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For kernels ν which are positive and integrable we show that 
the operator g �→ Jνg =

∫ x

0 ν(x − s)g(s)ds on a finite time 
interval enjoys a regularizing effect when applied to Hölder 
continuous and Lebesgue functions and a “contractive” effect 
when applied to Sobolev functions. For Hölder continuous 
functions, we establish that the improvement of the regularity 
of the modulus of continuity is given by the integral of the 
kernel, namely by the factor N(x) =

∫ x

0 ν(s)ds. For functions 
in Lebesgue spaces, we prove that an improvement always 
exists, and it can be expressed in terms of Orlicz integrability. 
Finally, for functions in Sobolev spaces, we show that the 
operator Jν “shrinks” the norm of the argument by a factor 
that, as in the Hölder case, depends on the function N
(whereas no regularization result can be obtained).
These results can be applied, for instance, to Abel kernels and 
to the Volterra function I(x) = μ(x, 0, −1) =

∫∞
0 xs−1/Γ(s)ds, 
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the latter being relevant for instance in the analysis of the 
Schrödinger equation with concentrated nonlinearities in R2.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many mathematical models of physical phenomena deal with systems of Volterra 
integral equations with singular kernels (e.g. [19,22,26]). In this paper, motivated by some 
nonlinear Volterra integral equations arising in Quantum Mechanics, we investigate the 
properties of convolution operators with kernels possibly more singular than the more 
known Abel ones. Namely, given a generic positive, locally integrable function ν, we 
study the action of the operator g �→ Jνg defined by

(Jνg)(x) :=
x∫

0

ν(x− s)g(s)ds, x ≥ 0, (1)

on intervals [0, T ], with T > 0 (this assumption being understood in the whole paper).
Precisely, we prove its regularizing effect in Hölder and Lebesgue spaces and its 

“contractive” effect in Sobolev spaces (where by “contractive” we mean that the Sobolev 
norm of Jνg on [0, T ] can be estimated by the norm of g times a constant that gets 
smaller as T → 0).

It is also worth highlighting that the assumption of local integrability of ν is the 
minimum requirement so that definition (1) makes sense in general. In fact, the aim of 
the paper (even though some results will require additional hypothesis) is to work with 
the least set of assumptions that are necessary in order to detect remarkable effects from 
the application of the operator Jν .

A particular relevance in applications is acquired by the case

ν(x) = I(x) :=
∞∫
0

xs−1

Γ(s) ds (2)

(Fig. 1), where the operator Jν reads

(Jνg)(x) = (Ig)(x) :=
x∫

0

I(x− s)g(s)ds. (3)

We observe that, if we denote by μ(x, σ, α) the Volterra functions defined by

μ(x, σ, α) :=
∞∫

xα+ssσ

Γ(α + s + 1)Γ(σ + 1)ds,

0
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Fig. 1. The plot of I(x) is in black, the plot of the first order of the asymptotic expansion of I(x) around 0 
is dotted.

then I(x) coincides with μ(x, 0, −1), which is the so-called Volterra function of order −1
(see [14], Section 18.3), that is discussed in Section 2.

In addition, recalling that a kernel m ∈ L1(0, T ) is said to be a Sonine kernel if it 
is a divisor of the unit with respect to the convolution operation, that is, if there exists 
another kernel � ∈ L1(0, T ) such that

x∫
0

�(x− s)m(s)ds = 1, for a.e. x ∈ [0, T ],

then, one can prove that I is a Sonine kernel, with �(x) = −γ− log x, γ representing the 
Euler–Mascheroni constant (see Eq. (15)). The class of Sonine kernels is wide and there 
are many papers (see e.g. [36] and references therein), starting with the pioneering one by 
Sonine ([35]), where embedding theorems for integral operators with kernels displaying 
singularities at the origin of the type

a(x)xα−1 logm
(

2T
x

)
, 0 < α < 1, −∞ < m < ∞,

are discussed. However, we stress that the results proved in the present paper are more 
general since they take into account also kernels that are more singular in a neighborhood 
of the origin, such as, indeed, the Volterra function I, whose asymptotic expansion near 
0 is given by 1

x log2(1/x) (see (8)).
It is also worth mentioning that a first discussion on the operator I is present in 

[32], whereas similar integral operators, but with more regular kernels, have been inves-
tigated more recently in [8,31]. More in detail, in [8] it is analyzed the case of a certain 
class of almost decreasing Sonine kernels in terms of weighted generalized Hölder spaces, 
while in [31] an “inverse” operator is discussed within the framework of Lp spaces. We 
also recall that in [18] some relevant features of Volterra functions are pointed out, 
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such as asymptotic expansions and some striking relations with the Ramanujan inte-
grals.

The interest of the operator I is mainly due to its applications in Quantum Mechanics, 
and precisely in the study of the Schrödinger equation with nonlinear point interactions 
in R2.

We recall briefly that a Schrödinger equation with a linear point interaction with 
strength α ∈ R, placed at y ∈ R2, is

i∂tψ(t) = Hαψ(t),

where Hα is a differential operator with domain

D(Hα) =
{
ψ ∈ L2(R2) : ∀λ > 0, ψ = φλ + q G2,λ(· − y), φλ ∈ H2(R2), q ∈ C,

lim
x→y

φλ(x) =
(
α + 1

2π log
√
λ

2 + γ
2π

)
q

}
(G2,λ denoting the Green’s function of (−Δ + λ) in R2) and action

(Hα + λ)ψ = (−Δ + λ)φλ, ∀ψ ∈ D(Hα).

For a complete discussion on the solution of this equation through the theory of self-
adjoint extension, we refer the reader to [5]. In addition, it is well known that, given an 
initial datum ψ0 ∈ D(Hα), the solution of the associated Cauchy problem reads

ψ(t,x) = (U0(t)ψ0)(x) + i

2π

t∫
0

U0(t− s;x − y) q(s)ds,

where U0(t) is the propagator of the free Schrödinger equation in R2 (with integral 
kernel U0(t; |x|) = e−

|x|2
4it /2it) and q(t) (with a little abuse of notation that is usual in 

the literature) is a complex-valued function satisfying the so-called charge equation

q(t) +
t∫

0

I(t− s)
(
4πα− log 4 + 2γ − iπ

2
)
q(s)ds = 4π

t∫
0

I(t− s)(U0(s)ψ0)(y)ds. (4)

Now, a nonlinear point interaction arises when one assumes that the strength of the 
interaction depends in fact on the function q(t), and in particular when one sets α =
α0|q(t)|2σ (α0 ∈ R\{0}, σ > 0) in (4), thus obtaining

q(t) +
t∫
I(t− s)

(
4πα0|q(t)|2σ − log 4 + 2γ − iπ

2
)
q(s)ds
0
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= 4π
t∫

0

I(t− s)(U0(s)ψ0)(y)ds (5)

(see [9,10]). Since in the nonlinear case no theory of self-adjoint extensions is available, 
the relevance of the operator I is clear: the well-posedness of the associated Cauchy 
problem is strictly related to the study of the existence and uniqueness of solutions 
of (5), which strongly depends on the properties of I.

Remark 1.1. Even though the application presented above concerns complex-valued func-
tions, this paper only manages real-valued functions. However, one can check that the 
results of Section 5 (which are actually required in [9,10]) can be easily generalized to 
complex-valued functions.

Another topical example of integral kernels that are included in our general framework 
are the well known Abel kernels, which correspond to the choice

ν(x) = xα−1

Γ(α) , 0 < α < 1, (6)

in (1). These ones are very important in the theory of fractional integration and general-
ized differentiation ([19,32]) and, again, in Quantum Mechanics. In the study of nonlinear 
point interactions in R and R3, indeed, the resulting integral equations present the ker-
nel (6), with α = 1/2, in place of I (see [1–3,6,7]).

Finally, we describe briefly the main results of the paper. They concern, as we told at 
the beginning, the properties of the operator Jν in Hölder spaces, Lp spaces and Sobolev 
spaces.

Preliminarily, since it is crucial in the following, we define the integral function of the 
kernel ν

N(x) =
x∫

0

ν(s)ds, x > 0. (7)

Since ν is always supposed positive and locally integrable, it turns out that N is a 
positive, increasing and absolutely continuous function with N(x) → 0 as x → 0.

In the case of Hölder spaces, it is well known ([19], Theorem 4.2.1, p. 70) that when the 
kernel is ν(t) = tα−1, 0 < α < 1, the operator Jν transforms C0,β functions into C0,α+β

ones, improving this way the regularity of the modulus of continuity. As a consequence 
of our main result of Section 3 (Theorem 3.1), we will see that more generally the 
improvement is at least given by the integral function of the kernel: the phenomenon 
that the power α− 1 gives as improvement the exponent α is therefore true also for any 
locally integrable kernel which is assumed to be just equivalent to a decreasing function 
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in a neighborhood of the origin and not blowing too much (derivative bounded above, 
for instance) in its domain.

