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Ultra-long quantum walks via spin–orbit photonics
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The possibility of fine-tuning the couplings between optical modes is a key requirement in photonic circuits for quan-
tum simulations. In these architectures, emulating the long-time evolution of particles across large lattices requires
sophisticated setups that are often intrinsically lossy. Here we report ultra-long photonic quantum walks across several
hundred optical modes, obtained by propagating a light beam through very few closely stacked liquid-crystal meta-
surfaces. By exploiting spin–orbit effects, these implement space-dependent polarization transformations that mix
circularly polarized optical modes carrying quantized transverse momentum. As each metasurface implements long-
range couplings between distant modes, by using only a few of them we simulate quantum walks up to 320 discrete steps
without any optical amplification, far beyond state-of-the-art experiments. To showcase the potential of this method,
we experimentally demonstrate that in the long time limit a quantum walk affected by dynamical disorder generates
maximal entanglement between two system partitions. Our platform grants experimental access to large-scale unitary
evolutions while keeping optical losses at a minimum, thereby paving the way to massive multi-photon multi-mode
quantum simulations. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.474542

1. INTRODUCTION

The demand for versatile and efficient machines implementing
quantum operations in a controlled and accessible environment
[1] has fueled the development of a variety of artificial systems,
based for instance on ultra-cold atomic ensembles [2], trapped
ions [3], superconducting [4], and photonic platforms [5]. These
devices promise access to revolutionary applications in quantum
computing [6] and quantum information processing [7–9], and
allow for the generation of highly entangled states to be used for
example in quantum metrological tasks [10]. Among quantum
processes that are investigated within these systems, evolutions
known as quantum walks (QWs) [11] stand out for their applica-
tions in fields as diverse as quantum computation [12], transport
phenomena [13], and topological physics [14]. QWs model the
quantum evolution of particles (or “walkers”) equipped with a
spin-like internal degree of freedom (the “coin”), moving on com-
plex graphs. In their simplest version, discrete-time QWs involve
a walker moving along a one-dimensional (1D) lattice, whose
sites are labeled by an integer number m. After τ discrete steps, a
QW maps the input state |ψ(0)〉 to |ψ(τ)〉 =U τ

|ψ(0)〉, where
U is the single-step evolution operator. In photonic simulations
of QWs, as in those of generic tight-binding Hamiltonians, posi-
tion states |m〉 are mapped into distinct optical modes, which are
coupled so as to engineer the desired evolution [5,15–19]. These

photonic circuits, providing a linear and unitary map between
a set of input and output modes, are the core-technology at the
basis of boson sampling experiments [20] that recently brought
the demonstration of quantum advantage with photonic setups
[6,21]. While optical circuits typically rely on the manipulation
of spatial modes arranged in separated optical paths, either in
integrated [5,22] or in bulk interferometers [6], the control of
co-propagating optical modes having complex temporal [15,21] or
spatial [23–25] structures is emerging as a powerful technology to
generate reconfigurable and high-dimensional photonic machines,
not to mention their obvious applications in the generation and
manipulation of structured light [26]. In this work, we present
a platform implementing unitary operations on co-propagating
optical modes having circular polarization and carrying quantized
transverse momentum. By leveraging state-of-the-art spin–orbit
photonics [27], which enables the control of light spatial structure
through the manipulation of its polarization, we engineer optical
evolutions that are equivalent to QWs of hundreds of steps and
involve a massive amount of modes. Significantly, this is achieved
by using only three spin–orbit optical metasurfaces [28]. As such,
this setup turns out to be extremely compact and efficient, and
it overcomes crucial limitations of standard photonic circuits
simulating QWs and other quantum evolutions.
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2. RESULTS

A. Optical Modes with Quantized Transverse
Momentum

The photonic circuit we present here couples circularly polarized
optical modes carrying quantized transverse momentum, thus
displaying a linear phase gradient in a direction that is perpendicu-
lar to the main optical axis of the system. By labeling the optical
axis as z and the quantization direction as x , these modes have the
following expression:

|m, j 〉 = A(x , y , z)e ikzze ikm x
| j 〉. (1)

