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Abstract
To estimate the performance of China in terms of energy use efficiency during the first two
decades of the twenty-first century while also taking into consideration pollutant emission,
this study uses a panel data set covering 30 provincial administrative regions in mainland
China for the period 2000–2016. To overcome problems with the DEA-based method, this
study proposes an SFA-based model that can estimate environmental energy efficiency while
maintaining the regularity constraints imposed on undesirable output, by using Bayesian
technique. Our empirical results show that the average value of environmental energy effi-
ciency during the whole sample period changed from 0.7858 in 2000 to 0.7726 in 2016, with
an average value of 0.7812 over the whole period. This result is in sharp contrast with findings
based on the often-used GDP/energy and GDP/undesirable output indexes, both of which

B Andrea Appolloni
andrea.appolloni@uniroma2.it

Hongzhou Li
hli@dufe.edu.cn

Yijie Dou
dufedouyj@dufe.edu.cn

Vincenzo Basile
vincenzo.basile2@unina.it

Maria Kopsakangas-Savolainen
maria.kopsakangas@oulu.fi

1 Center for Industrial and Business Organization, Dongbei University of Finance and Economics,
Dalian 116025, Liaoning Province, China

2 University of Rome Tor Vergata, 00133 Rome, Italy

3 Cranfield University, Cranfield, Bedford MK43 0AL, UK

4 National Research Council (CNR), 80134 Naples, Italy

5 Department of Economics, Management, Institutions, Federico II University of Naples,
80126 Naples, Italy

6 Finnish Environment Institute, University of Oulu Business School, 90570 Oulu, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-05053-z&domain=pdf
http://orcid.org/0000-0003-3118-1599
http://orcid.org/0000-0001-5741-398X
https://orcid.org/0000-0001-9679-2070
https://orcid.org/0000-0001-8776-0915
https://orcid.org/0000-0003-2110-9307


Annals of Operations Research

show an improving trend over same sample period. This study suggests that more sophis-
ticated indexes should be used to evaluate meaningful energy efficiency and environmental
protection-related performance.

Keywords Environmental energy efficiency · SFA · DEA · Bayesian technique

1 Introduction

Recently, the idea that “lucid waters and lush mountains are invaluable assets” was put for-
ward by the president of China. This fundamental change in development philosophy and the
corresponding developmental measures is expected to further boost investments in emission
reduction, leading to a decrease in undesirable outputs per unit of GDP in China. However,
just as environmental deterioration is a process of long-term accumulation; environmental
improvement will necessitate even longer-term effort. Hence, we examine China’s perfor-
mance trajectory in terms of energy use efficiency and pollutant emission during the first
two decades of the twenty-first century. This kind of descriptive research is important given
that it provides fundamental information for further scientific analysis; for example, it can be
used to conduct ex post policy impact analysis or to mark a new baseline. Although absolute
emission amounts and GDP/energy or GDP/undesirable output ratios are frequently used and
easily handled and understood indexes of performance, they suffer from incomparability over
time and across regions and can only provide limited information of relevance; for example,
changes in a country’s energy consumption make little sense if GDP is not taken into con-
sideration. Similarly, the GDP/energy ratio may only show limited information since other
inputs, such as capital, and other outputs, such as CO2, are not embodied in this index. Put
differently, if a rise in the GDP/energy ratio comes at the cost of larger inputs in other factors
and/or higher emission of pollutants, it is difficult to interpret the environmental significance
of this development pattern.

From the viewpoint of Pareto optimality, efficiency- or productivity-based indexes are
more meaningful and informative of the trajectory of energy consumption and pollutant
emission during a given period. Furthermore, as early as 1983, Pittman theoretically stressed
the necessity of combining undesirable outputs with other kinds of outputs and inputs in
efficiency and productivity analyses (Pittman, 1983). Zhou and Ang (2008) can be seen as
offering a response to this call: they construct a number of energy efficiency indexes that
take undesirable output(s) into consideration by using the nonparametric data envelopment
analysis (DEA) framework. In what follows, energy efficiency with undesirable output(s) is
termed environmental energy efficiency (hereinafter referred to as EEE).

