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EEG‑based detection of emotional 
valence towards a reproducible 
measurement of emotions
Andrea Apicella1,3, Pasquale Arpaia1,2,3*, Giovanna Mastrati1,3 & Nicola Moccaldi1,3

A methodological contribution to a reproducible Measurement of Emotions for an EEG‑based system is 
proposed. Emotional Valence detection is the suggested use case. Valence detection occurs along the 
interval scale theorized by the Circumplex Model of emotions. The binary choice, positive valence vs 
negative valence, represents a first step towards the adoption of a metric scale with a finer resolution. 
EEG signals were acquired through a 8‑channel dry electrode cap. An implicit‑more controlled EEG 
paradigm was employed to elicit emotional valence through the passive view of standardized visual 
stimuli (i.e., Oasis dataset) in 25 volunteers without depressive disorders. Results from the Self 
Assessment Manikin questionnaire confirmed the compatibility of the experimental sample with 
that of Oasis. Two different strategies for feature extraction were compared: (i) based on a‑priory 
knowledge (i.e., Hemispheric Asymmetry Theories), and (ii) automated (i.e., a pipeline of a custom 
12‑band Filter Bank and Common Spatial Pattern). An average within‑subject accuracy of 96.1 %, was 
obtained by a shallow Artificial Neural Network, while k‑Nearest Neighbors allowed to obtain a cross‑
subject accuracy equal to 80.2%.

The word emotion derives from the Latin “Emotus” which means to bring out. Technically, emotion is the 
response to imaginary or real stimuli characterised by changes in individual’s thinking, physiological responses, 
and  behaviour1. In the Circumplex Model2 of emotion, Valence denotes how much an emotion is positive or 
negative. A further approach to the study of emotions is provided by the Discrete Model of emotions (anger, 
fear, joy,...).

Discrimination of emotional valence is a broad issue widely addressed in recent decades, affecting the most 
varied sectors and finding application in multiple domains. Some application fields are for example, car  driving3,4, 
 working5,  medicine6,7, and  entertainment8.

Several biosignals have been studied over the years for emotions recognition: cerebral blood  flow9, electrocu-
lographic (EOG)  signals10, electrocardiogram, blood volume pulse, galvanic skin response, respiration, phalanx 
 temperature11. In recent years, several studies have focused on the brain signal. There are many invasive and 
non-invasive techniques for understanding the brain signals such as: PET (Positron Emission Tomography), 
MEG (Magneto Encephalography), NIRS (Near-infrared Spectroscopy), fMRI (Functional Magnetic Resonance 
Imaging), EROS (Event-related optical signal), EEG (Electroencephalogram). Among the mentioned systems, 
EEG offers a better temporal resolution. There are already some portable EEG solutions on the market. Currently, 
a scientific challenge is to use dry  electrodes12,13 and increasingly reduce the number of channels to maximise 
the user comfort while maintaining high performances.

The measurement of  emotions14 is different from the emotion recognition and it requires the use of an 
interval scale besides the management of the reproducibility problem. The well-assessed taxonomy given by 
 Stevens15 provided a fourfold classification scheme of measurement scales: nominal, ordinal, interval, and ratio 
scales. Nominal and ordinal scales represent non-additive quantities and, therefore, cannot be considered for 
measurements according to the International Vocabulary of  Metrology16. Studies adopting the theory of discrete 
 emotions17 employ a nominal scale providing only classifications. Conversely, the Circumplex Model allows the 
measurement of emotions by arranging them along interval scales. As concerns the second condition, often, the 
same stimulus or environmental condition does not induce the same emotion in different subjects (cross-subject 
reproducibility loss). Furthermore, the same individual exposed to the same stimulus but after a certain period of 
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time, reacts in a different way (within-subject reproducibility loss). In psychology research, suitable sets of stimuli 
were validated experimentally by using significant samples and are widely used by clinicians and  researchers18. 
In particular, several stimuli datasets were produced referring to the Circumplex Model and their scores were 
arranged along an interval scale. However, the problem of standardizing the induced response remains still open, 
also considering, for example, the issue of the cross-cultural generality of perceptions. The effectiveness of the 
emotion induction can be verified by means of self-assessment questionnaires or scales. The use of the validated 
stimulus rating and the subject’s self-assessment can represent an effective strategy towards the construction of 
a metrological reference for the EEG-based reproducible measurement of  emotions19. Furthermore, the use of 
assessment tools during the sample construction can soften possible emotional bias caused by psychiatric dis-
orders. As concerns the measurement model, older approaches predominantly made use of a priori knowledge. 
Emotions studies, based on spatial distribution analysis of EEG signal, were principally focused on the asymmet-
ric behaviour of the two cerebral  hemispheres20–22. Two theories, in particular, model the relationship between 
emotions and asymmetry in a different way. The Theory of Right Hemisphere posits that the right hemisphere is 
dominant over the left hemisphere for all forms of emotional expression and perception. Instead, the Theory of 
Valence states that the right hemisphere is dominant (in term of signal amplitude) for negative emotions and the 
left hemisphere is dominant for positive emotions. In particular the theory of valence focuses on what happens 
in the two areas of the prefrontal cortex. The prefrontal cortex plays an important role in the control of cognitive 
functions and in the regulation of the affective  system23. The EEG asymmetry allows to evaluate the subject’s 
emotional changes and responses and, therefore, it can serve as an individual feature to predict emotional  states24.

The most common frequency index for emotion recognition is the so called frontal alpha asymmetry ( αasim)25:

where the parameters αPSDL and αPSDR are the power spectral densities of the left and right hemispheres in the 
alpha band. Frontal alpha asymmetry could also predict emotion regulation difficulties by resting state EEG 
recordings. Frontal EEG asymmetry effects are quite robust to individual  differences26.

Several modern Machine Learning systems automatically carry out the feature extraction procedure. There-
fore, a very large number of data from different domains (i.e., spatial, spectral or temporal) can be used as input 
to the classifier without an explicit hand-crafted feature extraction procedure.

Spatial filters usually enhance sensitivity to particular brain sources, to improve source localization, and/or to 
suppress muscular or ocular  artifacts27. Two different categories of spatial filters exist: those dependent on data 
and those not dependent on data. Spatial filters not dependent on data (i.e., Common Average Reference, Surface 
Laplacian spatial filters) generally use fixed geometric relationships to determine the weights of the transforma-
tion matrix. The data-dependent filters, although more complex, allow better results for specific applications 
because they are derived directly from user’s data. They are particularly useful when little is known about specific 
brain activity or when there are conflicting theories (i.e., theory of valence and theory of the right hemisphere).