They carry a quantized amount of transverse momentum
km =m1k⊥, where 1k⊥ = 2π/3, m is an integer number, and
3 is the spatial period of the transverse beam profile. In Eq. (1),
A(x , y , z) is the spatial profile of the beam and kz is the wave
vector z component, while | j 〉 ( j ∈ {L, R}) represents the polari-
zation state, being left-circular or right-circular, respectively. These
photonic states represent Gaussian beams that propagate in the
x − z plane and form a small angle α 'mλ/3 with the z axis. As
detailed in [23], they are orthogonal as long as w0 &3, with w0

being the beam radius at the waist. In our setup, all these modes
propagate within a single optical beam, and their ensemble may,
therefore, be regarded as a discrete photonic synthetic dimension
[29,30].

From the perspective of a QW, a photon being in the state
|m, j 〉 represents a walker sitting at the lattice site m, with a coin
state | j 〉. QWs involving these modes have been first reported
in [23] [up to five steps in a two-dimensional (2D) QW] and in
[31] (up to 14 steps in a 1D QW), by exploiting light propagation
through a sequence of polarization gratings (g -plates), whose num-
ber was proportional to that of simulated steps. Here we construct
the overall photonic transformation, which maps input and out-
put states via a QW evolution, by means of only three spin–orbit
metasurfaces, as shown in Fig. 1(a). This represents a radically
different approach from standard architectures (as for instance
those in [23,31]) relying on cascaded or looped setups, where the
number of passages through optical plates increases linearly with
the number of steps τ [see Fig. 1(b)].

Specifically, we implement a photonic simulator consisting
of a collimated light beam—or equivalently single photons—
propagating along the z axis through suitable optical metasurfaces.
The encoding of the walker position m into the photon transverse
momentum km automatically maps the walker momentum q into
the photon transverse position x . The Hilbert space associated

with the walker momentum (from now on the x variable) pro-
vides the convenient framework to model translation-invariant
evolutions. In this case, indeed, Bloch theorem dictates that the
operator U is composed of a family of block-diagonal unitary oper-
ators U(x ) that act on the coin only. As the two orthogonal coin
states are mapped into left and right circular polarizations |L〉 and
|R〉, the Bloch operator U(x ) can be effectively realized through
a position-dependent polarization rotation, as those widely used
to shape multi-mode structured light [32]. Such optical trans-
formation is necessarily periodic, with a spatial period 3 that
defines the effective length of the synthetic Brillouin zone (BZ)
for the quasi-momentum. By manipulating the coin state at each
quasi-momentum value x , we simulate the dynamics of a particle
hopping between discrete states |m, j 〉.

B. Spin–Orbit Photonics for QWs

To generate a 1D QW with a two-state coin (such as those dis-
cussed in [17]) performing τ discrete steps, we first compute its
complete Bloch operator U τ (x ). Then, we implement the asso-
ciated polarization transformation using patterned liquid-crystal
(LC) wave plates, hereafter referred to as liquid-crystal meta-
surfaces (LCMSs). These are manufactured by sandwiching a
micro-metric LC layer between two glass plates, whose internal
sides are coated with a transparent conductive material. The lat-
ter allows one to apply an electric field perpendicular to the LC
slab, tuning in turn the effective birefringence of the cell and its
associated optical retardation δ [see Fig. 1(c)]. In the basis of cir-
cular polarizations, the action of a single LCMS is provided by the
following matrix:

