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Abstract: A method to detect the presence of infection after Total Joint Arthroplasty is presented.
The method is based on Electrical Bioimpedance Spectroscopy and guarantees low latency, non-
invasiveness, and cheapness with respect to the state of art. Experimental measurements were carried
out on a singular patient who had already undergone bilateral Total Knee Arthroplasty. He was
affected by a hematogenous Periprosthetic Joint Infections on the left knee. The right knee was
adopted as the reference. Measurements were acquired once before the surgical procedure (Diagnosis
Phase) and twice in the postoperative phases (Monitoring Phase). The most relevant frequency range,
for diagnosis and monitoring phases, was found to be between 10 kHz to 50 kHz. The healing trend
predicted by the decrease of impedance magnitude spectrum was reflected in clinical and laboratory
results. In addition, one month after the last acquisition (two months after the surgery), the patient
fully recovered, confirming the prediction of the Electrical Bioimpedance Spectroscopy technique.

Keywords: biofilm infections; diagnostic methods; electrical bioimpedance spectroscopy; diseases
diagnostic; prediction

1. Introduction

Biofilm-related Infections (BIs) are extremely serious health problems due to the low
success rate of treatment procedures, correlated to the presence of extracellular biofilm
matrix and the bacterial metabolic state [1,2]. In orthopedic surgery, prosthetic joints and
osteosynthesis devices (i.e., intramedullary nails, plates, screws, wires, etc.) represent
the ideal setting for biofilm development [3]. BIs involving orthopedic implants, such as
Periprosthetic Joint Infections (PJIs), represent one of the most devastating complications
that occur in 0.5% to 2% of joint replacements and over 15% of open fractures [4,5], and
their incidence is expected to increase over time [6]. In fact, smoke and alcohol abuse,
diabetes mellitus, avascular necrosis of femoral head, rheumatoid arthritis, cardiovascular
disease, and osteoarthritis are known to be the major patient-related risk factors responsible
of increasing PJIs’ occurrence rate [7]. Regardless of the number of cases affected by
septic complications, treating these infections is highly demanding and can represent a
substantial burden for the healthcare system [6]. In particular, the treatment consists of
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the mechanical removal of all infected tissues (debridement), contaminated implant, and
prosthesis in one or two surgical stages associated with long-lasting antibiotic therapy.
Two-stage revision arthroplasty is a well-established method of care for patients with
chronic PJIs and provides the use of a cement spacer and, afterwards, the implantation
of a revision prosthesis once the infection is considered eradicated [8–10]. Although the
two-stage technique guarantees a high success rate, it typically results in an increased
risk for blood loss, iatrogenic bone defects, long hospitalization time, and, consequently,
patients’ high disability. The first step to PJIs’ successful management is the accurate
identification of the septic process, thus reducing the risk of infection recurrence estimated
to range between 7% to 17% [11]. Currently available procedures and/or techniques to
detect the PJIs are time-consuming and often ineffective. In many cases, the results are
difficult to evaluate and not available in the desired time scale for taking quick corrective
measures and, therefore, fail to guide the clinician/technician in identifying contaminated
sites. Among such techniques, quantitative cultures remain the gold standard but have a
long Turnaround Time; moreover, the bacteria incorporated in the biofilm can be released as
very few cells from the samples causing false negatives or complicating the interpretation
in case of detection of skin commensals. Chemical detachment of bacteria or sonication of
orthopedic devices improved the sensitivity of the culture but did not solve the problem
of false negatives [12]. The application of molecular methods on the sonication liquid to
identify the etiological agent cannot, for now, replace traditional diagnostics [13]. Therefore,
an accurate, reliable, non-invasive, and rapid test for the diagnosis of PJIs is not yet available.
The above discussion highlights the necessity of effective management of PJIs including
detection and real-time monitoring phases. Recent studies suggest the enforcement of
Electrical Bioimpedance Spectroscopy (EBS) as a non-invasive, portable, and low-cost
tool for diagnosis and monitoring of BIs [14,15]. The development of this technique is
increasing due to the inaccessible nature of the environments in which the biofilms grow. In
addition, EBS seems to be a promising solution to evaluate: (i) fracture fixation [16]; (ii) the
pressure-induced tissue damage in case of pressure ulcers [17,18]; (iii) the differences in
contracted state, cellular metabolic activity, and extracellular fluid between healthy subjects
and subjects who had suffered muscle injury [19]; (iv) the variation in soft-tissue hydration
and in cell membrane integrity [20]; (v) the effect of excessive thickening of tissue between
the prosthesis and the bone in low-depth prostheses [21]. Despite the practical advantage
and established measurement properties of EBS, its involvement in effective management
of PJIs is not yet clear. The present paper aims to investigate the EBS approach’s role in
diagnosing PJIs and monitoring the effectiveness of the treatment choice. We describe a
singular case report of a patient who underwent bilateral Total Knee Arthroplasty (TKA) in
2012 and 2013. Moreover, in February 2022, the patient developed a hematogenous PJI on
the left knee (unhealthy knee) which underwent an EBS investigation. In addition, the right
knee (healthy knee) was considered the reference. The measurement campaign, carried
out by a suitable test apparatus, was conducted in two phases: once before the surgical
procedure (Diagnosis Phase) and twice in the postoperative phases (Monitoring Phase). The
EBS experimental results were compared with obtained clinical and laboratory analyses.

