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Abstract We relate the existence of some surfaces of general type and maximal Albanese
dimension to the existence of some monodromy representations of the braid groupB2(C2) in
the symmetric group Sn . Furthermore, we compute the number of such representations up to
n = 9, and we analyze the cases n ∈ {2, 3, 4}. For n = 2, 3 we recover some surfaces with
pg = q = 2 recently studied (with different methods) by the author and his collaborators,
whereas for n = 4 we obtain some conjecturally new examples.
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0 Introduction

The classification of surfaces S of general type with χ(OS) = 1, i.e. pg(S) = q(S), is
currently an active area of research, see for instance the survey paper [1]. For these surfaces,
[2, Théorème 6.1] implies pg ≤ 4, and the cases pg = q = 4 and pg = q = 3 are nowadays
completely described, see [3–5].

Regarding the case pg = q = 2, a complete classification has been recently obtained
when K 2

S = 4, see [6,7]. In fact, these are surfaces on the Severi line K 2
S = 4χ(OS); we refer

the reader to the aforementioned papers and the references contained therein for a historical
account on the subject and more details.
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108 F. Polizzi

By contrast, the classification in the case pg = q = 2, K 2
S ≥ 5 is still missing, albeit

some interesting examples were recently discovered, see [8–13].
The purpose of this note is to show how monodromy representations of braid groups can

be concretely applied to the fine classification of surfaces with pg = q = 2 and maximal
Albanese dimension, allowing one to rediscover old examples and to find new ones.

The idea is to consider degree n, generic covers of Sym2(C2), the symmetric square of a
smooth curve of genus 2, simply branched over the diagonal δ. In fact, if such a cover exists,
then it is a smooth surface S with

χ(OS) = 1, K 2
S = 10 − n,

see Theorem 1. Furthermore, if pg(S) = q(S) = 2 then the Albanese variety Alb(S) is
isogenous to the Jacobian variety J (C2) (Proposition 7) and, for a general choice of C2, the
surface S contains no irrational pencils (Proposition 8).

On the other hand, by the Grauert–Remmert extension theorem (see [14], [15, XII.5.4],
[16]) and the GAGA principle (see [17], [18, Chapter 6]), isomorphism classes of degree n,
connected covers

f : S → Sym2(C2),

branched at most over δ, correspond to group homomorphisms

ϕ : π1(Sym
2(C2) − δ) → Sn

with transitive image, up to conjugacy in Sn . The group π1(Sym2(C2) − δ) is isomorphic to
B2(C2), the braid group on two strings on C2, whose presentation can be found for instance
in [19]; furthermore, our condition that the branching is simple can be translated by requiring
that ϕ(σ) is a transposition, where σ denotes the homotopy class in Sym2(C2) − δ of a
topological loop in Sym2(C2) that “winds once” around δ.

A group homomorphism B2(C2) → Sn satisfying the requirements above will be called
a generic monodromy representation of B2(C2), see Definition 3. By using the Computer
Algebra System GAP4 (see [20]) we computed the number of generic monodromy represen-
tations for 2 ≤ n ≤ 9, see Theorem 2. In particular, such a number is zero for n ∈ {5, 7, 9},
so there exist no generic covers in these cases, see Corollary 2. For the reader’s convenience,
we included an Appendix containing the short script.

The previous discussion can be now summarized as follows.

Theorem Let f : S → Sym2(C2) be a generic cover of degree n and whose branch locus
is the diagonal δ. Then S is a surface of maximal Albanese dimension with χ(OS) = 1 and
K 2

S = 10 − n. Moreover, if 2 ≤ n ≤ 9 then S is of general type.

The isomorphism classes of generic covers of degree n are in bijective correspondence to
generic monodromy representations ϕ : B2(C2) → Sn, up to conjugacy in Sn . For 2 ≤ n ≤
9, the corresponding number of representations is given in the table below:

n 2 3 4 5 6 7 8 9

Number of ϕ 16 3 · 80 6 · 480 0 15 · 2880 0 28 · 172800 0
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Monodromy representations and surfaces 109

Such results are still far for being conclusive, for at least two reasons:

(1) No attempt has been made here in order to compute the number of generic monodromy
representations ϕ : B2(C2) → Sn for all values of n. In principle, our GAP4 script could
do this, but in practice it is not efficient enough when n is big (the computation in the
case n = 9 already took several hours). Furthermore, it would be desirable to extend our
methods to non-generic representations, i.e. to non-generic covers of Sym2(C2);

(2) Given a generic cover f : S → Sym2(C2), corresponding to a generic monodromy
representation ϕ : B2(C2) → Sn , it is at the moment not clear how to explicitly compute
K 2

S̄
, where S̄ denotes the minimal model of S: in fact, we know no general procedure to

determine whether S contains some (−1)-curves, see Proposition 6.