In the case of Lp spaces, it is well known ([19], Theorem 4.1.4, p. 67) that when 
the kernel is ν(t) = tα−1, the operator Jν transforms Lp functions, 1 < p < 1/α, into 
Lp/(1−αp) functions. To a minor integrability of the kernel there corresponds a minor gain 
of integrability for Jν , and apparently the gain disappears when the kernel is just L1. As 
a consequence of our main result of Section 4 (Theorem 4.1), we will show that any kernel 
locally integrable (again, we assume that it is equivalent to a decreasing function in a 
neighborhood of the origin) gives an improvement of integrability, measured in terms 
of Orlicz spaces. The improvement is strictly linked to the Orlicz integrability of the 
kernel, hence it always exists: a classical, remarkable theorem in Orlicz spaces theory 
(see e.g. [24], p. 60) tells that any function L1 is always in some Orlicz space strictly 
contained in L1. Furthermore, in the case p = ∞, we show (Proposition 4.2), under the 
unique assumption of local integrability, that Jν transforms L∞ functions in continuous 
functions and that the L∞ norm of Jνg on [0, T ] is controlled by the norm of g times 
N(T ).

Finally, in the case of Sobolev spaces, it is well known ([19], Theorem 4.2.2, p. 73) 
that when the kernel is ν(t) = tα−1, the operator Jν transforms W θ,1 functions, with 
0 < θ < 1 −α, in W θ+α−ε,1 functions. Analogous results for W θ,p functions are discussed 
in [3,23]. In this case, the minor integrability of the kernel yields a minor gain in the 
Sobolev index, which disappears when the kernel is just L1 (also the preservation of 
the index is not straightforward). As a consequence of our main result of Section 5
(Theorem 5.1), we will show that when p = 2, provided θ �= 1/2, the Sobolev index 
is in fact preserved and the Sobolev norm of Jνg is bounded, up to a multiplicative 
constant, by the norm of g times N(T ). Furthermore, we will prove that (almost) the 
same result holds for H1/2 functions, but just in the case ν = I (Theorem 5.2), and for 
W 1,1 functions (Theorem 5.3).

2. The Volterra kernel I

Since the case of a kernel equal to the Volterra function I (defined by (2), Fig. 1) is 
the most relevant in the applications, it is worth stressing some basic features of I. In 
this way one can easily see that the abstract results established in the following sections 
can be actually applied to this kernel.

First, we recall (see [14,32]) that I is analytic for t > 0 and that

I(x) = 1
x log2 ( 1

x

) [1 + O(|log x|−1)
]
, as x → 0

I(x) = ex + O(x−1), as x → +∞.

(8)

Consequently, the first expansion shows that I ∈ L1
loc(R+) and that I /∈ Lp

loc(R+), for 
any p > 1.
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Also the derivative and the integral function of I will play a crucial role in the sequel. 
Hence, recalling (see again [14,32])

d

dx
μ(x, 0, n) = μ(x, 0, n− 1), n ∈ Z, n ≤ 0, (9)

and I(x) := μ(x, 0, −1), we stress that

d

dx
I(x) = μ(x, 0,−2) =

x→0

1
x2 log2 ( 1

x

) [−1 + O(|log x|−1)
]

(10)

and that

d

dx
μ(x, 0, 0) = I(x). (11)

Furthermore, we can state the following lemma.

Lemma 2.1. The function I is convex on R+ and admits a positive minimum.

Proof. The second part is immediate since I is continuous, positive and coercive by (8). 
On the other hand, in order to prove the second part, it is sufficient to show d2

dx2 I(x) ≥ 0; 
namely, by (9), that d3

dx3μ(x, 0, 0) ≥ 0. Now, following [18] (Eq. (3.1)) and [20], we find 
that

μ(x, 0, 0) = ex −R(x), where R(x) :=
∞∫
0

e−sx

s(log2 s + π2)
ds

denotes the Ramanujan function (Fig. 2). Hence, d3

dx3μ(x, 0, 0) = ex− d3

dx3R(x) and, since 
R is completely monotonic (i.e., for every k > 0, R(k) does exist and (−1)kR(k) ≥ 0), 
this entails that d3

dx3μ(x, 0, 0) ≥ 0 and thus that I is convex. �
It is also convenient to introduce the function

N (x) =
x∫

0

I(s)ds, x ≥ 0, (12)

(Fig. 3). By the properties of I, we see that N is positive, increasing and absolutely 
continuous on bounded intervals. Moreover, N (x) → 0 as x → 0, and precisely

N (x) = 1
log

( 1
x

) + O(| log x|−2), as x → 0. (13)
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Fig. 2. The plot of R(x).

Fig. 3. Plot of N (x) around zero.

Remark 2.1. One easily sees that, as one sets ν = I in (7), N is equal to N . On the 
other hand, from (9) one also notes that N coincides, up to an additive constant, with 
μ(·, 0, 0).

Finally, we point out a relevant property of the operator I defined by (3), which is 
strictly connected to the fact that I is a Sonine kernel. First, define the integral operator

(Φg)(x) :=
x∫

0

φ(x− s)g(s)ds, where φ(x) = −γ − log x.

Then, one notes that, as φ ∈ L1(0, T ), Φ is well defined for each function g ∈ L1(0, T ). 
In addition, one can prove the following result.

Proposition 2.1. If g ∈ L1(0, T ), then
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(
Φ(Ig)

)
(x) =

(
I(Φg)

)
(x) =

x∫
0

g(s)ds, ∀x ∈ [0, T ].

Proof. We first observe that one has

x∫
0

I(x− s)φ(s)ds = 1. (14)

In [32], Lemma 32.1, it is indeed claimed that (setting α = 1, h = 0 therein)

x∫
0

(log s− ψ(1)) d

dx
μ(x− s, 0, 0)ds = −1, (15)

with ψ(1) = −γ, and since from (11) d
dxμ(x, 0, 0) = I(x), (14) is proved.

Now, in the expression

(
I(Φg)

)
(x) =

x∫
0

x−s∫
0

I(s)φ(x− s− σ)g(σ)dσ ds,

we exchange the order of the integration, since

x∫
0

x−s∫
0

I(s)φ(x− σ − s)g(σ)dσ ds +
x∫

0

x−σ∫
0

I(s)φ(x− σ − s)g(σ)ds dσ =

=
x∫

0

x∫
0

I(s)φ(|x− σ − s|)g(σ)ds dσ = 2
x∫

0

x−s∫
0

I(s)φ(|x− σ − s|)g(σ)dσ ds,

and using (14), we conclude that

(
I(Φg)

)
(x) =

x∫
0

x−σ∫
0

I(s)φ(x− σ − s)g(σ)ds dσ =
x∫

0

g(σ)dσ.

Finally, given that an easy change of variable shows 
(
Φ(Ig)

)
(x) =

(
I(Φg)

)
(x), the proof 

is complete. �
Remark 2.2. We note that, in view of Theorem 5.3, it is

d

dx

(
Φ(Ig)

)
(x) = d

dx

(
I(Φg)

)
(x) = g(x).
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3. Regularization in Hölder spaces

Let 0 < τ0 < ∞ and let ν, ν̃ be absolutely continuous and positive in ]0, τ0]. We say 
that ν, ν̃ are equivalent if there exist two positive constants c1, c2 such that

c1ν(x) ≤ ν̃(x) ≤ c2ν(x) ∀x ∈ ]0, τ0].

Of course any function equivalent to ν in ]0, τ0] is of type bν, where b = b(·) is absolutely 
continuous in ]0, τ0] and such that

0 < b− ≤ b(x) ≤ b+ < ∞ ∀x ∈ ]0, τ0]. (16)

The statements of this section hold for certain functions ν which are decreasing in 
intervals of the type (0, τ0) and, more generally, they hold for functions equivalent to 
decreasing functions in intervals of the type (0, τ0). For the sake of simplicity, the func-
tions ν in the statements will be always assumed equivalent to decreasing functions in 
intervals of the type (0, τ0), and the corresponding decreasing functions will be written 
as products bν, where b = b(·) is an absolutely continuous function in ]0, τ0] satisfying 
(16).

Lemma 3.1. Let 0 < β < 1, and let ν ∈ AC(]0, T ]) ∩ L1(0, T ) be positive and equivalent 
to a decreasing function in (0, τ0) for some 0 < τ0 ≤ T . If

x → 1
xβ

x∫
0

b(s)ν(s)ds ↘ in (0, τ0), (17)

then

ν(ετ)ε
N(ε) ≤ c (b(·), ν(·), T ) τβ−1 ∀ 1 < τ <

T

ε
, ∀ 0 < ε < T, (18)

where N is defined by (7).