The aim of this research is to improve the reproducibility of a valence EEG-based emotion detection method. 
The reference theory adopted allows the measurement of emotions arranging them along interval scales. The 
architecture, designed for everyday applications, exploits a low number of data acquisition channels (i.e., 8) 
and dry electrodes. In  “Related works” section, a State of Art of emotional valence detection is reported. The 
statement of the metrological problem for the EEG-based emotion assessment is presented in “ Statement of the 
metrological problem” section. In “Proposal” section, the basic ideas, the architecture and the data analysis of 
the proposed method are highlighted. Then, in “Experiments and results” section, the laboratory test procedure, 
a statistical comparison between stimuli scores and participants perceptions, and the experimental validation 
are reported, by detailing and by discussing the results of the compared methods.

Related works
In this section, a State of the Art of the principal works related to emotion detection is reported. All the col-
lected works exhibited at least an experimental sample of 10 subjects. Samples with number of subjects below 
this threshold were considered not statistically significant. The reported studies are organised in two subsections 
according to the used dataset: public (Studies based on public datasets” section) and self-produced (“Studies 
based on self-produced datasets” section). A further “Influencing factors of the experimental conditions” section 
collects analysis on the influencing factors of the experimental setup for the emotion assessment.

Studies based on public datasets. Studies claiming the best accuracy on emotional valence assessment 
are based on public EEG signal datasets:  SEED28–33,  DEAP29–32,34–44, and  DREAMER33,41,42.

SJTU Emotion EEG Dataset (SEED)45,46 is a collection of EEG signals provided by the Center for Brain-like 
Computing and Machine Intelligence (BCMI laboratory) of the Shanghai Jiao Tong University. EEG data were 
acquired while 15 participants watched 15 film clips, of about 4 min, eliciting positive, neutral, and negative 
emotions. The videos were selected in order to be understood without explanation, thus an implicit emotion rec-
ognition task was employed. The experiment, made of 15 trials, was repeated in 3 different days and EEG signals 
were recorded through the 62-channel Neuroscan system. Participants filled in the self assessment questionnaire 
immediately after each trial to report their emotional reactions.

The Dataset for Emotion Analysis using EEG, physiological and video signals (DEAP)47,48 is a multimodal 
dataset developed to analyse human affective states. The EEG and peripheral physiological signals of 32 partici-
pants, watching 40 one-minute long music videos were recorded. The EEG signals were acquired through the 
32-channel BioSemi device. Participants were informed about the purpose of the experiment, but not further 
instructions were given, indeed, the emotion recognition task was implicit. Each video was rated in terms of 
arousal, valence, like/dislike, dominance and familiarity.

(1)αasim = ln(αPSDL )− ln(αPSDR )
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The Database for Emotion Recognition through electroencephalogram (EEG) and electrocardiogram (ECG) 
Signals from Wireless Low-cost Off-the-Shelf Devices (DREAMER)49,50 is a multimodal database recorded dur-
ing emotional elicitation by means of audio-visual stimuli. 18 film clips were employed to elicit: amusement, 
excitement, happiness, calmness, anger, disgust, fear, sadness, and surprise. The film clips are long between 65 
and 393 s. 23 participants undertook the experiment. Details about the experimental procedure were provided 
to participants and the rating scales used for emotional assessment were explained. An implicit emotion recog-
nition task was performed since the subjects were not required to get into the target emotional state. Volunteers 
rated their affective states in terms of valence, arousal, and dominance. EEG signals were captured using the 
14-channel Emotiv Epoc+.

A multichannel EEG emotion recognition method based on a Dynamical Graph Convolutional Neural Net-
work (DGCNN) was proposed by Song et al33. Experiments were conducted on the 62-channels dataset  SEED51 
and on the 14-channels dataset  DREAMER49. The average accuracies of 90.4 % and 79.95 % were achieved on the 
SEED dataset for within-subject and cross-subject settings respectively, in a three classes emotion recognition. 
The average accuracy of 86.23 % was obtained on valence dimension (positive or negative) of the DREAMER 
dataset in the within-subject configuration.

A Multi-Level Features guided Capsule Network (MLF-CapsNet) was employed by Liu et al. for a multi-
channel EEG-based emotion  recognition41. Valence (positive or negative) was classified with an average accuracy 
of 97.97 % on the 32-channels  DEAP47 dataset and 94.59 % on the 14-channels DREAMER dataset. Within-
subject experiments were performed. Comparable results were obtained by applying an end-to-end Regional-
Asymmetric Convolutional Neural Network (RACNN) on the same datasets in a within-subject  setup42.

Studies based on self‑produced datasets. EEG signal, acquired through ad hoc experimental activi-
ties, are employed in further  studies35,52,53. The main stimuli used to elicit emotions in human subjects are: 
(i) projection of standardized sets of emotionally arousing images; (ii) viewing audio visuals; (iii) listening to 
music or sounds; and (iv) recall of autobiographical events. Below, the focus is mainly on studies using stand-
ardized image sets (i.e. International Affective Picture System (IAPS)18, and Geneva Affective Picture Database 
(GAPED)54). The use of a set of normative emotional stimuli (each image is rated according to the valence, 
arousal and dominance levels) enables to select stimuli eliciting a specific range of emotions.

Mehmood et al. used stimuli from the IAPS dataset to elicit positive or negative valence in 30  subjects53. The 
EEG signals were recorded via an 18 electrolyte gel filled electrodes caps. A feature extraction method, using 
Hjorth parameters, was implemented. A 70 % cross-subject accuracy was reached using a SVM classifier. Self-
assessment tests were not administered to subjects.

More recently, several studies focused on channel reduction for improving the wearability of the emotion 
detection  systems55–64.

Marín-Morales at al. designed virtual environments to elicit positive or negative  valence63 . Images from IAPS 
dataset were used as stimuli. The emotional impact of the stimulus was evaluated using a SAM questionnaire. A 
set of features, extracted from EEG and ECG signals, was input into a Support Vector Machine classifier obtain-
ing a model’s accuracy of 71.21 % along the valence dimension (binary classification problem). A 10-channel 
device was used to record the EEG signal from 15 subjects. Sensors’ foams were filled with Synapse Conductive 
Electrode Cream.

The EEG signals of 11 subjects were used to classify valence (positive and negative) by the  authors57. Pictures 
from GAPED dataset were used as elicitative stimuli. The accuracy rates of a SVM classifier were 85.41 % and 
84.18 % using the whole set of 14 channels and a subset of 10 channels respectively, in the cross-subject setting. 
EEG signals were acquired through a wet-14 channels device and no self-evaluation questionnaires were used.

Wei et al. proposed a real-time valence emotion detection system based on EEG measurement realized 
by means of a headband coupled with printed dry  electrodes64. 12 participants undertook the experiment. 
Pictures selected from GAPED were used to elicit positive or negative valence. Self-evaluation questionnaires 
were employed. Two different combinations of 4 channels were tested. In both cases, the cross-subject accuracy 
was 64.73 %. The highest within-subject accuracy increased to 91.75 % from 86.83 % switching from one con-
figuration to another. The latter two  works57,64 both proposed the use of standardized stimuli. However, in the 
first  one57, the concomitant use of self-assessment questionnaires was missing. Moreover, in the second  one64, 
self-assessment questionnaires were employed but the results were not compared with the scores of the used 
stimuli. Failure to compare individual reactions with the standardized stimulus scores, negatively impacted on 
the result of the experiment.