2. Materials and Methods

The patient had to sign the informed consent prior to the tests and all procedures
were carried out in compliance with Helsinki guidelines. Tests were conducted in an
air-controlled temperature room of Policlinico, University Federico II, Naples.

2.1. Case Study

A 79-year-old man with a 10-year history of atrial fibrillation and arterial hypertension
underwent TKA in September 2012 and left TKA in December 2013. The postoperative
period was uneventful until September 2021. The patient was admitted to another hospital
because of fever with shaking chill, increasing movement limitation, and swelling in the
left knee, treated with empirical antibiotic therapy for two weeks. Our observation in
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December 2021 revealed extensive erythema and swelling at the surgical site and reduced
range of motion with a knee extension deficit of 30 degrees. The patient was apyretic, but
laboratory examination revealed an Erythrocyte Sedimentation Rate (ESR) of 87 mm/h
and a C- Reactive Protein (CRP) level of 29 mg/L (normal < 5). Leukocyte and hemoglobin
counts were normal. Knee joint aspiration was performed for laboratory and microbi-
ological investigations, which showed an elevated WBC count (117.376 cells/µL) with
high polymorphonuclear cells (91%) levels. In February 2022, the patient underwent a
surgical procedure that consisted of accurate debridement, knee prosthesis removal (left
knee), and an implant of a mobile spacer (a two-stage technique). We decided to implant
a “metal on poly” mobile spacer, which consisted of a femoral prosthesis in titanium
(cruciate retaining femoral component) and an ultra-congruent insert in polyethylene as
described by Hofmann et al. in 1995 [22]. We administered teicoplanin (8 mg/kg body
weight) based on our hospital protocol while awaiting culture results to ensure adequate
coverage for methicillin-resistant Staphylococcus aureus. Cultures of intraoperative tissue
samples yielded methicillin-susceptible Staphylococcus aureus. Intravenous antibiotic
therapy was continued for two weeks without significant adverse effects, based on the
outpatient parenteral antibiotic therapy (OPAT) model. Two weeks after the surgical
procedure, intravenous antibiotic therapy was switched to oral treatment with Trimetho-
prim/Sulfamethoxazole 800/160 mg (thrice daily) and minocycline (100 mg twice a daily)
for eight weeks. Two months after the surgery, the patient has fully recovered, as shown in
Figure 1, for all motor functions. In addition to the standard PJIs’ management strategies,
the patient underwent EBS procedures to verify their abilities in providing PJIs’ diagnostic
and real-time monitoring functions.
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2.2. Measurement Instrumentation