Remark 3.1. Inequalities coming from assumptions of monotonicity of ratios between 
functions and powers are very well known among researchers working in Orlicz spaces. 
Some proofs of such inequalities work also without the assumption of convexity (the 
reader may compare this lemma e.g. with Theorem 3 in [30] or with the results in 
Section 3 of [27]), however, the main feature of (18) is that it has been obtained from 
assumptions of monotonicity which hold only in a neighborhood of the origin and not in 
the whole domain of the functions involved (where, however, at least a boundedness is 
required; this assumption appears implicitly in the hypothesis of continuity which holds 
until the endpoint T ).
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Proof. We preliminarily note that, since bν is decreasing in (0, τ0),

ν(x) ≤ 1
b−

b(x)ν(x) � 1
b−

· 1
x

x∫
0

b(s)ν(s)ds ≤ b+

b−
N(x)
x

∀x ∈ (0, τ0]. (19)

Let 0 < ε < T , 1 < τ <
T

ε
. If ετ � τ0, by (19) and (17) respectively,

ν(ετ) ε
N(ε) � b+

b−
N(ετ)
ε τ

ε

N(ε) = b+

b−
N(ετ)
(ε τ)β

(ε τ)β

τ N(ε)

�
(
b+

b−

)2
N(ε)
εβ

(ετ)β

τ N(ε) =
(
b+

b−

)2

τβ−1 (20)

and, if τ0 < ετ < T , 0 < ε � τ0 then again by (17), N(ε)
εβ

� b−

b+
N(τ0)
τβ0

and therefore, 

setting ν+ = max
[τ0,T ]

ν,

ν(ετ) ε
N(ε) � ν+ε1−β εβ

N(ε) � b+

b−
ν+

(
T

τ

)1−β
τβ0

N(τ0)
= b+

b−
ν+T 1−βτβ0

N(τ0)
τβ−1

≤ b+

b−
ν+T

N(τ0)
τβ−1. (21)

Finally, if τ0 < ετ < T , ε > τ0 then, since ν > 0 implies that N is increasing,

ν(ετ) ε
N(ε) � ν+ε1−β εβ

N(ε) � ν+
(
T

τ

)1−β (ε τ)β

N(τ0)
<

ν+T 1−βT β

τ1−β N(τ0)
= ν+ T

N(τ0)
τβ−1. (22)

From (20), (21), (22), we get (18). �
The following statement is an immediate consequence of Lemma 3.1.

Corollary 3.1. In the same assumptions of Lemma 3.1, for any α < 1 − β it is

T
ε∫

1

(τ + 1)α−1 ν(ετ)ε
N(ε) dτ ≤ c (b(·), ν(·), T )

T
ε∫

1

(τ + 1)α−1τβ−1dτ

≤ c (b(·), ν(·), T, α + β) < ∞

uniformly in ε, 0 < ε < T .

The next lemma is trivially true for decreasing functions ν (see the CASE (i) of the 
proof), and it provides a version of the inequality in case of functions which are decreasing 
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only in a neighborhood of the origin (however, as in the remark above, one can see that, 
again, an assumption of boundedness has been made implicitly).

Lemma 3.2. If ν ∈ AC(]0, T ]) ∩L1(0, T ) is positive and equivalent to a decreasing function 
in (0, τ0) for some 0 < τ0 ≤ T , then

y∫
x

ν(s)ds ≤ c (b(·), ν(·), T )
y−x∫
0

ν(s)ds ∀x, y ∈ (0, T ), y2 ≤ x < y. (23)

Proof. We examine the three cases

(i) x < y ≤ τ0
(ii) τ0 ≤ x < y ≤ T

(iii) x < τ0 < y ≤ T

CASE (i): Since bν is decreasing in (0, τ0),

y∫
x

ν(s)ds =
y−x∫
0

ν(s + x)ds ≤ b+

b−

y−x∫
0

ν(s)ds ∀x, y ∈ (0, τ0),
y

2 ≤ x < y.

CASE (ii): We have

y∫
x

ν(s)ds ≤ ν+(y − x)

= ν+∫ y−x

0 ν(s)ds
(y − x)

y−x∫
0

ν(s)ds ∀x, y ∈ (τ0, T ), y2 ≤ x < y, (24)

where ν+ = max
[τ0,T ]

ν.

There are two possibilities:

(ii)1 y − x ≤ τ0
(ii)2 y − x > τ0

In the case (ii)1, since bν is decreasing in (0, τ0),

y−x∫
0

ν(s)ds ≥ b−

b+
ν(τ0)(y − x)

and therefore from (24)
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y∫
x

ν(s)ds ≤ b+

b−
ν+

ν(τ0)

y−x∫
0

ν(s)ds ∀x, y ∈ (τ0, T ), y2 ≤ x < y;

in the case (ii)2, setting ν− = min
]0,T ]

ν > 0,

y−x∫
0

ν(s)ds ≥ τ0ν
−

and then, using y − x ≤ y/2 ≤ T/2, from (24) we get

y∫
x

ν(s)ds ≤ ν+

τ0ν−
T

2

y−x∫
0

ν(s)ds ∀x, y ∈ (τ0, T ), y2 ≤ x < y.

CASE (iii): We have

y∫
x

ν(s)ds =
τ0∫
x

ν(s)ds +
y∫

τ0

ν(s)ds

and applying CASE (i) with y replaced by τ0 and CASE (ii) with x replaced by τ0,

y∫
x

ν(s)ds ≤ b+

b−

τ0−x∫
0

ν(s)ds + max
{
b+

b−
ν+

ν(τ0)
,
ν+T

2τ0ν−

} y−τ0∫
0

ν(s)ds.

Since in our case τ0 < y, it is τ0 − x < y − x, hence the first term can be estimated by 
the right hand side of (23); similarly, since x < τ0, it is y − τ0 < y − x and the same 
conclusion holds for the second term. �

In next theorem we are going to consider an assumption on ν stronger (as we are going 
to see) with respect to that one of Lemma 3.1: in the case b ≡ 1 (a similar digression can 
be done in the general case, replacing ν by bν) we will assume that the positive function 
ν ∈ AC(]0, T ]) ∩ L1(0, T ) is such that x → x1−βν(x) is decreasing in (0, τ0) for some 
0 < τ0 ≤ T , 0 < β < 1 − α, where α is a given number in (0, 1). It is easy to verify that 
this latter assumption implies that the function N , defined by (7), is such that

N(x)
xβ

↘ in (0, τ0),

and also that ν is decreasing in (0, τ0) (because ν(x) = xβ−1 · x1−βν(x) is product of 
positive decreasing functions).
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Let us verify the first assertion. Since x → x1−βν(x) is decreasing in (0, τ0), it is (note 
that, since also ν is absolutely continuous, their derivatives exist a.e.)

σ
d

dσ
ν(σ) � (β − 1)ν(σ) for a.e. σ ∈ (0, τ0),

hence, integrating the above inequality in (ε, x), where 0 < ε < x < τ0, and noting that 
σν(σ) is absolutely continuous too, we have

xν(x) − εν(ε) =
x∫

ε

σ
d

dσ
ν(σ)dσ +

x∫
ε

ν(σ)dσ

≤ (β − 1)
x∫

ε

ν(σ)dσ +
x∫

ε

ν(σ)dσ = β

x∫
ε

ν(σ)dσ.

If we let ε → 0, since ν is decreasing, it is

0 < εν(ε) ≤
ε∫

0

ν(σ)dσ → 0,

and therefore we get

xν(x) ≤ βN(x) ∀x ∈ (0, τ0),

from which the assertion follows.
On the other hand, the fact that the assumption is really stronger is shown by the 

following

Example 3.1. Let 1 < τ0 < ∞, and let

ν(σ) =

⎧⎪⎪⎨⎪⎪⎩
1

2
√
σ

if σ ∈ (0, 1)

1
2 if σ ∈ (1, τ0)

so that

N(x) =

⎧⎪⎨⎪⎩
√
x if x ∈ (0, 1)

x + 1
2 if x ∈ (1, τ0)

Then

N(x) ↘ in (0, τ0)

xβ
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is satisfied for β = τ0/(τ0 + 1), while for the same β the function x → x1−βν(x) is not 
decreasing in (0, τ0) (because it is not decreasing in (1, τ0)).

Before the statement of the main theorem of this section, we observe that the kernels 
ν of our interest are such that their difference quotients are bounded above, i.e. there 
exists a constant K > 0 such that

ν(y) − ν(x) ≤ K(y − x) ∀x, y ∈ (0, T ), x < y.

This property (which holds automatically, in particular, for all the kernels ν which are 
decreasing in the whole (0, T )) is expressed in an equivalent way in the assumption (26)
below.