These are interesting problems that we hope to address in the future.
Let us explain now how this paper is organized. In Sect. 1 we collect some preliminary

results that are needed in the sequel of the work, namely the Grauert-Remmert extension
theorem, the GAGA principle and their corollaries, Bellingeri’s presentation for B2(C2) and
the classification of surfaces with χ(OS) = 1 and maximal Albanese dimension. In Sect. 2
we prove our main results and we make a more detailed analysis of our covers in the cases
n = 2, 3, 4. It turns out that for n = 2 and n = 3 we rediscover some examples recently
studied (using different methods) by the author and his collaborators, see [12,13]; on the
other hand, for n = 4 we conjecture that our construction provides new examples of minimal
surfaces with pg = q = 2, K 2 = 6 and maximal Albanese dimension, that we plan to
investigate in a sequel of this work.

Notation and conventions. We work over the field C of complex numbers. By surface we
mean a projective, non-singular surface S, and for such a surface KS denotes the canonical
class, pg(S) = h0(S, KS) is the geometric genus, q(S) = h1(S, KS) is the irregularity and
χ(OS) = 1 − q(S) + pg(S) is the Euler–Poincaré characteristic.

We say that S is of maximal Albanese dimension if its Albanese map aS : S → Alb(S) is
generically finite onto its image.

If C is a smooth curve, we write J (C) for the Jacobian variety of C .
The symbol Sn stands for the symmetric group on n letters.

1 Preliminaries

1.1 Finite covers and monodromy representations

This subsection deals with the classification of branched covers f : X → Y of projec-
tive varieties via the classification of monodromy representations of the fundamental group
π1(Y − B), where B ⊂ Y is the branch locus of f . The main technical tools needed are the
Grauert-Remmert extension theorem and the GAGA principle, that we recall below.

Proposition 1 (Grauert–Remmert extension theorem) Let Y be a normal analytic space and
Z ⊂ Y a closed analytic subspace such that U = Y − Z is dense in Y . Then any finite,
unramified cover f ◦ : V → U can be extended to a normal, finite cover f : X → Y , and
such an extension is unique up to isomorphisms.

Proof See [14], [15, XII.5.4], [16].

Proposition 2 (GAGA principle) Let X, Y be projective varieties over C, and X an, Y an the
underlying complex analytic spaces. Then
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110 F. Polizzi

(1) every analytic map X an → Y an is algebraic;
(2) every coherent analytic sheaf on X an is algebraic, and its algebraic cohomology coin-

cides with its analytic one.

Proof See [17], [18, Chapter 6].

The two results above imply the following fact concerning extensions of covers of quasi-
projective varieties. With a slight abuse of notation, we write X instead of X an.

Proposition 3 Let Y be a smooth, projective variety over C and Z ⊂ Y be a smooth,
irreducible divisor. Set U = Y − Z. Then any finite, unramified analytic cover f ◦ : V → U
can be extended in a unique way to a finite cover f : X → Y, branched at most over Z.
Moreover, there exists on X a unique structure of smooth projective variety that makes f an
algebraic finite cover.

Proof By Proposition 1, the cover f ◦ : V → U can be extended in a unique way to a finite
analytic cover f : X → Y . Such a cover corresponds to a coherent analytic sheaf of algebras
over the projective variety Y ; now Proposition 2 implies that such a sheaf is algebraic, hence
so are X and f .

Since X is normal and Y is smooth, by the purity theorem ([15, X.3.1]) the branch locus
of f is either empty or coincides with the smooth irreducible divisor Z . In both cases, a local
computation shows that X is a smooth scheme (see [21, Lemma 2.1]), then its underlying
analytic space is a complex manifold, which is compact because it is a finite analytic cover
of the compact manifold Y .

Therefore X is a smooth complete scheme endowed with a finite map f : X → Y onto
the projective scheme Y . If L is an ample line bundle on Y , by [22, Proposition 1.2.13] it
follows that f ∗L is an ample line bundle on X , so X is a smooth projective variety and we
are done.

