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Glioblastomas are the most frequent and malignant brain tumor hallmarked by an
invariably poor prognosis. They have been classically differentiated into primary
isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and
secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older
age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic
investigations, strongly implementing typing and subtyping of brain tumors, including
GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic
profile influences evolution, resistance, and therapeutic responses. However, differently
from other tumors, there is a wide gap between the refined GBM profiling and the limited
therapeutic opportunities. In addition, the different oncogenes and tumor suppressor
genes involved in glial cell transformation, the heterogeneous nature of cancer, and the
restricted access of drugs due to the blood–brain barrier have limited clinical
advancements. This review will summarize the more relevant genetic alterations found
in GBMs and highlight their potential role as potential therapeutic targets.

Keywords: glioblastoma, targeted therapy, EGFR, B-Raf, Met, NF-1
INTRODUCTION

The most common malignant primitive tumor of the central nervous system, glioblastoma (GBM),
shows some distinctive features: WHO grade IV—it is uniquely classified as “metastatic” even if it
remains limited within the brain. As it is different from most kinds of cancers, oncological research
faces an uphill struggle to find therapeutic significant advancements which are scarce since the 2005
STUPP pivotal trial (1, 2). The prognosis remains poor: 12–18months median overall survival and 5%
alive at 5 years (3). As shown in Figure 1, the timeline of glioblastoma treatments emphasized the lack
of significant medical progress: a wait of 14 years after STUPP to find an improvement in survival in
relapsed glioblastoma with regorafenib (4) and a wide array of novel treatments under investigation.

Pathological classification appears to be substantially surpassed by molecular classification since
2016 and increasingly in the new WHO 2021 edition (5). Alteration of specific GBM markers,
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including the O(6)-methylguanine-DNA methyltransferase
(MGMT) promoter methylation, epidermal growth factor
receptor (EGFR) overexpression, co-deletion of 1p and 19q,
mutation in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2)
as well as telomerase reverse transcriptase gene (TERT) promoter,
along with epigenome analysis not only underline the novel
nomenclature but have a prognostic value and may guide
treatment decisions. However, these molecular signatures do not
automatically merge into precision medicine applications of
immediate practical value, thus determining a certain
discouragement towards analyses that requires high time and
costs, with limited practical relevance.

In this review, we examine the most relevant molecular
drivers of GBM which are comprehensively depicted in
Figure 2, both from a molecular and a clinical point of view,
being aware that we are far from really-practice-changing
interventions but still in the world of “one, no one, and one
hundred thousand”. Like this drama, glioblastoma represents a
complex conundrum. Following the track of other Pirandello’s
plays, we gave a title to each paragraph that calls to mind
uncertainty, investigation (a player in search of an author,
either of one or of no one), high expectations (the lord of the
ship), what is unexpected but in some cases may be a turning
point (the turn), the relationship with other signaling (the rules
of the game), and an undefined identity (each on its own way).
Frontiers in Oncology | www.frontiersin.org 2
Through this walk into the challenging glioblastoma land, we will
provide some insights into the complex genomics looking to the
progress with desirable clinical relevance.
TARGETING TERT: A PLAYER IN SEARCH
OF AN AUTHOR

At each cell division, telomeres become shorter; however, a
specialized enzyme called telomerase provides the chromosome
tips of additional DNA. Telomerase is a reverse transcriptase
ribonucleoprotein enzyme coded by the TERT (telomerase
reverse transcriptase) gene that copies the template RNA named
telomerase RNA component (TERC) (Figure 3A). Telomerase
critically ensures chromosome length and genomic stability
during cell replication, with telomerase defects being, accordingly,
associatedwith senescence and cellular death (6). Conversely, some
mutations in the TERT promoter are oncogenic, resulting in cell
immortalization and transformation. These mutations, firstly
discovered in melanoma, include frequent cytidine-to-thymidine
conversion and have been found at two genetic regions upstreamof
the transcriptional start site, specifically c.-124C>T and c.-146C>T
(7) (Figure 3B). A low rate of self-renewal in GBM histological
samples has been correlated to high TERT expression in various
FIGURE 1 | Glioblastoma’s treatment timeline: in the upper part of the figure, the novel treatments under investigation are reported, while in the lower part are the
approved treatments in the adjuvant and relapsed phases with a reported significant improvement in survival, i.e., STUPP and REGOMA trial, respectively, dated
2005 and 2019. The median overall survival for the experimental and control arms is also reported. The methylation of MGMT promoter is associated with improved
survival compared with unmethylated subtypes. Met, methylated; unmet, unmethylated.
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cancer types, including melanomas, primary GBMs, liposarcomas,
and hepatocellular carcinomas among others (8).