Theorem 3.1. If g ∈ C0,α([0, T ]), 0 < α < 1, 0 < T < ∞, g(0) = 0, and if ν ∈
AC(]0, T ]) ∩ L1(0, T ), ν > 0, is such that

x → x1−βb(x)ν(x) is decreasing in (0, τ0) (25)

for some 0 < τ0 ≤ T, 0 < β < 1 − α, b ∈ AC(]0, τ0[), 0 < b− ≤ b(x) ≤ b+ < ∞,

|ν(x) − ν(y)| ≤ ν(x) − ν(y) + K0(y − x) for some K0 > 0, ∀x, y ∈ (0, T ), x < y,

(26)

then, setting

(Jνg)(t) =
t∫

0

ν(t− s)g(s)ds t ∈ (0, T ),

it is

|(Jνg)(x) − (Jνg)(y)|

≤ c (b(·), ν(·), T, α, β) [g]α|x− y|αN(|x− y|) ∀x, y ∈ (0, T ), y2 ≤ x < y, (27)

where

N(x) =
x∫

0

ν(σ)dσ.

Proof. Let x, y ∈ (0, T ), y2 ≤ x < y. It is

(Jνg)(y) − (Jνg)(x) =
y∫
ν(y − s)g(s)ds−

x∫
ν(x− s)g(s)ds
0 0
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=
y∫

0

ν(s)g(y − s)ds−
y∫

y−x

ν(s− y + x)g(y − s)ds

=
y∫

0

ν(s)g(y)ds−
y∫

0

ν(s)[g(y) − g(y − s)]ds

−
y∫

y−x

ν(s− y + x)g(y)ds +
y∫

y−x

ν(s− y + x)[g(y) − g(y − s)]ds

= g(y)
y∫

0

ν(s)ds−
y−x∫
0

ν(s)[g(y) − g(y − s)]ds−
y∫

y−x

ν(s)[g(y) − g(y − s)]ds

− g(y)
y∫

y−x

ν(s− y + x)ds +
y∫

y−x

ν(s− y + x)[g(y) − g(y − s)]ds

= g(y)[N(y) −N(x)] −
y−x∫
0

ν(s)[g(y) − g(y − s)]ds

+
y∫

y−x

[ν(s− y + x) − ν(s)][g(y) − g(y − s)]ds.

Therefore

|(Jνg)(y) − (Jνg)(x)|

≤ |g(y)[N(y) −N(x)]| +

∣∣∣∣∣∣
y−x∫
0

ν(s)[g(y) − g(y − s)]ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
y∫

y−x

[ν(s− y + x) − ν(s)][g(y) − g(y − s)]ds

∣∣∣∣∣∣ := A + B + C.

We estimate each term in turn. Since g ∈ C0,α([0, T ]), g(0) = 0, and since N is increasing 
and 0 < α < 1,

A = |g(y)[N(y) −N(x)]|

≤ [g]αyα[N(y) −N(x)]

= [g]α(yα − xα)[N(y) −N(x)] + [g]αxα[N(y) −N(x)]

≤ [g]α(y − x)α[N(y) −N(x)] + [g]αxα[N(y) −N(x)].
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By (25) the function bν is decreasing in (0, τ0), hence by (23)

N(y) −N(x) =
y∫

0

ν(s)ds−
x∫

0

ν(s)ds =
y∫

x

ν(s)ds

≤ c (b(·), ν(·), T )
y−x∫
0

ν(s)ds = c (b(·), ν(·), T )N(y − x)

and therefore

A ≤ c (b(·), ν(·), T ) [g]α(y − x)αN(y − x) + [g]αxα[N(y) −N(x)].

The first term can be estimated by the right hand side of (27). As to the second term, 
we begin observing that

xα[N(y) −N(x)] = xαN(y) −N(x)
y − x

(y − x) = xαν(ξ)(y − x),

for some ξ ∈ (x, y).
We consider first the case ξ ≤ τ0, so that

xαν(ξ)(y − x) = b(ξ)−1xαb(ξ)ν(ξ)(y − x) ≤ 1
b−

xαb(x)ν(x)(y − x)

(because bν is decreasing in (0, τ0)). Since α < 1 − β, by (25)

x → xαb(x)ν(x) is decreasing in (0, τ0)

and therefore, since τ0 ≥ x ≥ y
2 ≥ y−x

2 ,

xαb(x)ν(x)(y − x) ≤
(
y − x

2

)α

b

(
y − x

2

)
ν

(
y − x

2

)
(y − x)

= 21−α(y − x)αb
(
y − x

2

)
ν

(
y − x

2

)(
y − x

2

)

= 21−α(y − x)α
(y−x)/2∫

0

b

(
y − x

2

)
ν

(
y − x

2

)
ds

≤ 21−α(y − x)α
(y−x)/2∫

0

b(s)ν(s)ds ≤ 21−αb+(y − x)αN(y − x).

Now we consider the case ξ > τ0. Setting ν+ = max
x∈[τ0,T ]

xαν(x), ν− = min
x∈]0,T ]

xαν(x) > 0, 
it is
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xαν(ξ)(y − x) ≤ ξαν(ξ)(y − x) ≤ ν+(y − x) = ν+∫ y−x

0 sαν(s)ds
(y − x)

y−x∫
0

sαν(s)ds.

Now there are two possibilities: y − x ≤ τ0, y − x > τ0. In the first possibility,

y−x∫
0

sαν(s)ds ≥ 1
b+

y−x∫
0

sαb(s)ν(s)ds ≥ 1
b+

τα0 b(τ0)ν(τ0)(y − x)

and therefore

ν+∫ y−x

0 sαν(s)ds
(y − x)

y−x∫
0

sαν(s)ds ≤ b+ν+

τα0 b(τ0)ν(τ0)

y−x∫
0

sαν(s)ds

≤ b+ν+

τα0 b(τ0)ν(τ0)

y−x∫
0

(y − x)αν(s)ds = b+ν+

τα0 b(τ0)ν(τ0)
(y − x)αN(y − x);

in the second possibility,

y−x∫
0

sαν(s)ds ≥ τ0 · ν−

and therefore, using y − x ≤ y
2 ≤ T

2 ,

ν+∫ y−x

0 sαν(s)ds
(y − x)

y−x∫
0

sαν(s)ds ≤ ν+

τ0ν−
· T2

y−x∫
0

sαν(s)ds

≤ Tν+

2τ0ν−
(y − x)αN(y − x).

We have therefore shown that also the second term can be estimated by the right hand 
side of (27).

On the other hand, it is quite easy to check that also B can be estimated in the same 
way, in fact

B =

∣∣∣∣∣∣
y−x∫
0

ν(s)[g(y) − g(y − s)]ds

∣∣∣∣∣∣ ≤
y−x∫
0

ν(s)[g]αsαds

≤ [g]α

y−x∫
0

ν(s)(y − x)αds = [g]α(y − x)αN(y − x).
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It remains to estimate C. It is

C =

∣∣∣∣∣∣
y∫

y−x

[ν(s− y + x) − ν(s)][g(y) − g(y − s)]ds

∣∣∣∣∣∣ ≤ [g]α

y∫
y−x

|ν(s− y + x) − ν(s)|sαds.

We now use the assumption (26), so that

C ≤ [g]α

y∫
y−x

[ν(s− y + x) − ν(s)] sαds + [g]α

y∫
y−x

K0(y − x)sαds.

Making the change of variables σ = s

y − x
in the first term, we have

C ≤ [g]α(y−x)α+1

y
y−x∫
1

[ν((y − x)(σ − 1)) − ν((y − x)σ)]σαdσ+ [g]α

y∫
y−x

K0(y−x)sαds.

We observe that x � y

2 >
x

2 implies y

y − x
� 2, therefore

C ≤ [g]α(y − x)α+1

⎧⎨⎩
2∫

1

[ν((y − x)(σ − 1)) − ν((y − x)σ)]σαdσ+

+

y
y−x∫
2

[ν((y − x)(σ − 1)) − ν((y − x)σ)]σαdσ

⎫⎪⎬⎪⎭+ [g]α

y∫
y−x

K0(y − x)sαds

:= C1 + C2 + C3.

We observe that the sign of C1 and the sign of C2 are not necessarily positive; both 
C1 and C2 will be split into more terms, each of them being not necessarily positive; 
however, all of them will be shown to be smaller than the right hand side of (27).

The first term can be estimated as follows:

C1 = [g]α(y − x)α+1
2∫

1

[ν((y − x)(σ − 1)) − ν((y − x)σ)]σαdσ

� 2α[g]α(y − x)α+1
2∫

1

ν((y − x)(σ − 1))dσ

= 2α[g]α(y − x)α
y−x∫

ν(τ)dτ

0



R. Carlone et al. / Journal of Functional Analysis 273 (2017) 1258–1294 1277
= 2α[g]α(y − x)αN(y − x).

In order to estimate C2, we need to use the following inequality, which, as we are 
going to see, follows easily from the fact that the positive bν ∈ AC(]0, T ]) is decreasing 
in (0, τ0):

1
y − x

y∫
x

ν(s)ds ≤
(
b+

b−
+ ν+

ν−

)
ν(x) ∀x, y ∈ (0, T ), x < y, (28)

where ν+ = max
[τ0,T ]

ν and ν− = min
[τ0,T ]

ν > 0.