Happy or sad emotions were elicited through images provided by the IAPS, by Ang et al61. The EEG signals 
were acquired through FP1 and FP2 dry electrodes. An Artificial Neural Network (ANN) classifier was fed with 
discrete wavelet transform coefficients. The best detection accuracy was 81.8 % on 22 subjects. Beyond the use 
of standardized stimuli, the subjects were also administered self-assessment scales. Moreover it is unclear how 
the SAM scores were used and whether the approach is within-subject or cross-subject.

Following two studies claiming a single-channel EEG based emotion recognition achieved employing audio-
visual stimuli. Ogino et al. developed a model to estimate valence by using a single-channel EEG  device56. Fast 
Fourier Transform, Robust Scaling and Support Vector Regression were implemented. EEG signals from 30 
subjects were acquired and an average classification accuracy of 72.40 % was reached in the within-subject 
configuration. Movie clips were used to elicit emotional states and SAMs were administered to the participants 
for rating the valence score of the stimuli.

A cross-subject emotion recognition system based on Multilayer Perceptron Neural Network was proposed 
by Pandey et al60. An accuracy of 58.5 % was achieved in the recognition of positive or negative valence on DEAP 
dataset using the F4 channel.
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A reduced number of channels implies a low spatial resolution. Traditional strategies for EEG signal feature 
extraction, combined with a-priori knowledge on spatial and frequency phenomena related to emotions, can 
be unusable in case of few electrodes. In a previous work of the Authors, for a single-channel stress detection 
instrument, a-priori spatial knowledge drove electrodes  positioning65. However, signal processing was based on 
innovative and not well-settled strategies. Although proper psychometric tools were adopted for the construc-
tion of the experimental sample, the reproducibility of the experiment was adversely affected by the use of not 
standardized stimuli.

Further not standardized stimuli are personal memories. For example, the  study62 presents a very interest-
ing data fusion approach for emotion classification based on EEG, ECG, and photoplethysmogram (PPG). The 
EEG signals were acquired through an 8-channel device. A Convolutional Neural Network (CNN) was used to 
classify three emotions reaching an average accuracy for the cross-subject case of 76.94 %. However, personal 
memories of the volunteers were used as stimulus, compromising the reproducibility of the experimental results. 
Moreover, due to the adoption of the discrete emotion model, the study cannot be taken into account for emotion 
measurement goal.

Influencing factors of the experimental conditions. In the field of emotion recognition, the use of 
audio-visual stimuli guarantees higher valence intensity (positive or negative) with respect to visual stimuli (pic-
tures)66. Therefore, the sensitivity of the measurement system increases and the accuracy in emotion detection 
can be higher. However, currently there are no standardized audiovisual datasets to employ for eliciting emo-
tions. The only exception is the dataset used by DREAMER, which contains a low number of stimuli (only 18), 
so penalising their randomic administration and increasing the risk of bias. Not even the most widely used EEG 
datasets SEED and DEAP employ a standardized stimulus dataset to elicit emotions.

Also the use of explicit rather than implicit tasks affects the effectiveness of the mood induction. Explicit 
instruction helps participants to get into the target emotional state, but it can be a further source of uncertainty. 
However, the existing standardized stimuli (IAPS, GAPED, OASIS, etc) are predominantly images character-
ized in an implicit setup. In order to draw on this resource and make the experiment reproducible, an implicit 
task, with static images, should therefore be adopted. Among the reported studies, task information is generally 
omitted.

Another factor that can influence the effectiveness of the emotional state induction is the way of stimuli 
selection. Referring to the main standardized stimuli datasets, images can be selected by choosing those with 
higher or lower valence scores. Polarized stimuli could increase the intensity of a certain emotional state with 
respect to random chosen stimuli.

For all the presented studies (i) type of stimuli, (ii) type of task, (iii) number of channels, (iv) number of 
participants, (v) classifier, (vi) number of classes, (vii) within-subject accuracy, and (viii) cross-subject accuracy 
are reported in Table 1.

The accuracy values are reported in both the within-subject and cross-subject cases, when available. In the 
first case, classification was carried out using data of a single subject both for training and test phases, while in 
the second one, classification was carried out employing the data set as a whole.

Statement of the metrological problem
The path towards the measurability of emotions still remains to be completed. In this study, some important 
steps are carried out to achieve this goal:

• a theoretical model compatible with emotion measurability was adopted;
• people with high scores on the Patient Health Questionnaire (PHQ) were excluded from the experimental 

sample in order to soften the bias of depressive disorders;
• standardized stimuli were used jointly with self-assessment questionnaires to reduce the intrinsic uncertainty 

of the measurand;

Nevertheless, there are still several aspects to continue working on:

• a more complete definition of an emotion model, which incorporates, for example, appropriately adjusted 
analyses for confounders including the impact of individual personality on the specific emotional response;

• identification of a measurement unit (enhancing the important role played in this direction by biosignals, 
including the EEG);

• an uncertainty analysis for identifying and weighing the sources in the measurement processes. Just to 
remember a few: (i) the theoretical model, (ii) the stimulus, (iii) the task, (iv) the specific individual emotional 
response, (v) the peculiar relationship between the individual emotional response and its manifestation in 
terms of neurosignal, (vi) the signal acquisition instrument, and (vii) the algorithms for signal classification.

Proposal
This study proposes an emotional valence detection method starting from the EEG signal acquired through 
few dry electrodes. In this section, the basic ideas, the architecture, and the data processing of the proposed 
approach are presented.

Basic ideas. Below the basic ideas are reported.
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• An EEG-based method for emotional valence detection: Emotional functions are mediated by specific brain 
circuits and electrical waveforms. Therefore, the EEG signal varies according to the emotional state of the 
subject. However, using suitable algorithms, such a state can be recognized.

• Low number of channels, dry electrodes, wireless connection for a good ergonomics: An 8 channel-dry electrode 
device does not require a burdensome installation. The absence of the electrolytic gel eliminates the problem 
of residues in the hair. The good ergonomics of the instrument is also guaranteed by the absence of connec-
tion cables and, therefore, by the wireless transmission of the acquired signals. Both of them simplify the 
operator’s job.

• Multifactorial metrological reference: A multifactorial metrological reference was implemented. Images 
belonging to a statistically validated dataset were used as stimuli for eliciting emotions. Therefore, each 
image is scored according to the corresponding valence value. The metrological reference of the emotional 
valence is obtained by combining the scores of the stimuli (statistically founded) with the score of the self-
assessment questionnaires (subjective response to the standardized stimulus). The Bland-Altman and the 
Spearman analysis were carried out for comparing Self-assessment questionnaires (SAM) scores and the 
OASIS dataset scores.