The measurement instrumentation used in the experiments was based on the mi-
crochip AD5940 by Analog Devices [23]. Indeed, the feasibility study was aimed at laying
the groundwork for prototyping a wearable solution that can be integrated into a knee
brace. Analog Devices provides two boards, namely EVAL-AD5940BIOZ (Top-board)
and EVAL-ADICUP3029 (Bottom-board) to develop a custom firmware and test the mi-
crochip (Figure 2). The system applies a voltage settled by the operator (potentiometric
configuration) in the range (10–750) mV. The maximum peak current is kept below IEC
60601 limits [24] by means of appropriate resistors and capacitors along the amperometric
line. The EVAL-AD5940BIOZ is an Arduino platform, which hosts a microcontroller ultra-
low power Arm Cortex-M3 to perform bio-electric measurements [23]. A 16-bit ADC with
both 800 kSa/s and 1.6 MSa/s options and a voltage 12-bit DAC with output range of 0.2 V
to 2.4 V and 200 kSa/s output are provided [24]. The bottom-board includes an integrated
mixed-signal micro-controller systems, namely an ADuCM 3029 chip, which processes
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signals received by the up-board. Custom firmware was developed in the IAR Embedded
Workbench Integrated Development Environment, and a user interface was realized in
C-Sharp to allow the control of the bioimpedance meter. The instrument is connected to the
PC through a USB port for power supply and data transmission. Bio-impedance measure-
ments are implemented by means of a 4-wire configuration. A Digital Fourier Transform is
performed by the AD5940 on the current and voltage measurements, respectively. Then the
microcontroller uses the real and imaginary DFT results for current and voltage at specific
frequency to calculate the unknown impedance.
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2.3. Setup

During the measurements, the impedance meter was connected to a laptop (set to
battery power mode) for signal acquisition and all electronic devices were removed from
the measurement zone. Before acquisitions, knee circumference, patella length and leg
thickness above and below the patella were measured to exclude macroscopic asymme-
tries between the two knees, as reported in Table 1. The patient was subjected to three
measurement cycles; namely: (i) before surgery, (ii) one week after surgery and (iii) one
month after surgery. For each cycle, three measurements were realized at 100 frequencies
evenly spaced from 100 Hz to 100 kHz on a logarithmic scale. Four FIAB 500 electrodes of
14 mm × 36 mm were placed on the knees as shown in the following. After the electrode
positioning, the patient was asked to sit for the entire duration of the experiment. Tetrapolar
impedance measurements are affected by peculiar uncertainty sources [25]. Nevertheless,
the minimization of the impact of skin-electrode interface on the impedance measurement
was assumed as the main goal to pursue. Indeed, by means of the tetrapolar setup, the
voltage drop is only due to the current circulating subcutaneously. To make the experiment
reproducible, a system of cartesian axes (transverse, sagittal, longitudinal) was defined as
shown in Figure 3 and three planes were identified: sagittal, frontal and transverse. The
position of the electrodes was identified through the choice of appropriate points in the
defined space.

Table 1. Parameters considered to ensure homogeneity of the setup.

Body Part Right Knee Left Knee

Knee circumference 48 cm 48 cm
Patella length 18 cm 17 cm

Leg thickness above patella 8 cm 10 cm
Leg thickness below patella 8 cm 10 cm
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Figure 3. Reference Cartesian System used for electrodes positioning.

Two frontal planes (anterior and posterior) are defined in Figure 4. The planes identify
the two planes tangent to the anterior and posterior surfaces of the knee. In Figure 4, the
surface R is defined as the projection of the patella in the anterior frontal plane. The points
AFA and BFA are identified as the intersection of the longitudinal axis with the R surface
contour; the point BFP is identified as the orthogonal projection of the point BFA in the
frontal posterior plane. Rear-front configuration (Figure 5A): A− is centered in AFA with
the longer side parallel to the transverse axis and V− is placed 1 cm below. A+ is centered
in BFP and V+ is placed 1 cm above. The measurements were realized for both the knees to
compare the impedance variation from knee with healthy and infected prosthesis.
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The distance between the two impedance spectra is assessed in terms of relative
difference, evaluated as follows:

εZ =‖ ZU(ωk)− ZH(ωk)

ZH(ωk)
‖ (1)

where ωk is the angular frequency used in the experimental measurements and the sub-
scripts U and H refer to the unhealthy and healthy knee, respectively.
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3. Results

Figures 6 and 7 show the results in terms of comparison between measured impedance
magnitude in the rear–front electrodes configuration for both the two knees, acquired
before the surgery, one week after the surgery and one month after the surgery, respectively.
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The diagrams reported in Figure 6 highlight the global effect of the biofilm presence in
the left (unhealthy) knee on the measured impedance. This effect may be attributed to their
extracellular fluid structure that exhibits higher real and imaginary parts of the complex
dielectric function, resulting in a globally lower impedance spectrum, w.r.t. to the right
(healthy) knee. This is justified by the relative distance between the two spectra, which is
equal to εZ_pre = 0.62.