In order to show (28), let us fix x, y ∈ (0, T ), x < y. If y ≤ τ0, using that bν is 
decreasing in (0, τ0), we have

1
y − x

y∫
x

ν(s)ds ≤ 1
b−

1
y − x

y∫
x

b(s)ν(s)ds ≤ 1
b−

b(x)ν(x) ≤
(
b+

b−
+ ν+

ν−

)
ν(x).

If τ0 ≤ x,

1
y − x

y∫
x

ν(s)ds ≤ ν+ = ν+

ν−
ν− ≤ ν+

ν−
ν(x) ≤

(
b+

b−
+ ν+

ν−

)
ν(x).

The last case is x < τ0 < y, where the following inequalities hold:

1
y − x

y∫
x

ν(s)ds = 1
y − x

τ0∫
x

ν(s)ds + 1
y − x

y∫
τ0

ν(s)ds

≤ 1
τ0 − x

τ0∫
x

ν(s)ds + 1
y − τ0

y∫
τ0

ν(s)ds ≤ b+

b−
ν(x) + ν+

ν−
ν(x)

=
(
b+

b−
+ ν+

ν−

)
ν(x).

Using the change of variable σ = τ + 1, the integration by parts formula, ν > 0, (28)
and Lemma 3.2, we now estimate C2 as follows:

C2 = [g]α(y − x)α+1

y
y−x∫
2

[ν((y − x)(σ − 1)) − ν((y − x)σ)]σαdσ

= [g]α(y − x)α+1

x
y−x∫

[ν((y − x)τ) − ν((y − x)(τ + 1))] (τ + 1)αdτ

1
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= [g]α(y − x)α+1

x
y−x∫
1

(τ + 1)αd

⎛⎜⎝ 1
y − x

(y−x)τ∫
(y−x)(τ+1)

ν(s)ds

⎞⎟⎠

= [g]α(y − x)α+1

⎧⎪⎪⎨⎪⎪⎩
(τ + 1)α

y − x

(y−x)τ∫
(y−x)(τ+1)

ν(s)ds

∣∣∣∣∣∣∣
τ= x

y−x

τ=1

− 1
y − x

x
y−x∫
1

⎛⎜⎝ (y−x)τ∫
(y−x)(τ+1)

ν(s)ds

⎞⎟⎠α(τ + 1)α−1dτ

⎫⎪⎬⎪⎭
= [g]α(y − x)α

⎧⎪⎪⎨⎪⎪⎩ (τ + 1)α
(y−x)τ∫

(y−x)(τ+1)

ν(s)ds

∣∣∣∣∣∣∣
τ= x

y−x

τ=1

+

x
y−x∫
1

⎛⎜⎝ (y−x)(τ+1)∫
(y−x)τ

ν(s)ds

⎞⎟⎠α(τ + 1)α−1dτ

⎫⎪⎬⎪⎭
= [g]α(y − x)α

⎧⎪⎨⎪⎩
(

y

y − x

)α
x∫

y

ν(s)ds− 2α
y−x∫

2(y−x)

ν(s)ds

+

x
y−x∫
1

⎡⎢⎣ (y−x)(τ+1)∫
(y−x)τ

ν(s)ds

⎤⎥⎦α(τ + 1)α−1dτ

⎫⎪⎬⎪⎭
� [g]α(y − x)α

⎧⎪⎨⎪⎩2α
2(y−x)∫
y−x

ν(s)ds + c (b(·), ν(·))

x
y−x∫
1

[(y − x)ν((y − x)τ)]α(τ + 1)α−1dτ

⎫⎪⎬⎪⎭
� [g]α(y − x)α {2αc (b(·), ν(·), T )N(y − x)

+ c (b(·), ν(·)) (y − x)αN(y − x)
y − x

y
y−x∫
1

(τ + 1)α−1 ν((y − x)τ) (y − x)
N(y − x) dτ

⎫⎪⎬⎪⎭ .

By Corollary 3.1 the integral inside the parenthesis is bounded by a constant independent 
of y − x, depending only on b(·), ν(·), T, α + β. Hence the estimate becomes

C2 ≤ [g]α(y − x)α {2αc (b(·), ν(·), T )N(y − x) + αc (b(·), ν(·), T, α + β)N(y − x)}

and therefore also C2 is estimated by the right hand side of (27).
Finally, we need to estimate C3.
We have
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C3 = [g]α

y∫
y−x

K0(y − x)sαds ≤ [g]αK0

T∫
0

sαds(y − x)

= c (ν(·), T, α) [g]α(y − x) = c (ν(·), T, α) [g]α
(y − x)1−α

N(y − x) (y − x)αN(y − x)

≤ c (b(·), ν(·), T, α) [g]α(y − x)αN(y − x)

where the last inequality follows from the fact that from (25) and from β < 1 − α it 
follows that

1
x1−α

x∫
0

b(s)ν(s)ds ↘ in (0, τ0),

hence N(x)/x1−α is bounded below in (0, T ) by a positive constant, i.e. its reciprocal is 
bounded above by a positive constant (depending only on b, ν and α). �
Remark 3.2. In the case b ≡ 1, ν(σ) = σβ−1, τ0 = T , Theorem 3.1 gives back Theo-
rem 4.2.1 in [19]. Another interesting case is

ν(σ) = 1
σ(log (1/σ))2 , σ small (29)

which satisfies the assumption (25) of Theorem 3.1 for any 0 < α < 1, for any 0 <
β < 1 − α, with b ≡ 1. Of course those positive functions ν ∈ AC(]0, T ]) ∩ L1(0, T ), 
which are just equivalent to the right hand side of (29) only in a neighborhood of the 
origin, and then not blowing up “too much” (as, for instance, the function I(t) in (2), 
whose derivative – see (10) – is again a Volterra function which is bounded above), are 
examples for Theorem 3.1 and in such cases the resulting regularity for Jν is the same 
as that one given for (29).

Remark 3.3. From the proof of Theorem 3.1 it is clear that the assumption (26) can be 
weakened as follows:

|ν(x) − ν(y)|

≤ ν(x) − ν(y) + K0(y − x)αN(y − x) for some K0 > 0, ∀x, y ∈ (0, T ), y2 ≤ x < y.

Remark 3.4. For a given ν satisfying the assumptions of Theorem 3.1 one may look 
for the best regularity action for Jν , i.e. one may look for the greatest α satisfying the 
assumptions of the theorem or, equivalently, for the smallest β satisfying (25) (in the case 
of the classical spaces of Hölder continuous functions, the inclusions between the spaces 
are easy and well known; for a recent book on this topic see [15]): this problem is linked 
to the notion of Boyd indices (see e.g. [27]). For a short survey including a bibliography 
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on this topic, and for a “concrete” way to compute them for explicit examples, see e.g. 
[16,17].

Remark 3.5. It is interesting to note that in the paper [33] (see also [8]) the authors prove 
a result of the same type as Theorem 3.1, where kernels more general than powers are 
considered. However, in [33] the assumption to belong to a certain class Vλ, 0 < λ < 1, 
implies that the kernel enjoys a higher integrability property (in fact, if k ∈ Vλ, it 
is k(x) ≤ c x−λ around zero), hence kernels like our model example I, discussed in 
Section 2, cannot be considered.

4. Regularization in Lp spaces

We begin with some background on Young’s functions and Orlicz spaces. In the follow-
ing a convex function A defined on [0, ∞[ is said to be a Young’s function if it is convex 
and such that A(0) = 0, A(x) > 0 for x > 0. This assumption implies that Young’s 
functions are strictly increasing and invertible, so that it makes sense to consider its 
inverse A−1, defined in [0, ∞[. The Orlicz space LA(0, T ) (here T is a fixed positive real 
number) is the Banach function space of all real-valued (Lebesgue) measurable functions 
f on (0, T ) such that

‖f‖LA(0,T ) = ‖f‖A := inf

⎧⎨⎩λ > 0 :
T∫

0

A

(
|f(t)|
λ

)
dt ≤ 1

⎫⎬⎭ < ∞

(here we use the convention inf ∅ = +∞). In the special case A(t) = tp, 1 ≤ p < ∞, the 
Orlicz space reduces to the familiar Lebesgue space. For essentials about Orlicz spaces 
and Banach function spaces the reader may refer to [11], Sections 2.10.2 and 2.10.3 (and 
references therein for extensive treatments). A well known result of the theory is that if 
two Young’s functions A, B are such that

A(c1x) ≤ B(x) ≤ A(c2x) for x large,

then, in spite ‖ · ‖A, ‖ · ‖B may be different, the spaces themselves (namely, the set 
of the functions such that the norms are finite) coincide. In particular, the spaces are 
completely determined by the values of the Young’s functions assumed for x large.