However, to the best of our knowledge, few parametric stochastic frontier analysis (SFA)-
based models have been proposed for EEE so far.1 This may be partly due to the challenge
of imposing regularity constraints on undesirable output(s) during the estimation process.
Consequently, this study attempts to fill this gap by combining the Shephard energy input
distance function with the Bayesian technique. As will be noted in Sect. 3, the Bayesian
technique makes it possible to impose regularity constraints on undesirable output(s) by
setting a prior density distribution function on the coefficients.

The contribution of this study lies in three aspects. First, the study proposes a new SFA-
based model that can estimate environmental energy efficiency. In situations where the time

1 Li et al. (2019) are an exception and use an input requirement function to address the problem of handling
regularity constraints.
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span is long and the environmental heterogeneity among decision-making units (DMU) is
obvious, the SFA-basedmethod is thought to be superior to theDEA-basedmethod in terms of
the accuracy of estimates, given that the DEA-basedmethod is unable to separate inefficiency
from the error term in an easy and accurate manner,2 unable to control for contextual impacts,
and unable to isolate efficiency changes from technological changes. Indeed, in the presence
of rapid technological change or clear stochastic exogenous shocks, DEA-based methods
may seriously bias the estimation results. Second, based on the modes of constructing the
frontier and adjusting the inputs, this study classifies EEE estimation methods into four
types (discussed in more detail in Sect. 2.3). This classification clarifies the comparison
of development stages of different types and helps highlight meaningful research agendas.
Third, this study enriches the empirical literature onChinese energy- and environment-related
issues. It also confirms that the GDP/energy and GDP/undesirable output ratios that are often
used in economic analysis may tell incomplete or even biased stories, and it is strongly
suggested to combine these one-sided indexes with more sophisticated ones, such as EEE.

The remainder of the paper is organized as follows. Section 2 offers a literature review on
energy efficiency estimation methods. The newly proposed model is presented and explained
in Sect. 3, which is followed by an application to China in Sect. 4. Section 5 reports and
discusses the empirical results, and Sect. 6 concludes the paper.

2 Literature review

In this section, we first review representative models proposed for estimating EEE and then
classify these EEE estimation methods into four types. This is followed by a discussion
of unsolved estimation issues for those four types of methods, thereby underscoring the
necessity of our newly proposed model. Finally, we review how undesirable outputs are
treated in parametric efficiency estimation-related models, from which we borrow building
blocks for the construction and estimation of our new model.

2.1 Development of DEA-based EEEmodels

Patterson (1996) critically reviews the methods used to measure energy efficiency and sum-
marizes the advantages and disadvantages of various methods. He notes that the commonly
used energy-to-GDP ratio is incapable of measuring technical change and distinguishing
energy efficiency changes prompted by adjustment of the industrial structure from changes
caused by pure technical efficiency. Finally, he defines energy efficiency as the ratio of useful
output to energy input in the process. Given that the term efficiency is usually defined as
the ratio of optimal input (or output) to actual input (or output), other things being constant,
while productivity is usually defined as the ratio between output(s) and input(s) (Coelli et al.,
2005), the definition given by Patterson (1996) is more similar to measuring energy in terms

2 Three-stage DEA (Fried et al., 2002) and four-stage DEA (Yang and Pollitt, 2010) can be used to separate
contextual effects from efficiency estimation. Additionally, Tulkens and Vanden Eeckaut (1995) put forward
three possible ways to deal with technical change in the DEA approach. For an updated review of studies
that have applied DEA to the field of energy and the environment, see, for example, Sueyoshi et al. (2017).
Furthermore, see Moradi-Motlagh (2022) for a comprehensive overview on the use of statistical approaches
in non-parametric efficiency studies.
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of productivity rather than in terms of efficiency.3 However, his study does raise the issue of
how to gauge energy efficiency scientifically and meaningfully.