Qδ(θ)=

(
cos

(
δ
2

)
i sin

(
δ
2

)
e−2iθ

i sin
(
δ
2

)
e 2iθ cos

(
δ
2

) )
, (2)

where θ is the angle that LC molecular direction forms with the x
axis. We consider a set of three plates, having fixed optical retar-
dations δ1 = δ3 = π/2 and δ2 = π . The corresponding cells are,
thus, acting as quarter-wave plates (QWPs) and half-wave plates
(HWPs), respectively. By adjusting the value of θ of individual
devices, one can implement an arbitrary polarization rotation via
the minimal sequence L= Qπ/2(θ3)Qπ (θ2)Qπ/2(θ1) [33]. The
latter cannot be further reduced to two elements, as the unitary
matrix U τ has three independent real parameters (neglecting
a global phase factor). LC technology at the basis of standard
q -plates [28] enables us to realize metasurfaces with a contin-
uously modulated angular orientation θ(x ), which is key to
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Fig. 1. Implementing QWs via liquid-crystal metasurfaces. (a) In our devices, a light beam passes through three liquid-crystal metasurfaces (LCMSs),
whose combination implements the evolution operator U τ of the entire walk comprising τ steps. (b) In usual QW setups, instead, the number of optical
operations scales linearly with the number of steps. (c) Scheme of a LCMS. The out-of-plane orientation ϕ of the LC molecules can be easily tuned by an
external electric field. (d) A LCMS, fabricated to realize 240 steps of a QW, is observed between crossed polarizers, unveiling its birefringent structure. (e) We
plot a map in the x − y plane of the argument E of the eigenvalues associated with the step operator obtained from the LCMS reported in panel (d). The
profile is clearly periodic with spatial period3.
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Fig. 2. Generating QW evolutions. (a) Sketch of the experimental setup. After preparing the input state, the whole evolution is generated by the three
LCMSs (Q1, Q2, Q3). The final distribution is recorded by a camera placed in the focal plane of a Fourier lens. (b) Optic-axis modulations of the three
LCMSs implementing U 20

1 (π). The plots cover one BZ. (c) Light intensity distribution recorded for one U 20
1 (π) realization. (d) Experimental distribution

resulting from U 20
1 (π), compared with the theoretical prediction.

implementing the desired spatially varying polarization transfor-
mation L(x )= U τ (x ). Naturally, the same functionality could
be obtained by using spin–orbit metasurfaces based on a different
technology, such as dielectric nanostructures [34,35] or other
metamaterials [36].

In Fig. 1(d), we show an experimental image of a prototypical
LCMS fabricated for the experiment observed between crossed
polarizers. The action of the crossed polarizers maps different
values of θ(x ) into levels of transmitted light, thus converting the
angular pattern into an intensity distribution. Our QW is then
realized by cascading three LCMSs, as shown in Fig. 1(a), replac-
ing long sequences of optical devices that are normally required
for these simulations. As an example, our previous setup [23] for
simulating QWs required two optical elements at each time step,
introducing nearest-neighbor couplings only and, thus, limiting
our experiments to at most 14 time steps [31]. Here instead each
metasurface couples hundreds of modes with a long-range con-
nectivity, dramatically reducing the number of required elements.
Actual values of the patterns (θ1(x ), θ2(x ), θ3(x )) implementing
the desired operatorU τ are found via analytical expressions that are
illustrated in Section 4. The overall polarization transformation is
described by a position-dependent SU(2) operator that exhibits a
periodic character [see Fig. 1(e)].

C. Ultra-Long QWs

QW simulations based on the scheme presented above are per-
formed using the setup illustrated in Fig. 2(a). A standard He–Ne
laser source (with wavelength λ= 633 nm) produces a linearly
polarized coherent beam, which we expand via a telescopic two-
lens system (L1 and L2) to have the final beam waist w0 '3. A
pinhole (PH) placed in the focal plane of L1 acts as a spatial filter.
After preparing the input coin-polarization state with a combina-
tion of a HWP and a QWP, the whole QW is realized by passing
the beam across three LCMSs (Q1 −Q3), which are set a few
millimeters apart from each other. In Fig. 2(b), we report the LC
patterns used to generate 20 time steps of the single-step operator
U1(δ), whose definition is provided in Section 4. At the exit of
the last metasurface, the optical field features a complex polari-
zation pattern, with each polarization component modulated
by a complex envelope with spatial period 3. As a consequence,
the beam is diffracted in the x − z plane into a superposition of
the optical modes defined in Eq. (1). In the focal plane of a con-
verging lens (L3), these are focused at spatially separated positions