For measurable functions f �≡ 0 on (0, T ), the decreasing rearrangement f∗ is defined 
by the right continuous inverse of t → μ(t) = meas(s ∈ (0, T ) : |f(s)| > t), i.e. f∗(t) =
inf{λ > 0 : μ(λ) � t}. Orlicz spaces LA(0, T ) are rearrangement-invariant: this means, in 
particular, that the norm is not affected after the action of the decreasing rearrangement 
operator: ‖f‖A = ‖f∗‖A.

We may state the following

Theorem 4.1. Let 1 < p < ∞, 0 < T < ∞, and let A be a Young’s function. If ν ∈
L1(0, T ), ν > 0, is such that
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x → ν(x) is decreasing in (0, τ0) for some 0 < τ0 ≤ T, (30)

x → ν(x) is bounded in (τ0, T ) (in the case τ0 < T ), (31)

N(t) ≤ cνtA
−1
(

1
t

)
for some cν > 0, ∀t ∈ (0, τ0), (32)

where

N(t) =
t∫

0

ν(σ)dσ,

then, setting

(Jνg)(t) =
t∫

0

ν(t− s)g(s)ds t ∈ (0, T ),

it is

‖Jνg‖C ≤ c (ν(·), A(·), p, T ) ‖g‖p, (33)

where C is the Young’s function (Proof of Lemma 4.2 in [29]) defined by

C−1(x) =
x∫

0

t−2+ 1
pA−1(t)dt, x ≥ 0. (34)

Before giving the proof of the theorem, which is a quite easy consequence (in fact, an 
application) of a classical result about fractional integration in Orlicz spaces, we highlight 
a couple of examples which are relevant for this paper.

Example 4.1. Let 1 < p < ∞ and 0 < α < 1/p, and let ν(s) = sα−1 ∈ Lr(0, T ) ⊂
L1(0, T ), for all 1 < r < 1/(1 − α). Then A(x) = x1/(1−α) satisfies (32), hence C given 
by (34) is C(x) = xp/(1−αp), and Jνg ∈ Lp/(1−αp) for all g ∈ Lp. This special case gives 
back the refined version of the continuity property for the Abel operator in Lp spaces, 
see Theorem 4.1.3 in [19].

Notice that when α approaches 0, the exponent r of integrability of ν approaches 1, 
and the exponent p/(1 −αp) of integrability of Jνg approaches p, which means no gain of 
integrability: in the framework of the Lebesgue spaces, kernels in L1 which do not possess 
the higher integrability property (see e.g. next two examples and, in particular, the 
Volterra function I(t)) are not able to improve the integrability through the operator Jν .

Example 4.2. Let 1 < p < ∞ and let β > 1, and let ν(s) = 1
β
( 1 ) ∈ L1(0, 1/2). Then
s log s
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N(t) =
t∫

0

1
σ logβ

( 1
σ

)dσ = 1
β − 1 log1−β

(
1
t

)
,

hence

A(x) ≈ x logβ−1 x for x large

satisfies (32). The Young’s function C given by (34) is

C(x) ≈ xp logp(β−1) x for x large,

and Jνg ∈ LC for all g ∈ Lp. It is interesting to note that the kernel does not belong to 
any Lebesgue space Lp with p > 1, and that the logarithm in the expression of C (which 
has a positive power and therefore it is divergent at infinity) represents an Orlicz gain 
of integrability for Jνg.

For any kernel considered in Theorem 4.1, the existence of a Young function A satis-
fying (32) can be easily established; moreover, for any ν the function Jνg always enjoys 
an Orlicz gain of integrability with respect to g: this is the heart of the following simple 
result, which is a consequence of standard statements of Orlicz spaces theory, namely, 
of the fact that any function L1(0, T ) is always in some Orlicz space LΨ(0, T ) strictly 
contained in L1(0, T ) (see e.g. [24], p. 60), of the Hölder’s inequality in Orlicz spaces (see 
e.g. [4], 8.11, p. 234)

T∫
0

fg ds ≤ 2‖f‖Ψ‖g‖Ψ̃ (35)

where Ψ̃ is the Young function defined by Ψ̃(s) = maxt≥0(st −Ψ(t)), of the equivalences 
(see e.g. [4], (7), p. 230 and [34], respectively)

(Ψ̃)−1(t) ≈ t

Ψ−1(t) t > 0, (36)

‖1(0,t)‖Ψ = 1
Ψ−1(1/t) 0 < t ≤ T, (37)

and finally of

LC(0, T ) ⊂ LΨ(0, T ) ⇔ Ψ(t) ≤ C(kt) for some k > 0, for t large. (38)

Proposition 4.1. In the assumptions of Theorem 4.1, for every ν there exists a Young 
function A satisfying (32), and therefore LC(0, T ) is strictly contained in Lp(0, T ).
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Proof. Let A be a Young function such that ν ∈ LA(0, T ), A(x)/x being increasing and 
divergent at infinity. By (35), (37), (36) respectively,

N(t) =
t∫

0

ν(σ)dσ =
T∫

0

ν(σ)1(0,t)dσ ≤ 2‖ν‖A‖1(0,t)‖Ã = cν ·
1

(Ã)−1(1/t)
≈ cνtA

−1
(

1
t

)
.

As to the second part of the statement, from (34) we get that setting, for large s, x = C(s)
and t = A−1(x) (note that x and t are large as well)

C(s)
sp

= x

C−1(x)p =
(

x1/p

C−1(x)

)p

=
(

x

A−1(x)

)p

=
(
A(t)
t

)p

↗ ∞,

and using both implications in (38), we get the assertion. �
Example 4.3. It is immediate to realize that the statement of Theorem 4.1 remains true 
if ν is replaced by any function equivalent to ν in a neighborhood of the origin. Hence 
all the previous remark still holds if ν is replaced by the function I(t) in (2).

The proof of Theorem 4.1 will follow as a consequence of the following result appeared 
in Sharpley ([34, Theorem 3.8]), in the more abstract setting of general convolution 
operators, defined in [29]. In this latter paper our operator Jν, which goes back to [21], 
is explicitly mentioned as example (see the end of the Section IV therein). Here we state 
it in a more convenient form, and using our notation:

Theorem 4.2. Suppose that A, B are Young’s functions such that

xB′(x) ≤ cBB(x) for some cB > 1, for x large (39)

and

cCC(x) ≤ xC ′(x) for some cC > 1, for x large, (40)

where C is the Young’s function defined by

1
xC−1(x) = 1

A−1(x) · 1
B−1(x) for x large. (41)

Then

‖Jνg‖C ≤ cA,B sup
x

{
ν∗∗(x)
A−1

( 1
x

)} ‖g‖B , (42)

where (Jν is defined by (1) and) ν∗∗ denotes the averaged rearrangement of ν, defined 
by
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ν∗∗(t) = 1
t

t∫
0

ν∗(s)ds.

Proof of Theorem 4.1. Setting B(t) = tp, (39) is obviously satisfied with equality and 
cB = 1; from (41) we get that if C is defined by

1
xC−1(x) = 1

A−1(x) · 1
x1/p for x large,

i.e. if (34) holds, then (40) is satisfied: in fact, from the convexity of the Young function A, 
the function A−1(x)/x is decreasing, hence from (34) we deduce that also the following 
ones are decreasing:

C−1(x)
x1/p ,

x

C(x)1/p
,

xp

C(x) ,

and therefore C(x)/xp is increasing, from which (40) is satisfied with cC = p. We are 
therefore allowed to apply Theorem 4.2.

From (30) and (31) it follows that for small values of t it is ν(t) = ν∗(t), hence, by 
(32), for x small it is

ν∗∗(x)
A−1

( 1
x

) = N(x)
xA−1

( 1
x

) ≤ cν ,

and of course the same conclusion holds (for a possibly different cν) for all x ∈ (0, T ). 
Hence the supremum in the right hand side of (42) is a finite constant c (ν(·), A(·), p, T ), 
from which (33) follows. �

Finally, the case p = ∞ is considered in the next result, where the regularizing effect 
of Jν is expressed through continuity.

Proposition 4.2. If ν > 0 and ν ∈ L1(0, T ), then for any g ∈ L∞(0, T ) there results

Jνg ∈ C0([0, T ])

and

‖Jνg‖L∞(0,T ) ≤ N(T )‖g‖L∞(0,T ), (43)

where N is the integral function of ν defined by (7).