As energy input alone cannot produce any outputwithout incorporating non-energy inputs,
Hu and Wang (2006), inspired by the conception of total factor productivity employed in the
growth accounting literature, introduce the notion of total factor energy efficiency (TFEE)
as a proxy of energy efficiency performance. They regard capital, labor, energy and other
factors as inputs and GDP as output; formally,

T FEEit � 1 −
{[

(1 − β∗) ∗ energyacturali t + Slackenergyi t

]
/energyacturali t

}
(1)

whereβ∗ represents technical efficiency and informs the equal-proportional radial contraction
of all inputs (capital, labor and energy) in the production of a given level of output (GDP),
energyacturali t stands for the actual energy input and Slackenergyi t stands for the nonradial
adjustment of the ith DMU in period t. Consequently, the sum of (1 − β∗) ∗ energyacturali t
and Slackenergyi t indicates savable energy input through both radial adjustment and nonradial
adjustment.

Mukherjee (2008) proposes anotherDEA-basedmodel that can be used to estimate towhat
degree energy input alone can be maximally reduced while allowing the DMU to produce a
constant level of output (or more) without using any additional amounts of any other inputs,
namely,

β∗ � min β

s.t .

N∑
j�1

xnon−energy
i j λ j ≤ xnon−energy

i0 , i � 1, 2, ..., M

N∑
j�1

xenergyi j λ j ≤ βxenergy0 , j � 1, 2, ...N

N∑
j�1

ygoodj λ j ≥ ygood0 , λ j ≥ 0 (2)

where xnon−energy
i j denotes the ith non-energy input of the jth DMU and xnon−energy

i0 repre-
sents the ith non-energy input of DMU0, namely, the DMU under evaluation. Under such a
model, a value of 0.85 for β∗, for example, means that if DMU0 is as efficient in terms of
energy input (not all inputs) as DMU (s) at the frontier, it will produce the same or a higher
amount of output y0 by using 85 percent of the actual energy input xenergy0 and the same or
a smaller amount of non-energy inputs xnon−energy

i0 .
The aforementioned models proposed by Hu and Wang (2006) and Mukherjee (2008)

do not take undesirable outputs into consideration. As increasing attention is being paid to
environmental issues such as global climate change in general and haze disasters in devel-
oping countries in particular, an energy efficiency measurement containing information on
undesirable outputs is particularly instructive and of great importance in terms of designing

3 This definition of energy efficiency is sometimes termed energy intensity in the literature and is widely used
in empirical studies and government documents. Ang (2006),Wu et al. (2007) and Proskuryakova and Kovalev
(2015) provide a more detailed discussion of energy efficiency. Further, given that the goal of producers is to
minimize the total factor cost or maximize profit instead of minimizing physical inputs, Liao et al. (2016) put
forward the term energy economic efficiency, which takes input prices into consideration.
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environmentally benign policies. Zhou and Ang (2008) attempt to fill this gap between prac-
tical needs and the academic literature.Within a joint production framework of both desirable
and undesirable outputs,4 a simplified version of the model put forward in Zhou and Ang
(2008) can be expressed as

β∗ � min β

s.t .

N∑
j�1

xnon−energy
i j λ j ≤ xnon−energy

i0 , i � 1, 2, ..., M

N∑
j�1

xenergyi j λ j ≤ βxenergy0 , j � 1, 2, ...N

N∑
j�1

ygoodj λ j ≥ ygood0 , λ j ≥ 0

N∑
j�1

ybadj λ j � ybad0 (3)

where ygood and ybad represent desirable and undesirable outputs, respectively; further, it is
assumed here that there is only one energy input, one desirable output and one undesirable
output [more complicated examples are also discussed and addressed in Zhou and Ang

(2008)].5 Imposing the weak disposability assumption on undesirable output (
N∑
j�1

ybadj λ j �
ybad0 ) implies the introduction of environmental regulation, which means that disposal of
undesirable output is a costly activity because firms are required to divert some of their
productive resources (which could otherwise be used for the production of desirable output)
to control pollution. To examine whether environmental regulation could further improve
energy efficiency when energy conservation regulation already exists, Mandal (2010) further
modifies the model proposed by Zhou and Ang (2008) as follows:

β∗ � min β

s.t .