Mutations in the TERT promoter result in the generation of a
novel binding site for the transcription factor GABP that, in turn,
triggers TERT overexpression. Intriguingly, TERT mutations
have been identified in about 80% of IDH wild-type GBMs
and in 30% of IDH mutant GBMs, correlating with poor
prognosis (9). These mutations may confer an increased
benefit to temozolomide in MGMT-methylated GBMs (10, 11).

The role of TERT mutations in cell transformation and tumor
aggressiveness has been documented in several preclinical studies.
However, the number of available antitelomerase drugs is
Frontiers in Oncology | www.frontiersin.org 3
currently low, and only imetelstat (GRN163L) has entered in
clinical practice. Imetelstat is a competitive inhibitor of TERT that
acts by hindering the binding of telomerase to DNA (12).
Interestingly, in GBM, imetelstat has been shown to reduce cell
proliferation both in vitro and in vivo. Importantly, the drug was
observed to cross the blood–brain barrier (BBB) and reduce tumor
growth in tumor-engrafted mice (13). In addition, the association
of imetelstat with classical radiotherapy and temozolomide
drastically reduced GBM tumor growth in vitro and in pre-
clinical studies (12). However, despite the promising results
obtained, clinical trials have failed to prove imetelstat as effective
on human solid tumors, probably because of the poor permeation
FIGURE 2 | A comprehensive representation of the relevant pathways in glioblastoma.
A B

FIGURE 3 | Schematic representation of the hTERT gene structure and the telomerase complex. (A) Schematic mechanism of a chromosome (telomeres in orange, short
arm in light blue, long arm in blue, and centromere in yellow) and the molecular mechanism through which TERT enzyme, supported by TERC, ensure the telomere length. (B)
hTERT gene promoter region (in blue) and coding region (in light blue) are shown. The transcription start site (TSS) is indicated as a red bar; on the promoter region, the most
common mutations which lead to an increased expression of the gene are shown (the indicated positions refer to the TSS). Shown on the left, in the light blue box, is the
consensus sequence which takes place because of the single mutation, allowing the binding of the transcription factor GABP on the promoter.
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of the drug into tumor tissues and for critical effects, such as
several intracranial hemorrhages in phase II trial NCT01836549
(14). To date, imetelstat remains under investigation only in a
phase III study for myelofibrosis cure (14). Although
pharmacological research is currently oriented to improve the
pharmacological characteristics of imetelstat, new strategies
targeting the enzymatic activity of TERT are being developed.
The small molecule -6-thio-2′- deoxyguanosine, whose metabolite
is preferentially incorporated into telomeres, changes DNA
structure and inhibits transcription factor binding. This
compound is actively tested in preclinical studies (15) and is
under investigation in a phase II study involving patients with
non-small cell lung cancer at late disease stages. Eribulin has also
been shown to effectively inhibit TERT activity in GBM cells (16,
17); however, its development has been stopped early.

Other approaches to target telomerase include antisense
oligonucleotides, small-molecule inhibitors targeting TERT or
TERC, such as BIBR1532 (18), and vaccines including UCPVax
and INO-5401. UCPVax has been investigated in a phase I/II
clinical trial (NCT04280848) (14). It is a universal vaccine
designed by employing small portions of telomerase peptides to
induce strong TH1 CD4 T cell responses in oncological patients
(NCT02818426) (14). Differently, INO-5401 uses a combination of
three separated DNA plasmids to co-target theWilms tumor gene-1
(WT1) antigen, prostate-specific membrane antigen, and human
telomerase reverse transcriptase (hTERT) genes. It is currently in
phase I/II clinical trials for newly diagnosed GBM patients together
with INO-9012, which employs a DNA vector to overexpress
human interleukin-12 (IL-12), and cemiplimab (NCT03491683)
(14). This study is in an active—but not recruiting—phase, with
June 2022 as the estimated date of completion.

To summarize, many clinical trials targeting TERT have not
been concluded yet. Thus, its role in GBM treatment plan is still
undecided. TERT is still “a character in search of an author”.
TARGETING RECEPTOR TYROSINE
KINASES AND THEIR
DOWNSTREAM PATHWAYS

Targeting receptor tyrosine kinases (RTKs) are transmembrane-
spanning receptors that, following ligand binding, undergo
homo- or heterodimerization, leading to intracellular kinase
domain activation and induction of a variety of downstream
signaling pathways, including phosphatidylinositol 3 kinase
(PI3K)/AKT/mTOR and RAS/MAPK. RTK activation
enhances tumor progression and survival as well as metastatic
potential and angiogenesis.