Proof. Recalling (3) and (13), (43) is immediate. Then, it is left to prove that Jνg is 
continuous. To this aim, fix x0 ∈ [0, T [ and x ∈ ]x0, T ]. Easy computations yield
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(Jνg)(x) − (Jνg)(x0) =
T∫

0

ν(x− s)1[x0,x](s)g(s)ds +

−
T∫

0

(
ν(x0 − s) − ν(x− s)

)
1[0,x0](s)g(s)ds

and hence

|(Jνg)(x) − (Jνg)(x0)| ≤
T∫

0

ν(x− s)1[x0,x](s)|g(s)|ds +

+
T∫

0

|ν(x0 − s) − ν(x− s)|1[0,x0](s)|g(s)|ds

≤ N(x− x0)‖g‖L∞(0,T ) + ‖g‖L∞(0,T )

∫
R

|νe(x0 − s) − νe(x− s)|ds,

where

νe(s) =
{
ν(s), if s ∈ ]0, T [,
0, if s ∈ R\ ]0, T [.

Therefore the first term converges to zero by the continuity of N and the second term 
converges to zero by the mean continuity property (see [28]). Since the same holds if 
x < x0, one has (Jνg)(x) → (Jνg)(x0), which concludes the proof. �
5. Contraction in Sobolev spaces

We start with some basics on Sobolev spaces with fractional index. Let −∞ ≤ a <
b ≤ +∞ and θ ∈ (0, 1). We denote by Hθ(a, b) the Sobolev space defined by

Hθ(a, b) := {g ∈ L2(a, b) : [g]2
Ḣθ(a,b) < ∞},

where

[g]2
Ḣθ(a,b) :=

∫
[a,b]2

|g(x) − g(y)|2
|x− y|1+2θ dydx.

This is a Hilbert space with the natural norm

‖g‖2
Hθ(a,b) := ‖g‖2

L2(a,b) + [g]2˙ θ .

H (a,b)
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When a = −∞ and b = +∞, Hθ(R) can be equivalently defined using the Fourier 
transform (see [13]); that is, if we define the Fourier transform as

ĝ(k) := 1√
2π

∫
R

e−ikxg(x)dx,

then there exist two constants c1,θ, c2,θ > 0 such that

c1,θ‖(1 + k2)θ/2 ĝ ‖L2(R) ≤ ‖g‖Hθ(R) ≤ c2,θ‖(1 + k2)θ/2 ĝ ‖L2(R). (44)

Remark 5.1. We recall that with θ = 1 we mean the Sobolev space H1, with the usual 
definition, whereas, with a little abuse, θ = 0 is an equivalent notation for L2.

Now, before stating the main theorem of this section, we recall a result on truncation/
extension of functions in Hθ(0, T ).

Lemma 5.1. Let g ∈ Hθ(0, T ), 0 ≤ θ ≤ 1, and set

ge(x) =

⎧⎪⎪⎨⎪⎪⎩
g(x), if x ∈ [0, T ],
g(2T − x), if x ∈ ]T, 2T ],
0, if x ∈ R\[0, 2T ].

(45)

The following holds:

(i) if θ ∈ [0, 1/2[, then ge ∈ Hθ(R);
(ii) if θ ∈ ]1/2, 1] and g(0) = 0, then ge ∈ Hθ(R).

Moreover, in both cases, there exists a constant cθ > 0 (independent of g and T ) such 
that

‖ge‖Hθ(R) ≤ cθ‖g‖Hθ(0,T ). (46)

Proof. The proof is a straightforward application of Lemma 2.1 in [7]. Cases θ = 0, 1
are trivial. Consider, then, an arbitrary θ ∈]0, 1[. First, we can easily check that 
‖ge‖2

L2(0,2T ) = 2‖g‖2
L2(0,T ) and that, with some change of variables,

[ge]2Ḣθ(0,2T ) = 2[g]2
Ḣθ(0,T ) + 2

∫
[0,T ]2

|g(x) − g(y)|2
|x + y − 2T |1+2θ dydx.

Moreover, since |x + y − 2T | ≥ |x − y| for every (y, x) ∈ [0, T ]2,∫
2

|g(x) − g(y)|2
|x + y − 2T |1+2θ dydx ≤ [g]2

Ḣθ(0,T ).
[0,T ]
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Hence [ge]2Ḣθ(0,2T ) ≤ 4[g]2
Ḣθ(0,T ), so that

‖ge‖Hθ(0,2T ) ≤ 2‖g‖Hθ(0,T ). (47)

Now, from Lemma 2.1 of [7], we know that if θ ∈ ]0, 1/2[, then there exists cθ > 0 such 
that

‖ge‖Hθ(R) ≤ cθ‖ge‖Hθ(0,2T ). (48)

On the other hand, the same lemma shows that (48) holds even if θ ∈ ]1/2, 1[, provided 
that g(0) = 0 (since this entails by definition ge(0) = ge(2T ) = 0). Combining (48) and 
(47), the proof is complete. �
Remark 5.2. Note that, when θ > 1/2, the assumption g(0) = 0 is meaningful as g is con-
tinuous by Sobolev embeddings ([12,13]). What is more, this requirement is mandatory, 
since otherwise ge might not preserve continuity on R.

Remark 5.3. We also stress that the case θ = 1/2 is not managed by Lemma 5.1 since 
Lemma 2.1 in [7] is not valid in general for this choice of θ, due to the failure of Hardy 
inequality (see e.g. [25]).

Then, we can state the main result of this section. We recall that, as in the previous 
sections, Jν denotes the operator defined by (1) and N the integral function of the kernel 
defined by (7).

Theorem 5.1. If θ ∈ [0, 1] and ν > 0, ν ∈ L1(0, T ), then there exists a constant cθ > 0
such that

‖Jνg‖Hθ(0,T ) ≤ cθN(T )‖g‖Hθ(0,T ), ∀g ∈ Hθ(0, T ), θ < 1/2. (49)

Moreover, (49) is valid also when θ > 1/2, provided that g satisfies g(0) = 0.

Proof. Fix θ ∈ [0, 1]\{1/2}. Then, let again

νe(x) :=
{
ν(x), if x ∈ ]0, T [,
0, if x ∈ R\ ]0, T [

and, for any g ∈ Hθ(0, T ), define

f(x) :=
x∫
νe(x− s)ge(s)ds,
0
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where ge is the extension of g obtained via Lemma 5.1. Note that (46) applies if either 
θ < 1/2 or θ > 1/2 with, in this second case, the further assumption that g(0) = 0. As 
f(x) = (Jνg)(x) for all x ∈ [0, T ],

‖Jνg‖Hθ(0,T ) = ‖f‖Hθ(0,T ) ≤ ‖f‖Hθ(R). (50)

Now, by definition

f̂(k) = 1√
2π

∫
R

e−ikx

∫
R

νe(x− s)ge(s)1[0,x](s)ds dx.

Since 1[0,x](s) = H(s) −H(s − x), where H denotes the Heaviside function,

f̂ = ̂νe ∗ (geH) − ̂(νeHr) ∗ ge,

with Hr(s) = H(−s). Consequently, by well known properties of the Fourier transform,

f̂ = c
(
ν̂eĝeH − ν̂eHrĝe

)
.

Thus, noting that ge(x)H(x) = ge(x) and νe(x)Hr(x) = 0,

f̂ = c ν̂eĝe. (51)

Then, combining (50), (44) and (51),

‖Jνg‖2
Hθ(0,T ) ≤ c

∫
R

(1 + k2)θ|ν̂e(k)|2 |ĝe(k)|2dk. (52)

Moreover, we observe that |ν̂e(k)| ≤ cN(T ) and, plugging into (52), that

‖Jνg‖2
Hθ(0,T ) ≤ c ·N2(T )‖ge‖2

Hθ(R).

Combining with (46), (49) follows. �
Remark 5.4. We observe that the “contractive” effect of Jν , pointed out in the Intro-
duction, is in the fact that N(T ) → 0, as T → 0. It entails that on small intervals 
the operator “shrinks” the norm of the argument function by a factor that gets smaller 
whenever T gets smaller.

Remark 5.5. Note that in the previous theorem, when θ > 1/2 the assumption g(0) = 0
cannot be removed, since otherwise the result is false. If one dropped this requirement, 
indeed, then the statement would imply that N(x) = (Jν1)(x) belongs to Hθ(0, T ), 
which cannot hold in general. A remarkable counterexample is given by the case ν = I, 
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where one can prove that N = N does not belong to Hθ(0, T ) for any θ > 1/2 (see 
Lemma 5.2).

The case θ = 1/2 is far more awkward since no “extension-to-zero” result, such as 
Lemma 5.1, is available. However, in the case ν = I, we can state an analog for Theo-
rem 5.1. In order to prove it, it is though required a further investigation of the behavior 
of the integral function I.

Lemma 5.2. The function N defined by (12) does not belong to Hθ(0, T ) for any θ ∈
]1/2, 1]. On the other hand, it belongs to Hθ(0, T ) for every θ ∈ [0, 1/2].

Proof. The first part is immediate. In fact, if N ∈ Hθ(0, T ), then it should be Hölder 
continuous in [0, T ] as well (see [12]). However, one can easily see that this is not the 
case by (13).