Table 1.  Studies on emotion recognition classified according to the employed datasets (i.e. SEED, DEAP, 
and DREAMER), stimuli (v="video", p="picture", m="memories"), task (i="implicit", e="explicit", n.a.="not 
available"), #channels, #participants, #classes, classifiers, and accuracies (n.a.="not available").

Dataset Study Stimuli Task #channels #participants Classifier #classes
Within-subject accuracy 
(%) Cross-subject accuracy (%)

SEED
28 v i 62 15 SincNet-R 3 94.5 90.0
33 v i 62 15 DGCNN 3 90.4 80.0

SEED & DEAP

29
v i 62 15

DNN
3 n.a. 96.8

v i 32 32 2 n.a. 89.5

30
v i 62 15

SNN
3 n.a. 96.7

v i 32 32 2 n.a. 78.0

40
v i 62 15

SBSSVM
2 n.a. 72.0

v i 32 32 2 n.a. 89.0

31
v i 62 15

CNN
3 90.6 n.a.

v i 32 32 2 82.8 n.a.

32
v i 62 15

CNN
2 n.a. 86.6

v i 32 32 2 n.a. 72.8

DEAP

34 v i 32 32 H-ATT-BGRU 2 n.a. 69.3
36 v i 32 32 CNN 2 n.a. 77.4
37 v i 4 32 LDA 2 n.a. 82.0
39 v i 32 32 LSTM-RNN 2 n.a. 81.1
43 v i 32 32 Kohonen-NN 2 76.3 n.a.
44 v i 32 32 SVM + FCM 2 78.4 n.a.
60 v i 1 32 MLP 2 n.a. 58.5

DEAP & DREAMER

38
v i 32 32

BioCNN
2 83.1 n.a.

v i 14 23 2 56.0 n.a.

41
v i 32 32

MLF-CapsNet
2 98.0 n.a.

v i 14 23 2 94.6 n.a.

42
v i 32 32

RACNN
2 96,7 n.a.

v i 14 23 2 97,1 n.a.

SELF-PRODUCED

33 v i 14 23 DGCNN 2 86.2 n.a.
35 v i 19 40 MLP, KNN, and SVM 2 n.a. 90.7
55 v n.a. 1 20 MC-LS-SVM 2 n.a. 90.6
52 v n.a. 14 10 RVM 2 91.2 n.a.
56 v n.a. 1 30 SVM 2 72.4 n.a.
58 v i 1 19 k-NN 3 94.1 n.a.
59 p e 3 16 SVM 6 n.a. 83.3
57 p n.a. 10 11 SVM 2 n.a. 84.2
53 p n.a. 18 30 SVM 2 n.a. 70.0
61 p n.a. 2 22 ANN 2 n.a. 81.8
63 p n.a. 10 38 SVM 2 n.a. 71.2
64 p n.a. 4 12 LDA 2 86.8 64.7
62 m e 8 20 CNN 3 n.a. 76.9



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21615  | https://doi.org/10.1038/s41598-021-00812-7

www.nature.com/scientificreports/

• 12–band Filter Bank: Traditional filtering, employed to extract the information content from the EEG signals, 
is improved by a 12-band Filter-Bank. Compared to the five typical bands for EEG analysis (alpha, beta, delta, 
gamma, theta), narrowing the frequency intervals, the features resolution increases.

• Beyond a priori knowledge: A supervised spatial filter (namely CSP) guarantees automated feature extraction 
from spatial and time domains.

Architecture. The architecture of the proposed system is shown in Fig. 1. The conductive-rubber dry elec-
trodes allow the EEG signals to be sensed directly from the scalp of the subject. Each channel is differential with 
respect to AFz (REF) and referred to Fpz (GND). Analog signals are conditioned by stages of amplification and 
filtering (Analog Filter and Amplifier). Then, they are digitized by the Analog Digital Converter ADC and sent 
by the Wireless Transmission Unit to the Data Processing block. A 12-bands Filter Bank and a Common Spatial 
Pattern (CSP) algorithm carry out the feature extraction. The Classifier receives the feature arrays and detects 
the emotional valence.

Data processing. In this section, the features extraction and selection and the classification procedures of the 
proposed method are presented.

Features extraction and selection. Finer-resolution partitions of the traditional EEG bands were proposed for 
emotion  recognition67,68. In the present work, a 12-band Filter Bank version, recently adopted in distraction 
 detection69, is employed.

Spatial and frequency filtering is applied to the output data of the filter bank. A well-claimed Common Spatial 
Pattern (CSP), widely used in EEG-based motor imagery  classification70–73, is used as a spatial filter. For the first 
time, the FB-CSP pipeline is here proposed in the field of valence emotion detection.

A previous  study74 showed that the CSP spatial filtering method entails the relationship between EEG bands, 
EEG channels, neural efficiency and emotional stimuli types. It demonstrated that CSP spatial filtering gives 
significant values on band-channels (p < 0.004) combination. Spatial characteristics may provide more relevant 
information to distinguish different emotional states. A feasibility study demonstrated the CSP capability of 
applying spatial features to EEG-based emotion recognition reaching average accuracies of 85.85 % and 94.13 % 
on the self-collected and MAHNOB-HCI datasets. Three emotion tasks were detected with 32 EEG  channels75.

In a binary problem, the CSP computes the covariance matrices of the two classes. By means of a whitening 
matrix, the input data are transformed in order to have an identity covariance matrix (mainly, all dimensions 
are statistically independent). Resultant components are sorted on the basis of variance in order: (i) decreasing, 
if the projection matrix is applied to inputs belonging to class 1, and (ii) ascending, in case of inputs belonging 
to class 2. In this way, according to the "variance of each component", data can be more easily  separable76. The 
CSP receives as input 3D tensors with dimensions given by the number of channels, filters, and samples.

Classification. In this study, the emotional valence is classified using a k-Nearest Neighbors (k-NN)77 for cross-
subject case and full-connected Artificial Neural Networks (ANNs)78 for within-subject one. One of the main 
advantages of the k-NN is that, being non-parametric, it does not require a training phase unlike other Machine 
Learning methods. In a nutshell, given a set of unlabelled points P to classify, a positive integer k, a distance 
measure d (e.g., Euclidean) and a set D of already labelled points, for each point p ∈ P , k-NN assigns to p the 
most frequent class among its k neighbours in D according to the measure d. The number of neighbours k and 
the distance measure d were set using a cross-validation procedure. Differently from k-NN, ANNs are classifica-

Figure 1.  The proposed valence-detection method (CSP: Common Spatial Pattern algorithm).
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tion models that require a training procedure. In general, an ANN consists of a set of elements (called neurons) 
arranged together into several layers fully connected between them. Each neuron performs a linear combina-
tion of its inputs usually followed by the application of a non-linear function called activation function. It was 
 demonstrated79 that an ANN can approximate arbitrarily complex functions, giving to the model the ability to 
discriminate between different classes. The number of neurons, the number of layers and the activation func-
tions are hyperparameters given a priori, while the coefficients of each linear combination are learned by the 
model in a training stage.