The Lord of the Ship: EGFR
Among all oncogenic pathways, epidermal growth factor
signaling has the right credentials to be considered the driver
of GBM tumorigenesis (19).

EGFR is part of the transmembrane HER receptor family
which also includes HER2/neu, HER3, and HER4 and is located
Frontiers in Oncology | www.frontiersin.org 4
on chromosome band 7p12. More than 40 EGFR high- and low-
affinity ligands are recognized (20). Frequently, classical and
mesenchymal GBMs are characterized by chromosome 7 gains
with amplification of EGFR (21). The amplification can be
graded into low/moderate and high ratio between EGFR and
chromosome 7 with a significant correlation with survival, which
was worse in the highly amplified group (22).

Specifically, EGFR gene amplification, resulting in high levels
of protein expression, is detected at a high frequency rate (more
than 50%) in GBM (23) and is associated with poor prognosis. In
Figure 4A, the alterations found in GBM along with that found
in lung cancer are reported.

Of note is the fact that, in the majority of EGFR-amplified
GBMs, an intragenic deletion in exons 2 to 7 leads to the
distinctive production of the variant EGFRvIII, corresponding to
a truncated constitutively active receptor (23). Besides gene
amplification, the spectrum of the described EGFR alterations in
GBM is quite heterogeneous—for example, EGFR overexpression
can also result from increased gene transcription, without any
DNA alterations, even if overexpression mostly correlates with
gene amplification (24, 25). Additionally, in GBM, EGFR has been
found to be constitutively active because of point mutations in the
extracellular domain, especially A289V, R108K, and T263P
(Figure 4A) (26). Regardless of the molecular mechanism
causing constitutive activation, EGFR strongly induces GBM
tumor growth and participates in other cell processes, such as
autophagy, aerobic glycolysis, and biosynthesis of fatty acids and
pyrimidines (Figure 4B) (27).

These observations altogether encouraged clinical trial studies
of drugs targeting EGFR in GBM patients. However, until now, the
results of the clinical trials involving tyrosine kinase inhibitors
(TKIs) are quite disappointing since they have shown limited
activity. Even type II TKIs, which, by binding to the inactive
kinase, had the potential to be more active in GBM (28), have
failed in clinical trials—for example, one such drug, lapatinib,
failed to show a significant activity in GBM patients (29).

Currently, among the more potent tested TKIs (30),
TAS2940, a small molecule inhibitor of ERBB family proteins
HER2 and EGFR, has entered phase I trial (14) (NCT04982926).
Failure reasons of drugs targeting EGFR in GBM, compared to
therapeutic efficacy observed in other tumors, may depend on
several reasons, including GBM tissue heterogeneity and the
restricted access of TKIs due to the BBB (31). Considering these
limitations, two ongoing clinical trials are evaluating the efficacy
of two novel targeted agents able to cross the BBB: epitinib
(HMPL-813), a potent and highly selective oral EGFR inhibitor,
and WSD0922-FU, which prevents EGFR/EGFRvIII-mediated
signaling (14, 32) (NCT04197934 and NCT03231501).

Another critical point underlying TKIs’ failure is the frequent
mutation in the EGFR extracellular domain in GBM. However, these
mutations might make GBM particularly susceptible to targeted
extracellular interventions (33). Accordingly, the anti-EGFR
antibody GC1118 is currently tested in a phase II trial (14)
(NCT03618667), following promising preclinical results (34).
Depatuxizumab mafodotin (Depatux-M), a selective antibody-
conjugated drug comprising an EGFR-targeting antibody (ABT-
July 2022 | Volume 12 | Article 926967
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414/806) togetherwith the toxinmonomethylauristatin-F, has instead
shown no survival advantage in the phase III INTELLANCE-1 study,
leading to the recommendation of trial stop by an independent data
monitoring committee and the discontinuation of all ongoing related
studies (35) (NCT02573324).