On the other hand, one easily checks that N ∈ L2(0, T ), so that it is left to prove 
that [N ]Ḣ1/2(0,T ) < ∞ (since Hθ(0, T ) ⊂ H1/2(0, T ) for all θ ∈ [0, 1/2[, by [13]). An easy 
computation shows that

[N ]2
Ḣ1/2(0,T ) = 2

T∫
0

x/2∫
0

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx + 2
T∫

0

x∫
x/2

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx.
Looking at the first integral and recalling that N is increasing, we find∣∣∣∣N (x) −N (y)

x− y

∣∣∣∣2 ≤ 4 N 2(x)
x2 , ∀y ∈ (0, x/2).

Hence, combining with (13) and (8),

2
T∫

0

x/2∫
0

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx ≤ c

T∫
0

N 2(x)
x

dx ∼ c

T∫
0

I(x)dx < ∞.

Concerning the second integral, Jensen inequality yields

T∫
0

x∫
x/2

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx =
T∫

0

x∫
x/2

∣∣∣∣∣∣ 1
x− y

x∫
y

I(s)ds

∣∣∣∣∣∣
2

dy dx

≤
T∫

0

x∫
x/2

1
x− y

x∫
y

I2(s)ds dy dx.

Furthermore, since I is positive and convex by Lemma 2.1, it is I2(s) ≤ I2(x) + I2(y)
for every s ∈ [y, x], so that
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T∫
0

x∫
x/2

1
x− y

x∫
y

I2(s)ds dy dx ≤
T∫

0

x∫
x/2

(I2(y) + I2(x))dy dx.

Now, noting that log−4(1/y) ≤ log−4(1/x) for all y ∈ (x/2, x) and using again (8),

T∫
0

x∫
x/2

I2(y)dy dx ∼
T∫

0

x∫
x/2

1
y2 log4( 1

y )
dy dx ≤ c

T∫
0

1
x log4( 1

x )
dx < ∞,

whereas, on the other hand,

T∫
0

x∫
x/2

I2(x)dy dx ≤ c

T∫
0

x I2(x)dx ∼ c

T∫
0

1
x log4( 1

x )
dx < ∞.

Thus

T∫
0

x∫
x/2

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx < ∞

and, summing up, it is [N ]Ḣ1/2(0,T ) < ∞, which concludes the proof. �
Therefore, we can claim the following result on the operator I defined in (3).

Theorem 5.2. If g ∈ H1/2(0, T ) ∩ L∞(0, T ), then

‖Ig‖H1/2(0,T ) ≤ c · max{‖N‖H1/2(0,T ),N (T )}
(
‖g‖L∞(0,T ) + ‖g‖H1/2(0,T )

)
(53)

(where c > 0 is independent of g and T ).

Proof. Since θ = 1/2, (46) does not hold. However, defining ge as in (45), ‖ge‖L2(R) =√
2 ‖g‖L2(0,T ) and hence, arguing as in the proof of Theorem 5.1 (with ν = I), one can 

check that

‖Ig‖L2(0,T ) ≤ c · N (T )‖g‖L2(0,T ). (54)

Then, it is left to estimate [Ig]Ḣ1/2(0,T ). First, we note that for every 0 < y < x < T

(Ig)(x) − (Ig)(y) =
x∫

y

I(s)g(x− s)ds−
y∫

0

I(s)(g(x− s) − g(y − s))ds.

Hence,
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[Ig]2
Ḣ1/2(0,T ) ≤ 4

T∫
0

x∫
0

∣∣∣∣∣∣ 1
x− y

x∫
y

I(s)g(x− s)ds

∣∣∣∣∣∣
2

dy dx +

4
T∫

0

x∫
0

∣∣∣∣∣∣
y∫

0

I(s)g(x− s) − g(y − s)
t− s

ds

∣∣∣∣∣∣
2

dy dx. (55)

Now, one can easily see that, since g ∈ L∞(0, T ),

4
T∫

0

x∫
0

∣∣∣∣∣∣ 1
x− y

x∫
y

I(s)g(x− s)ds

∣∣∣∣∣∣
2

dy dx ≤ 4‖g‖2
L∞(0,T )

T∫
0

x∫
0

∣∣∣∣N (x) −N (y)
x− y

∣∣∣∣2 dy dx
= 2‖g‖2

L∞(0,T )[N ]2
Ḣ1/2(0,T )

≤ 2‖g‖2
L∞(0,T )‖N‖2

Ḣ1/2(0,T ) (56)

(where ‖N‖Ḣ1/2(0,T ) is finite by Lemma 5.2). On the other hand, by Jensen inequality 
and monotonicity of N ,

4
T∫

0

x∫
0

∣∣∣∣∣∣
y∫

0

I(s)g(x− s) − g(y − s)
t− s

ds

∣∣∣∣∣∣
2

dy dx ≤

≤ 4N (T )
T∫

0

x∫
0

y∫
0

I(s)
∣∣∣∣g(x− s) − g(y − s)

x− y

∣∣∣∣2 ds dy dx.
From the Fubini Theorem and a change of variables

T∫
0

x∫
0

y∫
0

I(s)
∣∣∣∣g(x− s) − g(y − s)

x− y

∣∣∣∣2 ds dy dx =

=
T∫

0

I(s)
T−s∫
0

x∫
0

∣∣∣∣g(x− s) − g(y − s)
x− y

∣∣∣∣2 dy dx ds
≤ [g]2

Ḣ1/2(0,T )N (T ).

Consequently,

4
T∫

0

x∫
0

∣∣∣∣∣∣
y∫

0

I(s)g(x− s) − g(y − s)
t− s

ds

∣∣∣∣∣∣
2

dy dx ≤ 4N 2(T )‖g‖2
Ḣ1/2(0,T ) (57)

and plugging (57) and (56) into (55),
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[Ig]2
Ḣ1/2(0,T ) ≤ c · max{‖N‖2

Ḣ1/2(0,T ),N
2(T )}

(
‖g‖2

L∞(0,T ) + ‖g‖2
Ḣ1/2(0,T )

)
.

Finally, combining with (54), (53) follows. �
Remark 5.6. Note that, again, the contractive effect is preserved since both N (T ) and 
‖N‖Ḣ1/2(0,T ) converge to 0, as T → 0.

Remark 5.7. It is also worth stressing that Theorem 5.2 holds as well for any positive 
and integrable kernel ν whose integral function N ∈ H1/2(0, T ) (such as, for instance, 
Abel kernels). However, since this is a very specific assumption, we preferred to present 
it in the relevant case of the Volterra kernel, where N ∈ H1/2(0, T ) can be clearly shown, 
leaving to the reader further generalizations.

Finally, we show that a version of Theorem 5.1 holds also in W 1,1(0, T ). This result 
could seem disconnected from the framework of our paper, but nevertheless it further 
clarifies some specific features of Jν and, then, we mention it for the sake of completeness.

Theorem 5.3. If ν > 0 and ν ∈ L1(0, T ), then

‖Jνg‖W 1,1(0,T ) ≤ N(T )
(
|g(0)| + ‖g‖W 1,1(0,T )

)
, ∀g ∈ W 1,1(0, T ). (58)

Proof. Recalling (1) and arguing as in the proof of Theorem 5.1, one finds that

(Jνg)(x) = f(x) ∀x ∈ [0, T ],

where

f(x) =
∫
R

νT (x− s)gT (s)1[0,x](s)ds, (59)

with

νT (x) :=
{
ν(x), if x ∈ ]0, T [,
0, if x ∈ R\ ]0, T [,

and gT (x) :=
{
g(x), if x ∈ ]0, T [,
0, if x ∈ R\ ]0, T [.

Now, recalling that 1[0,x](s) = H(s) −H(s −x) (H denoting the Heaviside function) and 
that νT (s)H(−s) = 0, (59) reads

f(x) = (νT ∗ gT )(x).

Then, by well known properties of the convolution product

‖Jνg‖L1(0,T ) ≤ ‖f‖L1(R) ≤ ‖νT ‖L1(R)‖gT ‖L1(R) = N(T )‖g‖L1(0,T ).
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On the other hand, by (1),

(Jνg)(x) =
x∫

0

ν(s)g(x− s)ds

and thus

d

dx
(Jνg)(x) = g(0)ν(x) +

x∫
0

ν(x− s) d

ds
g(s).

Consequently, since d
dsg ∈ L1(0, T ), arguing as before one finds (58). �

Remark 5.8. The proof of the previous theorem stresses a relevant difference between the 
cases W 1,1 and H1, that arises in fact from the lack of further integrability (of “power 
type”) of ν. Indeed, if ν belongs only to L1(0, T ) the additional assumption g(0) = 0
clearly cannot be removed in H1, whereas it is not necessary in W 1,1.
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