[see Fig. 2(c)]. As anticipated, the peak envelopes have negli-
gible overlaps as long as w0 &3 [23] (in our implementation
w0 '3= 5 mm). The optical power carried by each mode is
measured using a CCD camera, and recorded images are processed
to extract the walker probability distribution (see Section 4).

We start our experiments preparing the initial state
|ψ0〉 = |m = 0〉|L〉, which is a circularly polarized localized
input. The probability distribution measured after the 20-step
QW is reported as blue bars in Fig. 2(d), with error bars represent-
ing statistical uncertainties obtained as discussed in Section 4.
To quantify the agreement between our results and the expected
distribution, whose values are reported as red bars in Fig. 2(d), we
compute the similarity s = (

∑
m

√
P e (m)P i (m))2. Here, P e (m)

and P i (m) represent the experimental and ideal probabilities for
the walker to occupy the mth site, respectively. For this preliminary
experiment, we obtain an excellent similarity, s = 93.4± 0.4%.

We then proceed to implement much longer evolutions, gen-
erating 240 time steps of a different QW protocol U2(δ) (see
Section 4). To our knowledge, this goes far beyond previous exper-
iments [37], which generally reached up to 50–70 steps in absence
of optical amplification mechanisms that can balance losses, as
for instance in [38]. In Fig. 3(a), we plot the measured proba-
bility distribution, which spans more than 200 lattice sites and
reproduces quite accurately the predicted distribution (similarity
s = 85.8± 0.5%). In Fig. 3(a), we also show the LC pattern of
Q2 (the second LCMS implementing the walk). With τ = 240
the LC modulations are very rapid and actually approaching the
maximum resolution presently achievable in our LCMSs (see
Section 4). To perform even longer evolutions, we cascade two QW
setups (each composed of three LCMSs), each implementing 160-
step evolutions, thus effectively realizing 320 time steps. The LC
optic-axis patterns associated with the second 160-step LCMS are
plotted in Figs. 3(b) and 3(c), where we also report the distributions
corresponding to 320 steps of QWs U2(δ) and U3(δ), respectively
(see Section 4). The latter provides the most severe test for our
platform, as the associated dynamics leads to a noticeably wider
broadening of the walker distribution due to larger values of the
underlying group velocity. The optical wave packet spreads over
more than 400 spatial modes for each polarization component, for
a total of more than 800 modes. In these cases, the obtained simi-
larities are not as high as for shorter evolutions. We expected this
at least for two reasons, indeed (i) the walker wave packet spreads
over a significantly large number of sites, and (ii) unavoidable
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Fig. 3. Ultra-long QWs. Experimental probability distributions resulting from (a) τ = 240 steps of U2(7π/4); (b) τ = 320 steps of U2(7π/4); (c) τ =
320 steps of U3(π). Each panel includes the similarity s and the optic-axis modulations in half a BZ (2.5 mm, from x = 0 to x =3/2) of the second LCMS
employed in the corresponding evolution.

misalignments between the cells in the x direction induce greater
errors in the experimental evolution. Nonetheless, the overall
experimental distributions remain in very good agreement with the
expected results (showing similarities of at least 75%). In general, a
more accurate reconstruction might be obtained by replacing our
three-plate scheme with multiple stages exhibiting modulations
with smaller spatial periods, which can be fabricated with higher
accuracy. However, this would always be associated with increased
optical losses.