Additionally, the vaccine rindopepimut, targeting the GBM-
peculiar EGFRvIII mutant, has been investigated in the series of
ACT trials (36, 37). The phase II trial (ACTIVATE/ACT II)
showed good tolerance with EGFRvIII-specific immunity,
displaying encouraging results in increasing patients’ survival
as confirmed in the phase II trial (ACT III) (38). However, these
promising therapeutic effects failed in the phase III trial ACT IV,
in which rindopepimut alone was compared, in newly diagnosed
GBM, to the standard regimen of temozolomide and radiation
therapy after maximal surgical resection (39). Rindopepimut has
also been investigated in the Re-ACT trial, a double-blind
randomized phase II trial evaluating GBM patients injected
with vaccine plus bevacizumab and a control injection of
keyhole limpet hemocyanin concurrent with bevacizumab (40).
Alarmingly, in the Re-ACT trial, the experimental arm was built
on two tethering columns: rindopepimut coming from a negative
phase III trial and bevacizumab, which has not demonstrated a
survival-related improvement being FDA-approved for treating
relapsing GBM only based on progression-free survival benefit.

The Turn: Ras-Raf Signaling
The pathway controlled by RAS and the downstream cascade of
kinases (mitogen-activated protein kinase—MAPK—and
extracellular-regulated kinase—ERK) (Figure 2) is critically
involved in most tumors. It is often activated in GBM, even in
the absence of RAS mutations, due to its overstimulation by
RTKs, such as EGFR. BRAF, a key mediator of the MAPK
pathway, has been found mutated in about 7% of tumors
Frontiers in Oncology | www.frontiersin.org 5
arising in the central nervous system (41). The most frequently
described (~90%) oncogenic driver mutation in BRAF is
represented by the substitution of valine by glutamic acid at
amino acid 600 (V600E). The mutated protein boosts about 500×
the MAPK/ERK activation, resulting in uncontrolled cell
proliferation and survival (42). BRAFV600E was reported in
69% of epithelioid GBM in a recent systematic review performed
on more than 13,000 patients (43).

BRAF class I inhibitors (BRAFi) selectively bind to the
mutated V600E BRAF protein, thus inhibiting MAPK/ERK
signaling and the related effects on tumor growth. This class
encompasses three FDA compounds approved for the treatment
of BRAFV600-mutated metastatic malignant melanomas:
vemurafenib, dabrafenib, and encorafenib. Their use in
melanoma has revealed that patients often acquire resistance to
BRAFi through several molecular mechanisms, including the
overactivation of RTKs such as EGFR (44). To overcome BRAFi
resistance, a next-generation BRAF inhibitor, PLX8394, has been
synthesized and reached phase I and II clinical trials (14)
(NCT02428712), which include glioma patients. PLX8394
belongs to the novel dimer breakers that selectively target
BRAF fusion proteins, splice variants as well as BRAF V600
monomers, leading to the inhibition of the overriding ERK
signaling in tumors with sparing of BRAF function in normal
cells in which signaling is driven by BRAF homodimers (44, 45).
It should overcome resistance to the classical class I BRAF
inhibitors by inducing a paradoxical, negative cooperativity
effect, which means the activation of one BRAF monomer
when the other is linked to a BRAF inhibitor (46).

Importantly, the combination of BRAF inhibitors with a drug
inhibiting the downstream MEK protein reinforces the
inhibition of MAPK/ERK signaling, delays the occurrence of
acquired resistance, and reduces the adverse events related to
A B

FIGURE 4 | The main oncogenic alterations of EGFR: (A) Localization of relevant alterations within the epidermal growth factor receptor (EGFR) gene in glioblastoma
(GBM) and lung cancer. The structural organization of EGFR exons and respective domains is shown. The principal point mutations and deletions in GBM (in exons
1–16, extracellular domain) and in lung cancer (in exons 19–20, tyrosine kinase domain) are indicated. The frequency of intragenic deletion in exons 2 to 7 (leading to
variant EGFRvIII) is indicated. (B) EGFR (left) and EGFRvIII (right) signaling pathways. EGFR and EGFRvIII trigger the AKT and MAPK pathways, but ligands (pink
circles) can bind and activate only EGFR, whereas EGFRvIII is constitutively active in a ligand-independent manner. Block arrows indicate inhibition. Point arrows
indicate activation. The downstream processes of the activation cascade are described.
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BRAF inhibitors used as single agents (47). Three MEK
inhibitors—cobimetinib, trametinib, and binimetinib—reached
clinical approval in the USA and Europe. Nevertheless, they have
a low BBB crossing rate that is limited by P-glycoprotein (P-gp)
and Bcrp as reported by in vitro studies (48).

