-2D shape. Here,
we considered a sphere and a cylinder just because, for those shapes, the exact results
are known and hence the convergence of our MSE can be tested. Most essentially, for
general shapes where the T-matrix is not known the SSO K can be computed and the MSE
implemented to obtain high precision results for the interaction.
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