Corollary 1 Let Y be a smooth projective variety overC and Z ⊂ Y be a smooth, irreducible
divisor. Then isomorphism classes of connected covers of degree n

f : X → Y,

branched at most over Z, are in bijection to group homomorphisms with transitive image

ϕ : π1(Y − Z) → Sn, (1)

up to conjugacy in Sn. Furthermore, f is a Galois cover if and only if the subgroup im ϕ of
Sn has order n, and in this case im ϕ is isomorphic to the Galois group of f .

Proof Set U = Y − Z . By [23, Chapter 8] we know that isomorphism classes of degree
n, connected topological covers f ◦ : V → U are in bijection to conjugacy classes of group
homomorphisms of type (1), and that Galois covers are precisely those such that im ϕ has
order n. Since U is a complex manifold, we can pull-back its complex structure to V , in
such a way that f ◦ becomes an analytic map. Then, by using Proposition 3, we can uniquely
extend f ◦ to a degree n, algebraic finite cover f : X → Y , branched at most over Z and such
that X is smooth and projective. This completes the proof.

The group homomorphism ϕ is called the monodromy representation of the cover f , and
its image im ϕ is called the monodromy group of f . By Corollary 1, if f is a Galois cover
then the monodromy group of f is isomorphic to its Galois group.
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Monodromy representations and surfaces 111

1.2 Braid groups on Riemann surfaces

For more details on the results of this subsection, we refer the reader to [19].
Let Cg be a compact Riemann surface of genus g and P = {p1, . . . , pk} ⊂ Cg a set

of k distinct points. A geometric braid on Cg based at P is a k-ple (ψ1, . . . , ψk) of paths
ψi : [0, 1] → Cg such that

– ψi (0) = pi , i = 1, . . . , k;
– ψi (1) ∈ P, i = 1, . . . , k;
– the points ψ1(t), . . . , ψk(t) ∈ Cg are pairwise distinct for all t ∈ [0, 1].

Definition 1 The braid group on k strings on Cg is the group Bk(Cg) whose elements are
the braids based at P and whose operation is the usual product of paths, up to homotopies
among braids.

It can be shown that Bk(Cg) does not depend on the choice of the setP . Moreover, there
is a group isomorphism

Bk(Cg) 	 π1(Sym
k(Cg) − δ), (2)

where Symk(Cg) denotes the k-th symmetric product of Cg , namely the quotient of the
product (Cg)

k by the natural permutation action of the symmetric group Sk , and δ stands for
the big diagonal in Symk(Cg), namely the image of the set

� = {(x1, . . . , xk) | xi = x j for some i 
= j} ⊂ (Cg)
k .

We are primarily interested in the case g = k = 2.

Proposition 4 The braid group B2(C2) can be generated by five elements

a1, a2, b1, b2, σ

subject to the eleven relations below:
(R2) σ−1a1σ

−1a1 = a1σ
−1a1σ

−1

σ−1a2σ
−1a2 = a2σ

−1a2σ
−1

σ−1b1σ
−1b1 = b1σ

−1b1σ
−1

σ−1b2σ
−1b2 = b2σ

−1b2σ
−1

(R3) σ−1a1σa2 = a2σ
−1a1σ

σ−1b1σb2 = b2σ
−1b1σ

σ−1a1σb2 = b2σ
−1a1σ

σ−1b1σa2 = a2σ
−1b1σ

(R4) σ−1a1σ
−1b1 = b1σ

−1a1σ

σ−1a2σ
−1b2 = b2σ

−1a2σ

(T R) [a1, b−1
1 ][a2, b−1

2 ] = σ 2.

Proof See [19, Theorem 1.2], which provides a finite presentation for the general case
Bk(Cg).

123



112 F. Polizzi

Geometrically speaking, the generators of B2(C2) in the statement of Proposition 4 can
be interpreted as follows. The ai and the bi are the braids that come from the representation
of the topological surface associated with C2 as a polygon of 8 sides with the standard
identification of the edges, whereas σ is the classical braid generator on the disk. In terms of
the isomorphism (2), the generator σ corresponds to the homotopy class in Sym2(C2)− δ of
a topological loop that “winds once around δ”.