In the recent Rare Oncology Agnostic Research basket trial,
the rate of responses to the combination of BRAF/MEK
inhibition obtained in high-grade as well as in low-grade
glioma cohorts has been encouraging (49), thus advocating
BRAF testing in clinical practice (50, 51). In detail, at a median
follow-up of 12.7 months (IQR, 5.4–32.3) among the 45 patients
with high-grade tumors, three complete responses and 12 partial
responses were reported (ORR, 33%; 95% CI, 20–49). At a
median follow-up of 32.2 months (IQR, 25.1–47.8), in the low-
grade cohort of 13 patients, one complete, six partial, and two
minor responses were achieved (ORR, 69%; 95% CI, 39–91). A
pediatric rollover phase IV study is ongoing (NCT03975829)
(14). A phase II clinical study with the BRAF/MEK inhibitor
combo encorafenib plus binimetinib is ongoing, with a foreseen
primary estimated completion in July 2025 (14) (NCT03973918).
Binimetinib is in the preliminary clinical phases also in
combination with a new, potent, selective, highly brain-
penetrant, small-molecule inhibitor of BRAF V600, PF-
07284890 (14) (NCT04543188).

Besides BRAF point mutations, particularly in pilocytic
astrocytomas, KIAA1549–BRAF gene fusions have been found
(52). In these tumors, a phase I clinical trial (NCT03429803) and
a phase II FIREFLY study (NCT04775485) (14) are investigating
the efficacy of the pan-RAF inhibitor DAY 101 (tovorafenib,
formerly TAK-580, MLN2480). The FIRELIGHT trial (phase Ib/
II NCT04985604), a multi-center, open-label umbrella master
study, is also investigating DAY101 as monotherapy in phase II
and, in association with the novel oral MEK inhibitor pimasertib,
in a phase I study. DAY 101 and other pan-BRAF inhibitors, by
inhibiting also the wild-type protein, have, on one hand, the
potential to inhibit MAPK/ERK pathway regardless of the
activating BRAF mutation and the ability to overcome some
resistance mechanisms; on the other hand, the therapeutic index
is expected to be low (53).

NF-1
Apart from BRAF mutations, in glioma, RAS/MAPK signaling
(Figure 2) can be activated by neurofibromatosis 1 (NF1) gene
inactivating mutations or deletions. The NF1-derived protein is
named neurofibromin, which is a tumor suppressor RAS-GAP.
The shutdown of RAS signaling, through the conversion of the
GTP-bound active RAS form into the inactive GDP-bound form
and the increasing levels of cAMP induced by neurofibromin,
finally inhibits cell proliferation and survival (54). According to
the vast evaluation performed by the Tumor Cancer Genome
Atlas, a discrete percentage of GBMs (13 to 14%) are NF-1-
mutated, and these tumors are characterized by a poor prognosis.
NF-1-mutated GBMs are often associated with the mesenchymal
subtype, with a bidirectional correspondence (55). Despite the
fact that the loss of NF-1 function is related to resistance to
targeted therapies, MEK inhibitors may be effective against NF-
1-mutated brain tumors (56). Among those, pediatric inoperable
Frontiers in Oncology | www.frontiersin.org 6
plexiform neurofibromas may be eligible for treatment with
selumetinib which was acknowledged as orphan drug by the
FDA (57). An ongoing phase III study (NCT03871257) is
evaluating selumetinib in comparison with chemotherapy in
low-grade NF-1-associated gliomas (14).

Interestingly, the tumors with NF1 mutations, as compared
with those with RAS or BRAF mutations, are characterized by a
higher mutational burden and, thus, may be responsive to
immunotherapy-based treatment strategy (58).

The Rules of the Game: Mesenchymal–
Epithelial Transition Factor
Mesenchymal–epithelial transition (MET) is a receptor tyrosine
kinase involved in several cell processes related not only to
proliferation and cell survival but also to invasiveness and
angiogenesis (Figure 2). In this capacity, it functions as a team
player given the intricate crosstalk between MET and other
signaling pathways. As an example, VEGFR and c-Met signaling
cooperate in the control of angiogenesis and tumor growth
(59, 60).

Overexpression is the most frequently found MET alteration,
detected in 20–30% of high-grade gliomas, followed by
amplification, found in 4% of primary GBM. About 3% of
GBMs consist of a constitutively active ligand-independent
MET protein, derived from exons 7 and 8 deletions in the
MET gene (METD7-8) (61). Additionally, the MET exon 14
skipping mutation (METDex14) produces an abnormal receptor
lacking the juxtamembrane domain which activates MET
downstream effectors in a ligand-independent manner.