As shown above, our platform unlocks the realization of
ultra-long (compared with the state of the art) QW evolutions in
large-scale lattices, which hitherto appeared prohibitive due to the
amount of required resources and optical losses. To provide a quan-
titative estimate of the efficiency of our new platform, engineering
240 steps in our setup requires three plates only. With a transmit-
tance' 0.85 across each plate, the total transmittance of our setup
is (0.85)3 ' 0.6, while the scheme adopted in [23] (which requires
two plates per time step) would transmit (0.85)2∗240

' 10−34 of
the input light. While other setups may have a higher single-step
efficiency, losses will scale exponentially in every platform concep-
tually similar to the schemes reported in Fig. 1(b) or in integrated
photonic systems [5]. Besides, the data we present in Fig. 3 indicate
that our setup guarantees a high level of coherence between the
different optical modes, whose protection in long evolutions over
large lattices is extremely challenging.

D. Maximal Entanglement Generation

Ultra-long QWs across large-scale lattices have important funda-
mental and technological applications. For instance, in a recent
experiment, long-time QWs in a nine-vertex graph enabled the
measurement of the centrality ranking of directed graphs [39].
However, that implementation requires a number of optical ele-
ments that grows rapidly with the system size, thereby preventing

the application of such an approach to large-scale systems. This
is not the case in our platform, where the ability to connect an
increasing number of modes within a few spin–orbit optical ele-
ments is enabled by the increasing complexity of their patterns.
As a proof of principle, we use our setup to generate maximal
entanglement between the natural partitions in our system, consti-
tuted by the coin and the walker degrees of freedom, respectively.
Entanglement can be quantified in terms of the Von Neumann
entropy S =−Tr(ρc log2 ρc ) of the reduced density matrix ρc of
the coin. This corresponds to the partial trace of the total density
matrix (associated with the whole quantum state of the system)
with respect to the spatial degree of freedom (see Section 4) [40]. In
a standard 1D QW, it is known that in the long time limit S con-
verges to a finite value that is below the maximumS = 1. However,
theoretical studies indicate that maximal entanglement generation
can be achieved by adding dynamical disorder to the system and
letting the input state evolve for a significantly long walk [41]. A
first remarkable experiment was performed in a 20-step QW [42],
where an optimal sequence of step operators yielding maximal
entanglement was demonstrated. At the same time, the authors
discussed that their achievement is not general, since maximal
entanglement can be obtained for every disordered sequence of step
operators only in the limit of ultra-long walks. In our platform,
we have access to this regime; thus, we can validate experimentally
the theory put forward in [41]. To introduce dynamical disorder,
as prescribed in the original work by Vieira et al. [41], we design
three LCMSs that engineer the walk

∏τ
i=1 U3(δi ), with δi varying

randomly at each time step in the range [π − π/5, π + π/5].
The result of the QW is directly determined in terms of projective
measurements of the output field on different polarization states
(see Section 4) [43]. We focus on linearly polarized inputs, as in our
protocol the increase in entanglement is maximal for these states.
These can be expressed as |φ〉 = 1

√
2
(|L〉 + e iφ

|R〉), where φ/2
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(b) (c)

(a)

Fig. 4. Disordered QW as maximal entanglement generator.
(a) Theoretical and experimental coin density matrix for φ = 8π/5,
after a disordered 160-step U3 evolution. (b) Von Neumann entropyS for
QWs governed by U3, for linearly polarized input states with azimuthal
angle φ on the Poincaré sphere. Blue and red datapoints represent exper-
imental measurements after 160 steps in the ordered and disordered
case, respectively, and the curves show the expected results. (c) The mean
values of these datasets are plotted against numerical simulations of S(τ ),
averaged over 100 different inputs states and over 10 realizations for each
input (in the disordered configuration). Where not visible, error bars are
smaller than the markers.

gives the angle of the polarization plane. In Fig. 4(a), we show the
reconstructed density matrix for an input state with φ = 8π/5
for a single disordered realization (τ = 160), finding a remarkable
agreement with numerical simulations. In Fig. 4(b), we report the
measured values of the von Neumann entropy S that we obtain
for different linearly polarized input states, demonstrating that a
disordered and prolonged evolution of every input state generates
maximal entanglement (S > 0.98). The deviations from expected
values observed in the ordered case could possibly be ascribed to
some form of undesirable disorder that cannot be completely extin-
guished in our devices, mainly related to fabrication defects. In
Fig. 4(c), we observe that average values of S at τ = 160 are nicely
positioned on the theory curves showing the dynamical evolution
of the von Neumann entropy as a function of τ .