N∑
j�1

xnon−energy
i j λ j ≤ xnon−energy

i0 , i � 1, 2, ..., M

N∑
j�1

xenergyi j λ j ≤ βxenergy0 , j � 1, 2, ...N

N∑
j�1

ygoodj λ j ≥ ygood0 , λ j ≥ 0

4 In line with Färe et al. (1989), the joint production framework of both desirable and undesirable outputs
imposes two additional constraints on the production technology. One is that undesirable outputs are weakly
disposable, while the other is null-jointness, which implies that production of a positive amount of desirable
output must be accompanied by some amount of an undesirable one.
5 Zhou et al. (2017) extend Total-factor energy efficiency model by taking into account congestion effect,
emlying the definition of congested production technology.
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N∑
j�1

ybadj λ j ≤ ybad0 (4)

The only difference between formula (3) and formula (4) is that the former imposes∑N
j�1 y

bad
j λ j � ybad0 while the latter imposes

∑N
j�1 y

bad
j λ j ≤ ybad0 , which means that the

weak disposability of undesirable outputs is changed to strong disposability. Put differently,
it is assumed that there is no additional environmental regulation in reality. According to
Mandal (2010), if the energy efficiency scores estimated with formula (3) are higher than
those estimated with formula (4), it follows that environmental regulation, such as mandatory
carbon-dioxide emission orders, could further improve energy use efficiency even when
energy conservation regulation already exists.

2.2 Developments of SFA-based energy efficiency estimationmodels

Our literature review shows that Feijoó et al. (2002) and Buck and Young (2007) offer the
earliest tentative studies on energy efficiency estimation using parametric models. Subse-
quently, Boyd (2008) replaces the usual error terms ε in the input requirement function and
subvector input distance function with the composed error terms v ± u, in which v is used
to capture systematic error, whereas u represents inefficiency caused by management short-
falls or even absence due to a distorted incentive scheme or other controllable reasons. By
introducing the composed error term, Boyd (2008) changes the input requirement function
and subvector input distance function to the SFA-based energy requirement function and
SFA-based Shephard distance function, both of which can be used to estimate energy effi-
ciency when output, energy and non-energy inputs are given. Zhou et al. (2012) proposes an
economy-wide SFA-based energy efficiency index.6 Furthermore, Filippini and Hunt (2015)
illustrate the meanings of radial and nonradial measurements of energy efficiency in detail
and extend the aggregate frontier energy demand model first presented by Filippini and Hunt
(2011)7 into an input requirement frontier model, which includes other non-energy inputs.
Filippini and Hunt (2011) also propose an energy demand frontier model to explore the min-
imum amount of energy required for a certain amount of output when input prices are given.
Furthermore, Filippini and Hunt (2012, 2016) and Filippini et al. (2014) employ, for the first
time, various SFA-based models to estimate energy efficiency.