Crizotinib is one of the first MET inhibitors tested in clinical
studies together with other small-molecule inhibitors and anti-
MET antibodies. However, a relative paucity of them have been
rescued and moved forward in advanced late-stage clinical trials
(62, 63).

Capmatinib, a highly selective MET inhibitor (INC280), has
shown an overall response of 41% in non-small cell lung cancer
patients harboring aMETDex14 mutation as compared with 29%
in patients with MET amplification (64). The promising
anticancer potential of this drug prompted the conduct of a
phase I/II study (NCT01870726) using capmatinib alone and in
combination with the pan-class I PI3K inhibitor buparlisib (65).
Unfortunately, the published results were not particularly
encouraging in terms of activity.

The MET inhibitor tepotinib has shown good tolerability and
clinical activity in MET-dysregulated tumors. A phase II basket
trial (NCT04647838) is ongoing to evaluate tepotinib in solid
cancers with MET amplification or exon 14 mutation.

APL-101 is a novel, selective small-molecule MET inhibitor
currently investigated in the SPARTA phase I/II trial
(NCT03175224), including advanced solid tumors with METDex14
and MET dysregulation (14).

Given the crosstalk between MET-induced and other
signaling pathways, further research is looking towards
combinatorial treatments to synergize and prevent resistance,
such as VEGFR/c-Met dual-target inhibitors (59). One of them,
dovitinib, reached phase II study but has not shown a clinically
July 2022 | Volume 12 | Article 926967
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meaningful activity (66), and the same fate has befallen tivozanib
(67) and cabozantinib (68).

Each on Its Own Way: Fibroblast Growth
Factor Receptor Oncogenic Mutations
Fibroblast growth factor receptor (FGFR) comprises a family of
RTKs consisting of four members (FGFR1–4) which are involved
in several tumor-cell-related processes, such as proliferation,
survival, invasion, and vessel growth (Figure 2). Twenty-two
ligands and cell adhesion molecules, including the neural cell
adhesion molecule, are known to bind these receptors and
activate downstream signaling, including the PI3K-AKT and
Ras-BRAF-MEK-ERK pathways (69). Comprehensively,
amplifications, mutations, and translocations of FGFR genes
are described in different tumors (69) with a quite composite
arrangement: gene amplification, abnormal activation, or single-
nucleotide polymorphisms mostly pertain to FGFR1 and FGFR2,
while genetic fusions that involve FGFR1 and FGFR3 tyrosine
kinase domains and the transforming acidic coiled-coil proteins
generate oncoproteins. Similar to MET, an autocrine loop
contributes to overstimulation of FGFR signaling.

FGFR inhibitors are in the earlier phase of clinical studies.
Following on from the promising clinical results achieved by one
of these compounds, infigratinib (BGJ398) in metastatic
cholangiocarcinoma with FGFR2 gene fusions or rearrangements
(70), a phase I study (NCT04424966) is ongoing in recurrent high-
grade glioma with definite mutations of FGFR1 or FGFR3 or
translocations involving FGFR3 (14).

AZD4547 is an oral TKI selective for FGFR1, 2, and 3 which
showed only a modest activity in patients with advanced cancer
who harbor FGFR1, 2, or 3 alterations and enrolled in the arm of
the National Cancer Institute—Molecular Analysis for Therapy
Choice (NCT02465060) (71).

Either of One or of No One: Neurotrophic
Tyrosine Receptor Kinase Fusions
The neurotrophic tyrosine receptor kinase (NTRK) family
comprises three genes—NTRK1 (1q21–q22), NTRK2 (9q22.1),
and NTRK3 (15q25)—each encoding one receptor protein
(TRKA, TRKB, TRKC or NTRK1, NTRK2, and NTRK3)
(Figure 5) with the same characteristics of the other
transmembrane receptors with tyrosine kinase activity (72).
The recognized ligands nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), and neurotrophin-3
(NTF-3) exhibit a preferential binding with TRKA, TRKB, and
TRKC, respectively (73–76). Upon ligand binding, receptor
dimerization induces signals that promote cell survival and
proliferation. The most common oncogenic NTRK aberrations
produce fusion proteins able to activate signaling independently
from ligand binding (76) (Figure 5). The constitutive activation
of NTRK signaling induced by NTRK fusions has been
recognized as oncogenic not only in different rare and
aggressive tumors, such as salivary gland and infantile
fibrosarcoma tumors (77), but also more commonly melanoma
and thyroid carcinoma as well as lung, breast, and colon cancer
(78, 79). NTRK fusions are less reported in glioma (0.55 to 2%)
while exceeding 5% in pediatric high-grade gliomas (80). In some
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cases, the NTRK fusion correlates to the switch from low-grade
to high-grade glioma (81).