Experiments and results
Data acquisition setup. The experimental protocol was approved by the ethical committee of the Uni-
versity Federico II. Written informed consent was obtained by the subjects before the experiment. All methods 
were carried out in accordance with relevant guidelines and regulations. Prior informed consent for publication 
of identifying information and images was obtained by all the participants. Thirty-one volunteers, not suffering 
from both physical and mental pathologies, were screened by means of the Patient Health Questionnaire (PHQ) 
for excluding depressive  disorders80. Six participants were excluded from the experiment owing to their score in 
PHQ, resulting in twenty five healthy subjects, (52 % male, 48 % female, aged 38 ± 14). The experiments were 
conducted in a dark and soundproofed environment to prevent disturbing elements.

The employed Mood Induction Procedure (MIP) was based on the presentation of emotion-inducing material 
to participants to elicit suitable emotions. The subjects were instructed on the purpose of the experiment. They 
had to passively gaze at the pictures projected on the screen and, only after, to assess the experienced valence by 
two classes: negative and positive. Emotional stimuli were presented without explicitly instructing subjects to 
get into the suggested mood state and regulate their emotions. Nevertheless, the subjects were aware of both the 
elicitation stimulus and the type of induced emotion (although it was not explicitly stated, they could guess it 
starting from the self-assessment questionnaire). Thus, the employed task was of a type implicit-more controlled81. 
The experiment was made of 26 trials. Each trial lasted 30 s and consisted of: (i) a 5-s white screen, (ii) a 5-s 
countdown frame employed to relax the subject and separate emotional states mutually, (iii) a 5-s elicitative 
image projection, and (iv) a 15-s self-assessment (Fig. 2). The subject was required to express a judgement on 
the positivity/negativity of his/her valence on a scale from 1 to 5 through the self-assessment manikin (SAM) 
questionnaire. In each trial, different images were projected, for a total of 26 images. 13 pictures for eliciting 
negative valence and 13 for eliciting positive valence were employed. Positive and negative tasks were randomly 
administered to participants in order not to create expectations in the tested subjects.

Images were chosen from the reference database  Oasis82. Oasis attributes a valence level to each image on a 
scale from 1.00 to 7.00.

Only Italian volunteers participated the experiment, thus a pre-test on the trans-cultural robustness of the 
selected images was administered to a different group consisting of 12 subjects. Specifically, suitable pictures were 
shown and was asked subjects to rate each image using the scale "self assessment manikin" (SAM). Images with a 
neutral rating from at least 50 % of the subjects were excluded from the experiment. In fact, a stimulus strongly 
connoted in a specific cultural framework, loses its strength out of that context. An emblematic example are 
the symbols related to the Ku Klux Klan. Those have a different connotative richness for a citizen of the United 
States of America compared to European people. The same pre-test revealed very low performances for detect-
ing valence level when the stimuli score was around the the midpoint value of the valence scale. The sensitivity 
of the system was improved by selecting a suitably polarised subset of Oasis images, as  in53  and57. First of all, 
images with highest and lowest valence score were identified: respectively 6.28 and 1.32. Then, 1.00 was the span 
chosen to guarantee the trade-off between the maximum image polarization and an adequate quantity of images 
to build the experiment (>100). Therefore, [1.32, 2.32] and [5.28, 6.28] were adopted as the scoring intervals for 
negative and positive stimuli valence, respectively and 13 images per group were randomly selected. For each 
image, the Oasis valence score and the average scores (on all subjects) of the self-assessment are shown in Fig. 3. 
The maximum difference between the SAM and the stimuli scores is lower than the average standard deviation 
(1.00) computed on the Oasis scores.

The number of images per class was chosen in order to guarantee a trade-off between the amount of experi-
mental epochs and the user comfort, by minimizing the duration of the experiment simultaneously. In this way, 
the experiment lasted about 20 min per subject. About 2 min were required for the presentation of the activity 

Figure 2.  Experimental protocol.
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to the subject, other 5 min were required for the setting up of the EEG device quality. 13 min were required for 
the completion of all the 26 trials.

Bland-Altman and Spearman analyzes were carried out to compare the experimental sample with respect 
to the Oasis experimental sample. The agreement between the measurements expressed by the two samples is 
verified, as evidenced by a qualitative analysis in Fig. 4 and the Spearman correlation index ρ = 0.799.

Hardware. The position of the used channels was chosen by taking into account the well-assessed theories 
of emotions already presented: frontal asymmetry and right hemisphere  asymmetry20–22,25. The ab medica Hel-
mate83 was found to fit the requirements of the previous mentioned theories because it is equipped with 3 fron-
tal, central, and occipital channels pairs. Indeed, the coverage of almost all areas of the scalp ensured that both 
frontal and hemispheric asymmetries were recorded, despite the low number of electrodes. The device provided 
electrodes placed on Fp1, Fp2, Fz, Cz, C3, C4, O1, and O2, according to the 10/20 International Positioning 
System. The Helmate is Class IIA certified according to Medical Device Regulation (UE) 2017/745 (Fig. 5A). It is 
provided with a rechargeable battery and is able to transmit the acquired data via Bluetooth, without connection 
cables. This ultra-light foam helmet is equipped with 10 dry electrodes which 8 acquisition channels (unipolar 

Figure 3.  Oasis valence score and SAM average scores of the 26 images selected for the experiments. The Oasis 
score intervals used to extract polarized images are identified by dotted lines.

Figure 4.  Bland-Altman analysis on the agreement between stimuli (OASIS) and volunteers perception (SAM).

Figure 5.  (A) EEG data acquisition system Helmate8 and (B) dry electrodes from abmedica.
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configuration) and with disposable accessories (under-helmet and under-throat). Electrodes are made of con-
ductive rubber and their endings are coated with Ag/AgCl. They have different shapes to pass through the hair 
and reach the skin (Fig. 5B).

The resulting signals are recorded differentially vs ground (Fpz), and then referenced with respect to AFz, 
both placed in the frontal region. A dedicated software measures the contact impedance between the electrodes 
and the scalp. The acquired EEG signal, sampled at 512 Hz, is sent to the Helm8 Software Manager. It allows 
both to display the signal directly on PC in real time and to apply a large variety of pre-processing filters. The 
device has an internal µ SD for backup purposes. Helmate incorporates a Texas Instruments analog front-end, 
the  ADS129884. This is a multichannel, simultaneous sampling, 24-bit, ( �� ) analog-to-digital converter (ADCs) 
with built-in programmable gain amplifiers (PGAs), internal reference, and an onboard oscillator. Main features 
of the ADS1298 are: (i) eight Low-Noise PGAs and Eight High-Resolution ADCs; (ii) input-Referred Noise: 4 µ
VPP (150 Hz BW, G = 6); (iii) input Bias Current: 200 pA; and, (iv) CMRR: –115 dB.