1.3 Surfaces of general type with χ(OS) = 1 and maximal Albanese dimension

Let us describe now surfaces with of general type with pg(S) = q(S) and maximal Albanese
dimension.

Proposition 5 Let S be a minimal surface of general type with χ(OS) = 1 and maximal
Albanese dimension. Then we are in one of the following situations:
(1) pg(S) = q(S) = 4, K 2

S = 8 and S = C2 × C ′
2, where C2 and C ′

2 are smooth curves of
genus 2. In this case Alb(S) 	 J (C2) × J (C ′

2) and aS : S → Alb(S) is the product of
the Abel–Jacobi maps of C2 and C ′

2, hence it is an immersion;
(2) pg(S) = q(S) = 3, K 2

S = 6 and S = Sym2(C3), where C3 is a smooth curve of genus
3. In this case aS : S → Alb(S) is birational and its image is a principal polariza-
tion. More precisely, if C3 is not hyperelliptic then aS is an immersion (so its image is
smooth), whereas if C3 is hyperelliptic then aS contracts the unique (−2)-curve on S
corresponding to the g1

2 on C3 (so the image of aS has a rational double point of type
A1);

(3) pg(S) = q(S) = 3, K 2
S = 8 and S = (C2 × C3)/Z2, where C2 is a smooth curve of

genus 2 with an elliptic involution τ2, whereas C3 is a smooth curve of genus 3 with a
free involution τ3 and the cyclic group Z2 acts freely on the product C2 × C3 via the
involution τ2 × τ3. Setting

B = C2/〈τ2〉, W = C3/〈τ3〉
we have g(B) = 1 and g(W ) = 2. Moreover, the projections of C2 ×C3 onto C2 and C3

induce fibrations b : S → B and w : S → W . The singular fibres of b are two double
fibres with smooth support, occurring at the branch points of C2 → B, whereas all the
fibres of w are smooth. Finally, Alb(S) is isogenous to J (B) × J (W );

(4) pg(S) = q(S) = 2 and aS : S → Alb(S) is a generically finite, branched cover.

Proof The fact that S is of maximal Albanese dimension implies q(S) ≥ 2, so [2, Théorème
6.1] yields pg(S) ≤ 4. Thus we must only consider the cases pg(S) = q(S) = 4, pg(S) =
q(S) = 3 and pg(S) = q(S) = 2. The first two possibilities have been classified in [3–5,24],
and they give cases (1), (2), (3); the last possibility gives case (4).

2 Monodromy representations of braid groups and surfaces with
pg = q = 2

2.1 Generic covers of Sym2(C2)

Let C2 be a smooth curve of genus 2 and let Sym2(C2) be its second symmetric product. The
Abel-Jacobi map

π : Sym2(C2) → J (C2)
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Monodromy representations and surfaces 113

is birational, more precisely it is the blow-down of the unique rational curve E ⊂ Sym2(C2),
namely the (−1)-curve given by the unique g1

2 on C2. We have δE = 6, because the curve E
intersects the diagonal δ transversally at the six points corresponding to the six Weierstrass
points of C2. Writing 
 for the numerical class of a theta divisor in J (C2), it follows that
the image D := π∗δ ⊂ J (C2) is an irreducible curve with an ordinary sextuple point and no
other singularities, whose numerical class is 4
 (see [12, Lemma 1.7]).

Using the terminology of [25], we can now give the following

Definition 2 Let f : S → Sym2(C2) be a connected cover of degree n branched over the
diagonal δ, with ramification divisor R ⊂ S. Then f is called generic if

f ∗δ = 2R + R0,

where the restriction f |R : R → δ is an isomorphism and R0 is an effective divisor over
which f is not ramified.

Note that generic covers are never Galois, unless n = 2 (in which case f ∗δ = 2R). Since
δ is smooth, the genericity condition in Definition 2 is equivalent to requiring that the fibre
of f over any point of δ has cardinality n − 1; thus the restriction morphism f |R0

: R0 → δ

is an étale cover of degree n − 2. Setting

� = f ∗δ, Z = f ∗E,

we infer
�2 = nδ2 = −4n, Z2 = nE2 = −n, �Z = n(δE) = 6n. (3)

If we write
α = π ◦ f : S → J (C2),

then α is a generically finite cover of degree n, simply branched over the smooth locus of D
and contracting the curve Z to the unique singular point of D. The case where Z is irreducible
is illustrated in Fig. 1 below.