Larotrectinib is the first FDA-approved powerful and
selective TRK inhibitor. Both in vitro and in vivo, larotrectinib
inhibits kinase activity by blocking ATP binding sites and, in
vivo, potently suppresses the growth of tumor cancer with TRKA
and TRKB fusion proteins (82). Following several positive pre-
clinical investigations (83, 84), three trials (NCT02122913;
NCT02637687, SCOUT; and NCT02576431, NAVIGATE) led
to FDA approval, but it should be emphasized that only one was
a phase II basket trial while the others were phase I studies. The
combined analysis of the two of these trials documented that the
responses induced by larotrectinib were significant in terms of
number, duration, and speed of onset (85). In December 2020, an
early phase I clinical trial (NCT04655404) was started to evaluate
the disease control rate in high-grade pediatric glioma with
NTRK fusion (14).

Entrectinib is another orally available inhibitor with activity on
TRKA/B/C, ROS1, and ALK (86, 87) developed to reach a high
concentration in the central nervous system that correlates to high
intracranial activity as shown in preclinical models (88). Two phase
I dose-escalation studies and a phase II basket trial STARTRK-2
(NCT02568267) supported the activity of entrectinib. In 2020, an
integrated analysis of these three clinical trials (89) confirmed that
entrectinib is an effective treatment for patients with NTRK fusion-
positive solid tumors. The results of the ongoing STARTRK-2 and
STARTRK-NG trials are awaited to confirm the activity of
entrectinib in NTRK fusion-positive tumors (90).

Selitrectiniband repotrectinibarenext-generationTRKinhibitors
developed to be used at the presentation of resistance. Clinical trials
are ongoing (NCT03215511 and NCT03093116) (14).
DISCUSSION

The therapeutic algorithm of GBM is based on some main
indications with few evolutions over time. As proof, the
Central Nervous System National Comprehensive Cancer
Network Guidelines have not required any update for more
than a year (91). Surgery with radical intent, at diagnosis and
relapse, is a bearing pillar, whereas medical treatments consist of
the dated STUPP protocol following resection and limited
therapeutic options while on a progressive disease. A
significant advancement over standard treatment has been
obtained with the intensification of adjuvant temozolomide
with tumor-treating fields, which interferes with cell growth.
This treatment achieved a reduction of about 40% in the risk of
progression and death in a large, randomized trial (92).

However, GBM is not only an aggressive and ominous disease
but also distinctively affects the entire body functions through
the tumor itself and related edema, with invalidating symptoms
such as headache, speech disturbances, loss of motor abilities,
amnesia, sleep disorders, seizures, fatigue, and psychiatric
disorders, with the need for a specialized team to counteract
each of them. In front of this parade of symptoms, supportive
care also turns around steroids, antiseizure drugs, and a few
other beneficial medications. This perspective is rather
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frustrating because of the instinctive comparison between the
therapeutic advancements in several types of cancer with the
insufficient medical progress and invariably poor prognosis of
GBM patients.

Genomics has radically changed the outcomes of many
tumors with identifiable actionable and druggable mutations.
Otherwise, the identification of gene alterations and presumptive
key pathways has not translated into practice-changing results
in GBM. There are different reasons underlying this
paradoxical discrepancy.

First, there is the selectionofmolecules for clinical studies.Many
times, drugs active in cell and animal models fail to confirm any
activity in clinical trials. Of note is that the pre-clinical evaluation of
most RTK-targeting molecules has been conducted in models
harboring a unique genetic alteration that is far from the
heterogeneous nature of GBM. Moreover, predetermined
selection criteria based on molecular tumor signatures may
address the rational use of RTK-targeting compounds.

The BBB, tumor edema, and necrosis limit the rate of the drug
ultimately reaching the target tumor so that a pharmacodynamically
effective concentration is not attained. As intuitively
recognized, even the most powerful drug should exert a
limited effect if does not reach an active concentration in
brain tumors. One way to overcome the limited drug
transition through the BBB is local administration at surgery
time when access to the tumor area is easier—for example, with
Frontiers in Oncology | www.frontiersin.org 8
gliadel wafers which, however, reported controversial results
(93). The next-generation approaches, including biomaterials,
alternative formulations, and targeted delivery, bear the
promise to improve the glioblastoma therapy outcomes.
Targeted delivery includes the selection of biochemical
compounds interacting with a ligand highly expressed in
brain tumor and studies of pharmacokinetics improving drug
distribution and reducing elimination. The most promising
approaches concern nanoparticles and exosomes loading the
active cargo and efficiently carrying it at the tumor site.