3. DISCUSSION AND CONCLUSION

We presented a photonic platform capable of generating large-scale
walks, corresponding at the same time to ultra-long dynamics
in a Hilbert space spanned by hundreds of optical modes carry-
ing quantized transverse momentum. Engineering the whole
dynamics with an exceedingly limited number of optical elements
eliminates the need of aligning bulky optical setups and dramati-
cally reduces optical losses and decoherence effects. In this work,
we used a classical laser source, and all these results may, therefore,
be understood in terms of single-particle physics. The next logical
step is to study genuine multi-particle dynamics, where the photon
detection for each spatial mode can be achieved by using a fiber
array placed in the focal plane of the output lens, with fibers con-
nected to standard single-photon detectors. This has been recently
illustrated by some of us in a proof-of-principle demonstration,
reporting QWs performed by two indistinguishable photons [44]
obtained with a standard cascaded setup [23], which permitted

only three discrete steps in a 2D walk. On the other hand, the new
platform is ideally suited for generating large-scale multi-photon
QWs mixing hundreds of optical modes with long-range connec-
tivity and, therefore, represents a unique resource for cutting-edge
quantum computing experiments [6,21]. Another natural pros-
pect of our work is to compress 2D QWs in a few metasurfaces.
Although conceptually straightforward, complex singularities in
the LC patterns will require a careful fabrication and an accurate
alignment of the final setup. In parallel, we plan to investigate
QWs that do not display translation invariance, which may be
obtained by adding symmetry-breaking layers. While here we
focused on ultra-long QWs with well-known individual-step
operators, in the future, we plan to directly engineer much more
complex evolutions, starting from the design of the energy bands
and of the associated eigenstates, realizing for instance topological
flatbands in one and two spatial dimensions. Our LCMSs are based
on a technology that is conceptually similar to the one present in
commercial LC displays. The very fast industrial progresses experi-
enced by these components could, therefore, straightforwardly be
adapted to our setup to make it completely reconfigurable in real
time in the close future.

4. METHODS

A. Quantum Walk Protocols

At each time step, under the action of an operator T, the walker
can be displaced to its neighbor sites, moving either to the right or
to the left depending on the state of a two-level internal degree of
freedom (the “coin”). Between two consecutive translations, the
coin state is modified through a coin rotation W . Assuming left
and right circularly polarized light as the coin basis states, the coin
rotation can be expressed as follows:

W =
1
√

2

(
1 i
i 1

)
, (3)

and the coin-dependent translation operator reads

T(δ)=
(

cos(δ/2) i sin(δ/2)t̂
i sin(δ/2)t̂† cos(δ/2)

)
, (4)

where the operators t̂ and t̂† represent the forward and backward
elementary translations on the lattice, acting as t̂|m〉 = |m − 1〉
and t̂†

|m〉 = |m + 1〉. The parameter δ tunes the hopping ampli-
tudes between neighbor sites. The chosen combination of these
two operators identifies a specific QW protocol U , also represent-
ing a single step of the process. For our 20-step QW experiment,
we chose protocol U1(δ)= T(δ)W , at δ = π . For the 240-
step and 320-step evolutions, we chose U2(δ)=

√
T(δ)W

√
T(δ), at δ = 7π/4. For the longest dynamics, we also chose

U3(δ)= R†T(δ)W R , at δ = π , where the additional rotation is
defined as follows:

R =
(

cos(π/8) −i sin(π/8)
−i sin(π/8) cos(π/8)