R

Z E

D

S Sym2(C2)

J(C2)

f

π
α

Fig. 1 The triple covers f and α
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114 F. Polizzi

Theorem 1 Let f : S → Sym2(C2) be a generic cover of degree n and whose branch locus
is the diagonal δ. Then S is a surface of maximal Albanese dimension with

χ(OS) = 1, K 2
S = 10 − n.

Moreover, if 2 ≤ n ≤ 9 then S is of general type.

Proof The canonical class of S is given by

KS = f ∗KSym2(C2)
+ R = f ∗E + R = Z + R. (4)

The curve R is smooth of genus 2, so the genus formula and (4) yield

2 = 2g(R) − 2 = R(R + KS) = R(2R + Z) = 2R2 + RZ .

On the other hand, by using the projection formula we can write

RZ = R · f ∗E = f∗ R · E = δE = 6,

hence R2 = −2. Thus can find K 2
S , in fact

K 2
S = (Z + R)2 = Z2 + 2RZ + R2 = −n + 12 − 2 = 10 − n. (5)

Now we have to compute χ(OS). Squaring both sides of 2R + R0 = � yields

4R R0 + (R0)
2 = −4R2 + �2 = 8 − 4n. (6)

Moreover, again by the projection formula we infer

�R0 = f ∗δ · R0 = δ · f∗ R0 = δ · (n − 2)δ = 8 − 4n. (7)

Combining (6) with (7), we get

0 = 4R R0 + (R0)
2 − �R0 = (4R + R0 − �)R0 = 2R R0.

Therefore the effective curves R and R0 are disjoint. This in turn allows us to compute c2(S);
in fact, writing χtop for the topological Euler number and recalling that f |R0

: R0 → δ is
étale, by additivity we obtain

c2(S) = χtop(S) = χtop(S − R − R0) + χtop(R) + χtop(R0)

= n · χtop(Sym
2(C2) − δ) + (−2) + (−2)(n − 2)

= 3n − 2 − 2(n − 2) = n + 2. (8)

By using (5) and (8) together with Noether formula, we get χ(OS) = 1.
The surface S is of maximal Albanese dimension because, by the universal property of the

Albanese map, the surjective morphism α : S → J (C2) factors through aS : S → Alb(S),
so the image of aS has dimension 2. In particular we have q(S) ≥ 2. If 2 ≤ n ≤ 9 then S is
irregular with K 2

S > 0, hence of general type by [24, Proposition X.1].

The values of n ∈ {2, . . . , 9} for which generic covers do exist will be given in Theorem
2. We have at the moment no general method to determine whether the surface S described
in Theorem 1 is minimal or not. A partial result about locating its exceptional curves is the
following

Proposition 6 The curve Z = f ∗E is reducible for n > 4. Moreover, all (−1)-curves of S,
if any, are components of Z.
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Monodromy representations and surfaces 115

Proof By computing the arithmetic genus of Z , we obtain

pa(Z) = Z(Z + KS)

2
+ 1 = Z(2Z + R)

2
+ 1 = −n + 4. (9)

For n > 4 this quantity is negative, hence Z is reducible and the first claim follows. The
second claim is an immediate consequence of the fact that the only rational curve in Sym2(C2)

is E .

Remark 1 In the cases n = 2 and n = 3 the curve Z is actually irreducible and S is minimal,
see Sects. 2.2 and 2.3. The irreducibility of Z for n = 4 is still an open problem, see Sect.
2.4.

Let us consider now the case q(S) = 2.

Proposition 7 Let S be as inTheorem 1, and assume in addition that q(S) = 2. ThenAlb(S)

is isogenous to J (C2), more precisely there exists an isogeny β : Alb(S) → J (C2) such that
α = β ◦ aS. In particular, if n is prime then aS coincides with α, up to automorphisms of
J (C2).

Proof Sinceq(S) = 2, theAlbanese varietyAlb(S) is an abelian surface, so aS : S → Alb(S)

is generically finite and, by the universal property, there is an isogeny β : Alb(S) → J (C2)

such that the following diagram commutes:

S
aS

α

Alb(S)

β

J (C2).

(10)

In particular, degβ divides n. If n is prime, since S is not birational to an abelian surface
(recall thatχ(OS) = 1) we get degβ = 1; this means that β is a birational morphism between
abelian surfaces, hence an isomorphism.