The impedance spectrum of the unhealthy knee dramatically changes soon after the
surgery treatment, as shown in Figure 7. Such a dramatic variation may not only be
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attributed to the presence of biofilm but more likely to surgical traumatic effects such as
debridement, implant of spacer, fluid distribution, tissues removal, hematoma, etc. [26,27].
This is reflected in the measured higher impedance magnitude spectrum w.r.t. the pre-
surgery measurement and the right knee measurement shown in Figure 7, and in the
relative distance between the two spectra, which is equal to εZ_1-week-post = 9.55. Finally, the
electrical behavior of both of the two knees is reported in Figure 8, in terms of measured
impedance magnitude spectrum, one month after the surgery. In this period, the spacer
gained its situ and the knee tissues do not experience the traumatic effects of surgery
any longer. The impedance magnitude spectrum measurement is compatible with that
measured for the healthy knee and is in accordance with the healing trend shown by the
patient and confirmed by clinical results. The above is justified also by the relative distance
between the two spectra, which is now equal to εZ_1-month-post = 0.18. The lower distance
value, calculated one month after the surgery, highlights that the left knee overall situation
is closer to that of the right knee, thanks to the healing process, which is still undergoing
and is not completed yet. In fact, it is estimated that a period lasting not less than 3 months
is necessary for a full recovery after undergoing TKA. However, it should be noted that
even when the healing process can be considered as completed, a certain distance has to be
accounted for between the two knees, because of the physiological asymmetry between the
left-hand side and the right-hand side of the human body. Future experimental campaigns
will also be devoted to identifying a threshold to detect the many stages of the knee healing.
Percentage 1-σ repeatability was calculated for each frequency as the percentage ratio
between the standard deviation and the mean impedance magnitude. The results are
shown in Figure 9. The mean percentage 1-σ repeatability of impedance magnitude were
0.81%, 1.32%, and 0.70% for before surgery, one week after surgery, and one month after
surgery measurements, respectively. The repeatability was almost comparable among the
three sessions.
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4. Discussion

The diagnosis of PJIs represents a challenge for an orthopedic surgeon. In the last
few years, different guidelines and diagnostic criteria have been proposed to identify and
treat patients affected by PJI. Unfortunately, no ‘gold standard’ exists, and no single test
with 100% diagnostic accuracy to detect infection is available. The lack of identification of
PJI is related to biofilm, a tridimensional structure of bacteria that prevents the possibility
of microbiological analysis in detecting the infective organism. Recently, the attention of
physicians has been focused on the concentration of synovial fluid biomarkers in response
to bacterial pathogens. Indeed, all the tests, except for microbiological analysis, useful
in the diagnostic algorithm of PJI are indirect, therefore evaluating the host response
to an infective organism instead of identification of the infection. Alternatively, recent
studies suggest the enforcement of EBS analysis as a non-invasive, portable, and low-
cost tool able to exceed the limits of current BIs diagnostic and monitoring procedures
that are time-consuming and often ineffective, exposing patients to too late or incorrect
diagnoses. The preliminary experimental results, as shown in Figures 4–6, fully confirm
the above statement also for the diagnosis and real-time monitoring of PJIs in a patient
with TKA on both sites. In particular, they highlight the capability of EBS technique to
discriminate the presence of infection (diagnosis function), the treatment effects and the
healing stage (monitoring function). The above is manifested through variation of the
impedance magnitude spectrum of the unhealthy knee (blue curve) with respect to healthy
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knees (red curve). The most relevant frequency range, for diagnosis and monitoring phases,
is between 1 kHz to 10 kHz where substantial differences have been found. Finally, the
healing trend predicted by the decrease of impedance magnitude spectrum was reflected
in clinical and laboratory results. In addition, one month after the last EBS acquisition (two
months after the surgery), the patient fully recovered, as shown in Figure 1, in all motor
functions, confirming the prediction of the EBS technique. In conclusion, EBS represents a
promising solution for accurate management of PJIs, especially for its short turnaround
time that lasts only a few minutes. Further work is in progress with the aim of confirming
the obtained results on a wider range of cases. In addition, an improved version of the
test apparatus is under development to measure, in the optimal frequency range, not only
f0rthe impedance amplitude, but also for its real and imaginary parts. The objective is
to overcome the significant limitations of our case report study that include (i) lack of
ability to generalize, (ii) the inability to establish an accurate cause–effect relationship, and
(iii) the danger of over-interpretation of a single case or even a case series (the so-called
anecdotal fallacy).
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