Data processing comparison. The EEG tracks were acquired at a sampling frequency of 512 Hz and 
filtered between 0.5 and 48.5 Hz using a zero-phase 4 th-order digital Butterworth filter. In the processing stage, 
the used trials resulted to be 24 for each subject since macroscopic artifacts corrupted one trial of three subjects. 
So, to keep the dataset balanced, the number of trials was reduced by removing the compromised trial and 
another one randomly chosen among those of the opposite class. Then, for the remaining subjects, two trials 
of different classes were randomly removed to guarantee the same amount of data for all the participants. The 
remaining artifacts were removed from EEG signals using Independent Component Analysis (ICA) by means 
of the EEGLAB Matlab toolbox version  201985. The recorded EEG signals were divided into 2 s time windows 
overlapping of 1 s.

The traditional EEG bands delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (>30 
Hz) were extracted. The proposed method was validated by comparing different approaches of features extraction 
and classification. For EEG features extraction, two different methods were adopted: (i) with and (ii) without a 
priori spatial-frequency knowledge provided by neurophysiology.

In a-priori spatial knowledge framework, frontal asymmetry feature was chosen, computed by subtracting 
the left frontal (FP1) from the right (FP2) channel. Moreover, the whole hemispherical asymmetry was also 
considered and the differences of the three symmetric channel pairs were input to the classifiers. The analysis 
considered only spatial or both spatial and frequency features, according to the different neurophysiological 
theories. A-priori frequential knowledge led to the use of a [8-13] Hz (alpha band) pass-band filter (zero-phase 
4 th-order digital Butterworth filter).

Without a priori knowledge, features were extracted via the PCA and CSP algorithms. For PCA, we used a 
number of components which explains the 95 % of the data variance. For CSP, all the 96 components returned 
by the algorithm are used. Also in this case, only the spatial information and the combination of spatial and 
frequency information were analysed. Input features were 8192 (8 channels * 1024 samples) when PCA and CSP 
were fed only by spatial information.

The acquired EEG signal was filtered through 12 IIR band-pass filters Chebyshev type 2, with 4 Hz bandwidth, 
equally spaced from 0.5 to 48.5 Hz. In this way, the traditional five EEG bands (delta, theta, alpha, beta, and 
gamma) are divided into 12 sub-bands. Therefore, the features resolution is increased by the narrowing of the 
bands. Thus, features increased to 98304 (12 frequency bands * 8 channels * 1024 samples). The features were 
then reduced from 98304 to 96 using the CSP algorithm.

Subsequently, in the classification stage, two types of investigations were carried out: within-subject and cross-
subject. In the first case, data of a single subject were employed for training and classification phases, while in the 
second one, the data set as a whole was employed. In both cases, the proposed method was validated through a 
stratified 12-fold Cross Validation (CV) procedure. Namely, given a combination of the classifier hyperparameters 
values, a partition of the data composed of K subsets (folds) is made, preserving the ratio between the samples 
of different classes. A set T consisting of K − 1 folds is then used to train the model and, when required, the 
CSP projection matrix; the remaining fold E to measure the model performances using any metric scores (e.g., 
accuracy). The whole process is then repeated for all the possible combinations of the K folds. Finally, the average 
scores on all the test sets are reported. Furthermore, training and test sets are made keeping together the epochs 
of each trial (consisting of 4 epochs each) in the same set, both in the cross-subject and in the within-subject 
approach. In this way, the training and the test sets do not include parts of the same trial. Finally, in a 12-fold 
scheme within-subject setup, 88 epochs for training and 8 epochs for testing are used. Of the 88 epochs used 
for the training set, 16 are exploited as validation set in the ANNs learning. Instead, in the cross-subject case, 
considering that the experimental campaign involved 25 subjects, a total of 2400 epochs was used. This, in a 
12-fold cross validation scheme, corresponds to 2200 epochs as training test and 200 epochs as test set. In the 
ANNs learning, 200 epochs are used as the validation set.

k-NN77 and  ANN78 were compared with other four classifiers: Linear Discriminant Analysis (LDA)86, Sup-
port Vector Machine (SVM)87, Logistic Regression (LR)78 and Random Forest (RF)73. LDA searches for a linear 
projection of the data in a lower dimensional space trying to preserve the discriminatory information between 
the classes contained in the data. A SVM defines a separator hyperplane between classes exploiting a subset of 
the training instances (support vectors). LR is a widely used classification method based on the logistic func-
tion. In binary classification, it estimates the probability of a sample x to belong to a class labelled as y = 1 as 
P(y|x) =

exp(q+wx)

1+exp(q+wx)
 where w and q are learnable parameters. A RF combines several decision trees to make classi-

fications. The use of several decision tree helps in improving the accuracy. Furthermore, to prevent possible over-
fitting, regularization terms in the training procedures were used for SVM learning using the SVM soft-margin 
 formulation87, and for neural networks learning using a weight  decay88 during the learning algorithm execution. 
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ANNs were trained with the ADAM algorithm. A maximum number of 1000 epochs with a patience of 50 epochs 
on the validation set was used to train the network models. Figure 6 shows the trend of the accuracy during the 
first 40 iterations of a learning stage on a single subject model. For all the classifiers, the hyperparameters used 
during the CV procedure are reported in Table 2. Accuracy, precision, and recall are reported to assess the clas-
sification output quality. Precision measures result relevancy, while recall how many truly relevant results are 
returned. The F1 score, combining precision and recall, was computed to assess the classification performance 
in minimizing false negatives for the first class (negative valence) analysis. Considering many use cases, the 
minimization of failure in recognizing negative valence is the main issue.

Experimental results. Accuracy was related to the model’s ability to correctly differentiate between two 
valence states. EEG tracks relating to the negative and positive image tasks were associated to the first and the 
second class, respectively.

The mean of the individual accuracies and standard deviations computed on each subject (within-subject 
case) and the accuracies and standard deviations computed on all subjects data as a whole (cross-subject case) are 
showed when a priori spatial-frequency knowledge is used (Table 3) or not (Tables 4 and 5). Results are shown at 
varying the adopted classifier. Better performances are obtained without a-priori knowledge and when features 
are extracted by combining Filter-Bank and CSP, both in within-subject and cross-subject case. In within-subject 
analysis, the data subsets are more uniform and all the classifiers provide very high accuracy. In Fig. 7 the data of 

Figure 6.  First 40 ANN training epochs on one subject.

Table 2.  Classifier optimized hyperparameters and variation range.