Most studies are investigating the complex nature of
glioblastoma which even increases if we look immediately outside
the restrictedfield of tumor cells: the composite networkof immune
cells, blood vessels, and the microglia compartments which
reciprocally interact. These cells are presumed to be more stable
and perhaps targetable (94). However, it is hard to identify a unique
hypothetical Achilles’ heel.

Intensive medical research concern immunotherapy which,
however, require being adaptively inclined to glioblastoma specificity.
This tumor is fundamentally immune resistant as documented by
some intrinsic features, such as low tumormutational burden, a highly
immunosuppressive microenvironment, and tumor heterogeneity,
without counting systemic immunosuppression which is often
associated with glioblastoma because of steroid concomitant use.
Moreover, primitive and relapsed tumors are different in their gene
signatures, thus exhibiting a different response to a defined treatment,
FIGURE 5 | Schematic view of NTRK signaling. Ligands (NGF in squares, BDNF in triangles, and NF3 in circles) and their respective receptors (TRK1/2/3) are
represented. The main neurotrophic tyrosine receptor kinase (NTRK) fusion products (TRK-BCL1 and TRK-EV6) are represented as ellipticals as they do not need
any ligand to be active. All the receptors trigger the MAPK pathway, leading to the indicated consequences. Two drugs, entrectinib and larotrectinib, can inhibit the
NTRK aberrant forms as shown.
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as recent studies suggested (95). This is the shape-shifting nature of
glioblastoma—changing constantly its appearance to prevail over the
host. The selection by different parameters, such as high towards low
tumor mutational burden, may help to individualize treatment
strategies. Moreover, the combination of procedures, such as
radiotherapy, which itself increases antigen presentation with
enhanced immunotherapy by the use of immune adjuvants or
dendritic cells, bears the promise that the desert landscape of
glioblastoma will change.

Looking at the role of gene pathways that preliminarily raise
important expectations, such as EGFR, two main mechanisms
have been suggested: target independence, namely, alterations in
the target that becomes insensitive to inhibition, and target
compensation; in other words, the activation of alternative
pathways (96). GBM cells are probably dependent on several
growth pathways and are particularly skilled to escape a one-
modality attempt. The dynamics of GBM cells with their
adaptive nature to change under therapeutic and metabolic
pressure (97) and the role of microenvironment with other
peculiar metabolic and molecular signatures (98) even
complicate the enigmatic nature of this tumor. Since GBMs are
characterized by multiple genetic as well as epigenetic mutations
within the same tumor, it is fundamental to perform extensive
research using single-cell technology to comprehensively define
GBM heterogeneity. These results will not only elucidate the
unclear GMB-related biological mechanisms but will also
identify genomic signatures and address treatment strategies,
including combinatorial therapy. On top of that, it remains also
crucial to recognize new druggable targets driving GBM onset,
maintenance, and progression that will contribute to changing
the present treatment algorithms.

Concerning NTRK and BRAF, they are found only in a
minority of adult cases. A relatively low percentage of a
definite alteration is hard to represent in a paradigm shift for
the whole. Moreover, the low rates of these alterations allow only
for phase II and basket/umbrella trials, with phase III studies
being unfeasible. Consequently, these studies are not candidates
for evaluation through a standardized approach such as the
Frontiers in Oncology | www.frontiersin.org 9
European Society for Medical Oncology Magnitude of Clinical
Benefit Scale aimed at defining the unbiased magnitude of the
clinical benefit given by a new anticancer therapy (99).

To date, the expectations placed in precision medicine and,
particularly, in genomics determine the heterogeneous use of
cancer gene platforms worldwide, which does not always
correspond to the principles of evidence-based medicine and
available guidelines. In the future, it will be urgent to unravel the
molecular pathways involved in GBM drug resistance
mechanisms as well as improve drug delivery approaches to
bypass BBB. Next-generation sequencing methods should be part
of national and international studies, including data banking and
platform trials integrated with artificial intelligence and
machine-learning-based approaches, which can disclose the
composite and mutable nature of glioblastoma.
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