Recall that an irrational pencil (or irrational fibration) on a smooth, projective surface is
a surjective morphism with connected fibres over a curve of positive genus.

Proposition 8 Let S be as in Theorem 1 and assume that q(S) = 2. If φ : S → W is an
irrational pencil on S, then g(W ) = 1. Moreover, the general surface S contains no irrational
pencils at all.

Proof We borrow the following argument from [12, Proposition 1.9]. Since q(S) = 2, we
have either g(W ) = 1 or g(W ) = 2. The latter case must be excluded: otherwise, using the
embedding W ↪→ J (W ) and the universal property, we would obtain a morphism of abelian
surfaces Alb(S) → J (W ) with image isomorphic to the genus 2 curve W , contradiction.
Then g(W ) = 1 and Alb(S) must be a non-simple abelian surface. On the other hand, by
Proposition 7 we know that Alb(S) is isogenous to J (C2), and the latter surface is simple for
a general choice of the curve C2, see [26, Theorem 3.1]. So, for a general choice of S, the
Albanese variety Alb(S) is also simple and there are no irrational pencils on S.

We are now ready to apply the theory developed in Sect. 1.1 in order to produce generic
covers f : S → Sym2(C2).
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116 F. Polizzi

Definition 3 A generic monodromy representation of the braid group B2(C2) is a group
homomorphism

ϕ : B2(C2) → Sn

with transitive image and such that ϕ(σ) is a transposition.

Generic covers and generic monodromy representations are related by the following

Theorem 2 Isomorphism classes of generic covers of degree n

f : S → Sym2(C2),

with branched locus δ, are in bijective correspondence to generic monodromy representations

ϕ : B2(C2) → Sn,

up to conjugacy in Sn. For 2 ≤ n ≤ 9, the number of such representations is given in the
table below:

n 2 3 4 5 6 7 8 9

Number of ϕ 16 3 · 80 6 · 480 0 15 · 2880 0 28 · 172800 0

Proof The first part of the statement is an immediate consequence of Corollary 1 and isomor-
phism (2). The computation of number ofmonodromy representationswithϕ(σ) = (1 2)was
done by using a short GAP4 script, that the reader can find in the Appendix. The total number
of representations is obtained by multiplying such a number by the number of transpositions
in Sn , which is n(n − 1)/2.

As an immediate consequence of Theorem2,we can now state the following non-existence
result.

Corollary 2 Let n ∈ {5, 7, 9}. Then there exist no surfaces with pg = q = 2 whose
Albanese map is a generically finite, degree n cover of J (C2) simply branched over the
smooth locus of the curve D.

Proof If n ∈ {5, 7, 9}, by Theorem 2 there are no generic covers f : S → Sym2(C2) of
degree n and branched over δ.

Finally, let us describe the situation in more details when n ∈ {2, 3, 4}.
2.2 The case n = 2

In this case we are looking for generic monodromy representations

ϕ : B2(C2) → S2 = {(1), (1 2)}.
Since B2(C2) is generated by five elements a1, a2, b1, b2, σ and necessarily ϕ(σ) = (1 2),
we immediately see that there are 24 = 16 possibilities for ϕ. The group S2 is abelian, so
there is no conjugacy relation to consider and we get sixteen isomorphism classes of double
covers f : S → Sym2(C2), branched over δ and with

χ(OS) = 1, K 2
S = 8.
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Monodromy representations and surfaces 117

These covers correspond to the sixteen square roots of δ in the Picard group of Sym2(C2);
all of them give minimal surfaces by Proposition 6, since Z is a smooth, irreducible curve of
genus 2. One cover coincides with the natural projection f : C2 × C2 → Sym2(C2), in fact

pg(C2 × C2) = q(C2 × C2) = 4, KC2×C2 = 8.

We claim that the remaining fifteen covers are surfaces with

pg(S) = q(S) = 2, K 2
S = 8.

Indeed, otherwise, pg(S) = q(S) = 3 and S would belong to case (3) of Proposition 5,
in particular it would admit an irrational pencil φ : S → W with g(W ) = 2, contradicting
Proposition 8. By Proposition 7, the Albanese map of S is generically finite of degree 2 onto
J (C2).

These surfaces are studied in [13, Section 2].