Classifier Hyperparameter Variation Range

k-nearest neighbour (k-NN)

Distance (DD) {cityblock, chebychev, correlation, cosine, euclidean, hamming, jaccard, mahalanobis, 
minkowski,spearman}

DistanceWeight (DW) {equal, inverse, squaredinverse}

Exponent (E) [0.5, 3]

NumNeighbors (NN) [1, 5]

Support vector machine (SVM)

BoxConstraint (BC) log-scaled in the range [1e-3,1e3]

KernelFunction (KF) {gaussian, linear, polynomial}

KernelScale (KS) log-scaled in the range [1e-3,1e3]

PolynomialOrder (PO) {2,3,4}

Artificial neural network (ANN)
Activation Function (AF) {relu, sigmoid, tanh}

Hidden layer nr. of neurons (HLN) [25, 200]

Linear discriminant analysis (LDA)

Gamma (G) [0,1]

Delta (D) log-scaled in the range [1e-6,1e3]

DiscrimType (DT)
{linear, quadratic, diagLinear,}

{diagQuadratic, pseudoLinear, pseudoQuadratic}

Random forest (RF)

Depth (D) [5,20]

Number of trees (NT) [15,100]

Maximum depth of the tree [5,30]

Logistic regression (LR)
Penalty (P) {L2, elastic net}

Inverse of regularization strength (C) [0.25, 1.0]
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four random subjects projected in the CSP space, with and without the Filter Bank, are compared. The classes, 
after using the Filter Bank, are easily separable with respect to the use of the only CSP, as highlighted by the 
results. In Table 6, the accuracies in the within-subjects experiments are reported for all the subjects. In cross-
subject analysis, when data from all subjects are merged, variability increases and not all the classifiers give good 
results. Interestingly, in the cross-subject approach, the k-NN classifier allows to achieve by far the best perfor-
mance, while the scores degrade using the other classifications setups. This behaviour suggests that the data of 
similar classes are close together for different subjects, but that in general they are not easily separable through 
classical Machine Learning methods. Moreover, a feature selection analysis using the Mutual Information (MI) 
method, proposed  in89, was made using the best experimental setups of both within-subject and cross-subject 
approaches. The results reported in Table 7 show that just the 12.5 % of the FBCSP features are enough to achieve 
accuracy performances over the 90 % in the within-subject case. Therefore, the features extracted by the CSP in 
conjunction with Filter Bank resulted effective in emotional valence recognition.

Figure 7.  t-SNE based data comparison of four random subjects projected in the CSP space, without (first row) 
and with (second row) the Filter Bank. Filter Bank improves the classes (blue and red) separability.

Table 3.  Accuracy (mean and standard deviation) considering a priori knowledge i.e. asymmetry—within-
subject (Within) and cross-subject (cross).

Classifier

Entire EEG Band αband

Within Cross Within Cross

k-NN 54.0 ± 4.1 51.0 ± 1.2 53.8 ± 4.0 51.3 ± 0.4

SVM 56.8 ± 3.4 50.8 ± 0.2 56.7 ± 3.0 51.2 ± 0.3

LDA 54.5 ± 3.8 51.2 ± 0.8 53.8 ± 3.5 51.0 ± 1.0

ANN 58.3 ± 3.0 51.8 ± 0.3 58.5 ± 3.0 51.5 ± 1.6

RF 55.7 ± 3.9 50.7 ±  1.2 54.5 ±  4.5 50.9 ± 1.3

LR 52.5 ±  4.1 51.4 ±  0.2 53.7 ±  4.3 51.2 ±  0.7

Table 4.  Accuracy (mean and standard deviation) without considering a priori knowledge i.e. Asymmetry - 
Within-subject. The best performance value is highlighted in bold.

Classifier

Entire EEG band Filter bank

No PCA/CSP PCA CSP No PCA/CSP PCA CSP

k-NN 71.0 ± 6.0 67.7 ± 8.4 72.0 ± 8.9 75.6 ± 5.8 66.8 ± 7.2 94.5 ± 3.5

SVM 66.9 ± 8.1 66.3 ± 10.3 73.4 ± 9.5 71.6 ± 8.9 62.0 ± 7.8 95.5 ± 2.8

LDA 63.1 ± 4.9 55.3 ± 4.0 74.0 ± 10.0 62.9 ± 5.3 53.9 ± 3.5 95.0 ± 2.9

ANN 69.7 ± 5.1 66.3 ± 6.2 78.1 ± 8.0 66.7 ± 4.9 65.6 ±  5.6 96.1 ± 3.0

RF 66.4± 4.1 58.9± 4.2 72.8± 9.4 67.4± 4.1 59.3± 5.0 94.2± 2.7

LR 62.7± 4.9 52.3± 2.9 72.6± 9.3 61.0± 5.0 51.2± 4.0 95.1± 2.9
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Table 5.  Accuracy (mean and standard deviation) without considering a priori knowledge i.e. Asymmetry - 
Cross-subject. The best performance value is highlighted in bold.

Classifier

Entire EEG Band Filter Bank

No PCA/CSP PCA SP No PCA/CSP PCA CSP

k-NN 68.4 ± 0.2 62.1 ± 0.9 56.8 ± 0.5 70.1 ± 1.0 61.1  ±  0.3 80.2 ± 2.1

SVM 51.5 ± 0.6 52.1 ± 0.3 61.0 ± 2.0 51.8 ± 1.0 51.2 ± 0.3 71.3 ± 2.0

LDA 53.5 ± 0.7 50.9 ± 0.4 55.4 ± 4.2 52.6 ± 0.1 50.9 ±  0.2 63.7 ± 2.1

ANN 59.9 ± 1.0 54.5 ± 0.2 58.1 ± 1.1 57.4 ± 0.1 53.7 ± 0.1 63.3 ± 2.7

RF 56.5± 0.6 55.3± 0.7 59.2± 1.9 57.8± 1.1 52.5± 2.9 65.0± 3.8

LR 50.5± 1.9 50.6± 0.5 55.7± 4.9 51.8± 0.9 50.9± 0.5 58.1± 1.5

Table 6.  Accuracies obtained for each subject in the within-subject experiments when a FB-CSP pipeline is 
adopted.

Subject k-NN SVM LDA ANN RF LR

#1 95.8 95.8 94.4 95.8 93.3 94.4

#2 95.8 92.2 92.2 93.1 92.2 95.8

#3 94.4 93.6 93.7 94.4 91.1 92.2

#4 95.8 98.6 98.1 99.0 94.4 94.4

#5 91.7 93.8 93.2 94.4 93.1 93.1

#6 97.2 96.2 95.8 97.2 93.9 95.8

#7 95.8 96.1 95.8 98.6 94.4 95.8

#8 97.2 98.6 97.2 99.0 97.2 97.0

#9 98.6 98.6 98.6 98.6 96.2 98.6

#10 92.0 94.6 94.4 97.2 95.8 94.5

#11 95.8 95.0 94.6 97.2 93.6 95.0

#12 94.4 94.7 94.4 97.2 92.3 94.4

#13 98.6 98.6 98.6 99.0 95.8 98.6

#14 95.8 95.7 95.8 95.8 97.2 94.4

#15 85.9 91.2 90.5 91.0 89.9 90.3

#16 95.4 97.2 96.7 98.2 97.2 97.0

#17 86.3 95.0 94.6 93.1 92.7 95.8

#18 93.1 91.4 90.2 92.0 92.7 93.0

#19 97.2 98.6 98.7 99.0 98.6 98.6

#20 94.4 98.5 97.2 95.8 95.4 97.2

#21 97.2 97.2 97.2 98.6 95.8 98.6

#22 98.6 97.9 97.4 99.0 95.4 97.2

#23 89.3 90.0 89.2 89.4 88.1 88.9

#24 95.2 97.9 97.3 98.7 98.6 98.3

#25 90.2 90.1 89.4 90.3 90.2 88.5

Average  ±  std. 94.4 ± 3.5 95.5 ± 2.8 95.0 ± 2.9 96.1 ± 3.0 94.2 ± 2.7 95.1 ± 2.9

Table 7.  Accuracy performances of the best processing solutions for both within- and cross-subject 
approaches at varying the number of input features selected through the mutual information strategy.