)
. (5)

The last protocol has been chosen also for investigating disor-
dered evolutions. Let us note that the Ui are single-step operators
of a given QW. As discussed in the main text, we implement a
complete τ -step QW by means of only three metasurfaces, as
U τ = (Ui )

τ
= Qπ/2(θ3)Qπ (θ2)Qπ/2(θ1).
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B. Experimental Setup

A He–Ne laser beam (λ= 633 nm) passes through a telescope
system, consisting of two aspheric lenses L1 and L2 (with focal
lengths f1 = 5 cm and f2 = 30 cm) and a 25 µm PH. The latter
operates as a spatial filter. As discussed in the text, we found a con-
venient choice setting the beam waistw0 ' 5 mm. A combination
of a HWP and a QWP sets the desired input polarization. After
preparing the input polarization, the beam passes through the three
LCMSs implementing the full dynamics. These are located in a
handy plastic box provided with external screws, allowing us to
adjust their transverse displacement. This represents the crucial
stage for the required precise alignment. At the exit of the box, we
put a lens L3 (with focal length f3 = 50 cm) Fourier-transforming
light momenta into positions on the CCD camera placed in the
focal plane. The camera is mounted on a motorized translation
stage, as for long evolutions the full light distribution cannot be
captured within a single photo shoot. To resolve the walker distri-
bution, subsequent pictures are, therefore, merged and analyzed
(see next section).

C. Measuring Probability Distributions

After experiencing the QW evolution, in the focal plane of the final
lens, light distributes over several spots, each one corresponding
with a walker site. The probability P (m) that the walker is found
in the mth site is obtained by integrating the light intensity I (m)
within the mth light spot, and normalizing it to the total intensity,
that is P (m)= I (m)/

∑
m′ I (m′). Light intensities are integrated

over a 5× 5 pixel domain,

I (m)=
m+2∑

i=m−2

m+2∑
j=m−2

I (xi , y j ),

with xm and ym being the pixel coordinates of the mth site. To
determine the coordinates of the light spot associated with the
mth site, first the m = 0 position has to be determined. This is
accomplished by setting the optical retardations of the LC wave
plates equal to 2π . In this way, all LCMSs are “turned off,” and
only the spot associated with m = 0 is observed. Then we set the
appropriate voltage for each metasurface to generate the desired
evolution. Consequently, several spots appear on the camera. We
computed the distances between consecutive spots and found that
the average distance is' 12 pixels for all realizations.

D. Error Bars in Probability Distributions

Values in each probability distribution are obtained by repeating
the associated experiment four times, with each measurement
being performed after realigning the three LCMSs and eventually
averaging the resulting intensity distributions. Error bars are esti-
mated as the mean standard errors (MSEs). This procedure allows
us to take into account experimental uncertainties associated
with relative misalignments between the three plates along the x
direction.

E. Maximum Achievable Resolution and Paraxial
Approximation

Since a single step of the QW process couples neighbor sites only,
after τ time steps the evolution operator contains long-range cou-
plings, with the maximum coupling length being exactly τ . In our

photonic implementation, this implies that the largest transverse
momentum kick is τ1k⊥. Accordingly, the fastest modulation that
can be present in our plates has a spatial period3/τ . For a 240-step
QW evolution, the period associated with the fastest modulation
is ' 20µm. As the ultimate length scale at which LC molecules
can be modulated is of the order of the cell thickness, this indi-
cates that plates employed for the 240-step evolution are already
approaching the maximum achievable resolution. Nevertheless, as
mentioned in the text, one can stack multiple three-plate stages to
implement longer evolutions. We note here that, to remain within
the paraxial approximation, the transverse momentum of each
mode must be much smaller than the longitudinal wave vector,
i.e., τ1k⊥� 2π/λ, where λ is the photon wavelength. In our
setup, this can be approximately fulfilled up to the extreme case
τ ' 800, where τλ/3' 10−1. This number can be potentially
increased by increasing 3 and/or using photons with shorter
wavelength.