2.3 The case n = 3

In this case we are looking for generic monodromy representations

ϕ : B2(C2) → S3,

up to conjugacy in S3.
The output of our GAP4 script shows that if ϕ(σ) = (1 2) there are 80 different choices

for ϕ, so the total number of monodromy representations is 3 · 80 = 240. For every such a
representation we have im ϕ = S3.

The GAP4 script also shows that each orbit for the conjugacy action of S3 on the set
of monodromy representations consists of six elements, and consequently the orbit set has
cardinality 240/6 = 40.

By Theorem 2, this implies that there are 40 isomorphism classes of generic covers
f : S → Sym2(C2) of degree 3 and branched over δ. For all of them, the surface S sat-
isfies

pg(S) = q(S) = 2, K 2
S = 7

and, by Proposition 7, its Albanese map is a generically finite cover of degree 3 onto J (C2).
These surfaces were studied in [12], where it is proved, with different methods, that they are
all minimal (it turns out that Z is a smooth, irreducible curve of genus 1) and lie in the same
deformation class. In fact, their moduli space is a connected, quasi-finite cover of degree 40
of M2, the coarse moduli space of curves of genus 2.

2.4 The case n = 4

In this case we are looking for generic monodromy representations

ϕ : B2(C2) → S4,

up to conjugacy in S4.
The output of our GAP4 script shows that if ϕ(σ) = (1 2) there are 480 different choices

for ϕ, so the total number of monodromy representations is 6 · 480 = 2880. For every such
a representation we have imϕ 	 D8, the dihedral group of order 8.

The GAP4 script also shows that each orbit for the conjugacy action of S4 on the set
of monodromy representations consists of 12 elements, and consequently the orbit set has
cardinality 2880/12 = 240.
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By Theorem 2, this implies that there are 240 isomorphism classes of generic covers
f : S → Sym2(C2) of degree 4 and branched over δ. For all of them, the surface S satisfies

χ(OS) = 1, K 2
S = 6.

We do not know whether the curve Z is irreducible or not. However, we conjecture that, at
least for some of these covers, S is a minimal model with pg(S) = q(S) = 2, and this would
provide new examples of surfaces with these invariants and maximal Albanese dimension.
We will not try to develop this point here, planning to come back to the problem in a sequel
of this paper.
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Appendix: the GAP4 script

This short appendix contains the GAP4 script used in the paper. We explicitly write down the
version for n = 3. For the other cases, it suffices to change the first line n=3 to the desired
value of n.

n:=3;;
G:=SymmetricGroup(n);; t:=0;;
s:=(1,2);;
R:=[];;
for a1 in G do
Ga1:=Centralizer(G, s*a1*s);
for b1 in Ga1 do
Gb1:=Centralizer(G, s*b1*s);
Ga1b1:=Intersection(Ga1, Gb1);
for a2 in Ga1b1 do
Ga2:=Centralizer(G, s*a2*s);
Ga1b1a2:=Intersection(Ga1b1, Ga2);
for b2 in Ga1b1a2 do
H:=Subgroup(G, [s, a1, a2, b1, b2]);
R21 := sˆ(-1)*a1*sˆ(-1)*a1*(a1*sˆ(-1)*a1*sˆ(-1))ˆ(-1);
R22 := sˆ(-1)*a2*sˆ(-1)*a2*(a2*sˆ(-1)*a2*sˆ(-1))ˆ(-1);
R23 := sˆ(-1)*b1*sˆ(-1)*b1*(b1*sˆ(-1)*b1*sˆ(-1))ˆ(-1);
R24 := sˆ(-1)*b2*sˆ(-1)*b2*(b2*sˆ(-1)*b2*sˆ(-1))ˆ(-1);
TR := a1*b1ˆ(-1)*a1ˆ(-1)*b1*a2*b2ˆ(-1)*a2ˆ(-1)*b2*sˆ(-2);
if IsTransitive(H, [1..n])=true and
Order(R21)=1 and
Order(R22)=1 and
Order(R23)=1 and
Order(R24)=1 and
Order(TR)=1 then
AddSet(R, [s, a1, b1, a2, b2]);
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t:=t+1; Print(IdSmallGroup(H), ‘‘ ’’); Print(t, ‘‘\n’’);
fi; od; od; od; od;
Size(R);
H:=Centralizer(G, (1, 2));;
T:=OrbitsDomain(H, R, OnTuples);;
Size(T);
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