Classifier

#Features

12 24 50 96

k-NN Cross 58.7± 1.0 65.1± 1.8 74.4± 0.9 80.2± 2.1

ANN Within 92.8± 4.1 93.0± 4.1 93.4± 1.0 96.1± 3.0
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In conclusion, the proposed solution based on 12-bands Filter-Bank provides the best performances reach-
ing 96.1 % of accuracy with ANN in within-subject analysis and 80.2 % using k-NN with k = 2 in cross-subject 
analysis. In the within-subject case, for the ANN the best top-5 subjects reached the best performances using 
ANN with one layer with less than 100 neurons equipped with the classical tanh activation function, showing 
that networks with few parameters can be sufficient to address this classification problem as long as a proper set 
of features is provided. Precision, Recall and F1-score metrics are reported in Fig. 8.

Discussion. In the previous Sections the measurability foundation of emotion was discussed. In this study, 
results from the Self Assessment Manikin questionnaire confirmed the compatibility of the experimental sample 
with that of Oasis thus improving the reproducibility of the experiment and the generalizability of the outcome. 
Moreover, the reference theory adopted allows the measurement of emotions arranging them along interval 
scales. In this framework, the preliminary binary classification of the proposed system could be enhanced by 
increasing the number of classes. Thus, the number of valence states increase and a higher resolution metric 
scale can be obtained. Therefore, the Circumplex Model is compatible with an upgrade of the proposed binary 
classification method. It is noteworthy that the number of classes can increase if emotional valence states can 
be experimentally induced at higher resolution. This is precisely what the standardized stimuli datasets allow 
because their scores are organised according to an interval scale. The novelty of this research is based on the 
compliance with different quality parameters. In Table 8, this study is compared with the works examined in 
Section 2 section, taking into account the following criteria: (i) classification vs measurement, (ii) standardized 
stimuli, (iii) self-assessment questionnaires, (iv) number of channels ≤ 10 , (v) cross-subject accuracy > 80 % (vi) 
within-subject accuracy > 90 %. As concerns the first quality parameter, the option between classification and 
measurement is related to the reference theory adopted (i.e., discrete model or circumplex model).

There are only two studies combining SAM and standardized stimuli ratings for the construction of the 
metrological  reference61,63. Therefore, literature concerning EEG-based emotion detection exhibits a lack of 

Figure 8.  F1-score (White), Recall (Grey) and Precision (Black) for the best performance of each classifier—
cross-subject.

Table 8.  Studies on emotion recognition classified according to metrological approach, number of channels 
and accuracy (n.a. = "not available", � = "the property is verified". Only for the first line, � = "Measurement" ).

34 35 28 36 37 29 30 38 39 40 55 41 42 31 43 52 44 32 33 56 57 58 59 60 53 61 62 63 64
Our 
work

Measure-
ment vs 
Classifi-
cation

� � � � ✗ � ✗ � � � ✗ � � � ✗ ✗ � � � � � ✗ ✗ � � � ✗ � � �

Standard-
ized 
Stimuli

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ � � ✗ ✗ ✗ ✗ ✗ � ✗ � ✗ ✗ ✗ � � ✗ � � �

Self-
assess-
ment 
Question-
aries

� � � � � � � � � � � � � � � � � � � � � � � � ✗ � n.a. � � �

#chan-
nels≤ 10

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ � ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ � � � � � ✗ � � � � �

Cross-
subject 
Accuracy 
(>80%)

✗ � � � � � � n.a � � n.a. n.a n.a n.a n.a n.a n.a � � n.a � n.a � ✗ ✗ � ✗ ✗ ✗ �

Within-
subject 
Accuracy 
(>90%)

n.a. n.a. � n.a. n.a. n.a. n.a. ✗ n.a. n.a. � � � � ✗ � ✗ n.a. � ✗ n.a. � n.a. n.a. n.a. n.a. n.a. n.a. � �
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generalizability for the presented results. Among all the examined works, the proposed study is the only one 
that matches all the aforementioned criteria.

Conclusion
An emotional-valence detection method for an EEG-based system was proposed by proving experimentally 
accuracy of 96.1 % and 80.2 % in within-subject and cross-subject analysis, respectively. Important steps towards 
the measurability of emotions were proposed: Firstly, the Valence detection occurs along the interval scale 
theorized by the Circumplex Model of emotions. Thus, the current binary choice, positive valence vs negative 
valence, could represent a first step towards the adoption of a metric scale with a finer resolution. Secondly, the 
experimental sample was collected by managing the bias of depressive disorders. Finally, results from the Self 
Assessment Manikin questionnaire confirmed the compatibility of the experimental sample with that of Oasis. 
Hence, a metrological reference was built taking into account both the statistical strength of the data set OASIS 
and the collected data about the subject perception. The OASIS dataset was also subjected to a cross-cultural 
validity check. A priori information is not needed using algorithms capable of extracting features from data 
through an appropriate spatial and frequency filtering. Classification is carried out with a time window of 2 s. The 
achieved performances are due to the combined use of a custom 12-band Filter Bank with CSP spatial filtering 
algorithm. This approach is widely used in the motor imagery field and was proven to be valid also for emotion 
recognition. In the future, it would be interesting to test the FB-CSP approach also on public datasets. The high 
ergonomics and accuracy are compatible with the principal applications of emotional valence recognition. Future 
developments of the research will be: (i) the development of the metrological foundation of emotion measure-
ment (theoretical model, measurement unity, uncertainty analysis); (ii) a resolution improvement of the valence 
metric scale; (iii) addition of arousal assessment to the detection of emotional valence, (iv) combined use of dif-
ferent biosignals (besides EEG); (v) a deep analysis on interactions among the number of electrodes, classifiers, 
and the accuracy; and (vi) experiments on different processing strategies: in this study, the binary nature of the 
problem enhanced the classification performances of the k-NN. In future works aimed at increasing the metric 
scale resolution, other methods may result more effective (SVM, full-connected neural networks, Convolutional 
Neural  Networks62 etc.) for example in a regression-based perspective.
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