F. Computing Optic-Axis Patterns

We observed that QW dynamics can be suitably mapped into
position-dependent polarization transformations. These can be
reproduced by means of LCMSs with a non-uniform optic-axis
orientation. Here follows the description of the procedure we
adopt to compute the correct values of the angles θi (i = {1, 2, 3})
to reproduce a target dynamics. The global evolution operator
U τ (x ) can be decomposed as U τ (x )=

∑
α cα(x )σα , where σ0 is

the identity matrix and σ = {σ1, σ2, σ3} is the vector of the three
Pauli matrices. The sequence of three LCMSs L(x ) can be analo-
gously decomposed asL(x )=

∑
α `α(x )σα . In order to determine

the three optic-axis modulations, we have to solve the equations,

`α(x )= cα(x ), α = {0, 1, 2, 3}. (6)

More explicitly,
− cos(θ1 − θ3) cos(θ1 − 2θ2 + θ3)= c 0

i sin(θ1 + θ3) sin(θ1 − 2θ2 + θ3)= c 1

−i cos(θ1 + θ3) sin(θ1 − 2θ2 + θ3)= c 2

−i sin(θ1 − θ3) cos(θ1 − 2θ2 + θ3)= c 3

, (7)

where we have omitted the dependence on x . This equation system
is overcomplete as a consequence of the unitarity of the whole
process. Considering a given position x , eight sets of analytical
solutions θi (x ) (i = {1, 2, 3}) exist for the Eq. (7). To compute the
correct patterns to be used in the fabrication process, we fixed the
length of the synthetic BZ at3= 5 mm, discretizing it in steps of
4 µm. If calculating the angles picking only one of the solutions
mentioned above, we observe that computed values are not varying
continuously (blue modulation in Fig. 5). To overcome this issue,
we devise a dedicated algorithm that automatically switches the
solution to be used whenever the value of the angle that has been
computed features a sudden jump. This approach actually avoids
jumps and yields patterns that are continuously modulated (red
modulation in Fig. 5).

G. Von Neumann Entropy

At any time τ , the state can be written as |ψ(τ)〉 =∑
m(αm |L〉 + βm |R〉)|m〉, with the normalization constraint∑
m(|αm |

2
+ |βm |

2)= 1. Accordingly, the density matrix of this
pure state reads
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Fig. 5. Searching for continuous optical modulations. Optic-axis
modulation of the first LCMS implementing U 10

1 (π). The blue modula-
tion corresponds to the case when only a specific set of solutions is picked.
A number of discontinuities would visibly arise in the pattern. Whenever
a discontinuity is detected, the algorithm searches among the remaining
sets of solutions until a continuous modulation (red curve) is found for
the three LCMSs.

ρ = |ψ(τ)〉〈ψ(τ)|

=

∑
m,n

(αm |L〉 + βm |R〉)(α∗n〈L | + β
∗

n 〈R |)|m〉〈n|. (8)

Tracing over the walker part of the state, one obtains the coin
reduced density matrix,

ρc =Trm(ρ)=

∑
m
|αm |

2 ∑
m
αmβ

∗
m∑

m
α∗mβm

∑
m
|βm |

2

 , (9)

from which the von Neumann entropy S =−Tr(ρc log2 ρc ) can
be computed.

H. Experimental Reconstruction of the Reduced
Density Matrix

Our setup offers a natural way to trace out the walker degree of
freedom, since measuring the coin reduced density matrix is
equivalent to retrieving the polarization state of the whole beam.
This is accomplished by measuring the beam reduced Stokes
parameters {s 1, s 2, s 3}. These are obtained by recording the light
intensity associated with a suitable combination of six projective
measurements, performed with a QWP, a linear polarizer, and
a powermeter. The coin reduced density matrix can be finally
reconstructed asρc = (σ0 +

∑
i s iσi )/2 [43].
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