2.3 Classifications of EEE estimationmethods

The previous literature review shows that depending on how the EEE results are obtained,
EEE methods can be classified into nonparametric DEA-based EEE and parametric SFA-
based EEE.8 In addition, according to how the non-energy inputs are treated during the
estimation process, the EEE results can be further divided into two types, namely, EEE in

6 In Zhou et al. (2012), both SFA and DEAmethods for estimating the economy-wide energy efficiency index
are given, which makes possible the instructive comparison of the two methods.
7 Filippini and Hunt (2014) regard this approach as an ad hoc one because it does not completely consider the
theoretical restriction imposed by production theory and estimates only one input demand frontier function.
8 In the spirit of the frontier framework, the DEA method treats the production frontier as deterministic and
regards the distance from the observed point to the frontier as representative of inefficiency; conversely, SFA
treats the production frontier as stochastic and separates the distance from the observed point to the frontier
into inefficiency and error-term components. With respect to the weaknesses and virtues of the nonparametric
DEA method and parametric SFA method in the estimation of efficiency, see, e.g., Kumbhakar and Lovell
(2000), Fried et al. (2007) or Greene (2008). Furthermore, the StoNED method is a third method to estimate
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terms of radial measurement and EEE in terms of nonradial measurement. More specifically,
nonradial measurement of EEE refers to a situation where non-energy inputs are efficiently
used and hence only energy input can be contracted, whereas radial measurement of EEE
refers to a situation where it is assumed that non-energy inputs may also be inefficiently used
and can be contracted proportionally with energy input (Appendix Figs. 5 and 6 illustrate
this difference in more detail).

In conclusion, based on the mode of construction of the frontier and adjustment of inputs,
it follows that there are four types of EEE estimates (as shown in Appendix Table 6), namely,
(i) estimates obtained through the DEA-based method assuming that all inputs are not used
efficiently (DEA-based radial EEE); (ii) estimates obtained through the DEA-based method
assuming that only energy input is not used efficiently (DEA-based nonradial EEE); (iii)
estimates obtained through the SFA-based method assuming that all inputs are not used effi-
ciently (SFA-based radial EEE); and (iv) estimates obtained through the SFA-based method
assuming that only energy input is not used efficiently (SFA-based nonradial EEE).

The literature review in Sects. 2.1 and 2.2 shows that both the DEA-based radial EEE and
DEA-based nonradial EEE methods are well developed methodologically and empirically,
while neither the SFA-based radial EEE method nor the SFA-based nonradial EEE method
is widely discussed. It is a surprising as well as real gap that should be filled.

2.4 Treatment of undesirable output in SFAmodels

In what follows, we will review how undesirable output is treated within extant SFA-based
empirical studies in both energy- and non-energy-related research fields. Special attention is
paid to whether the regularity constraints of null jointness put forth by Shephard and Färe
(1974) and of weak disposability of undesirable outputs advocated by Shephard (1970) are
imposed in these studies and, if so, in which way.

In brief, undesirable output is usually treated as an input, output or exogenous technology-
shifter in efficiency-related empirical studies. More specifically, the origin of regarding
undesirable output, viz., environmental pollutants, as an input of production can be traced
back to Ayres and Kneese (1969), who assert that the amount of environmental pollutants
should approximately equal the weight of energy and raw material inputs. This is called the
mass balance approach and is further developed by Ayers (1978). In a review conducted by
Cropper and Oates (1992), it is found that treating undesirable outputs as inputs has been
the standard approach within the environmental economics literature. Recent studies along
this line include Considine and Larson (2006) and Mekaroonreung and Johnson (2012). In
studies regarding undesirable outputs as input factors, the assumptions of both null jointness
and weak disposability are automatically imposed.9

Footnote 8 continued
efficiency. It combines advantages of the DEA method (e.g., there is no need to specify the functional form)
with advantages of the SFAmethod (e.g., the fact that SFA is able to separate the error term from the inefficiency
term). However, basically, the StoNED method treats the frontier as stochastic, similar to the SFA method.
Given the virtues of StoNED method, a promising research agenda involves assessing whether it can be used
to estimate EEE. For theoretical discussions on StoNED, see, for example, Kuosmanen (2006), Kuosmanen
and Kortelainen (2012) and Kuosmanen et al. (2015); for empirical applications, see Kuosmanen (2012),
Eskelinen and Kuosmanen (2013) and Li et al. (2015).
9 The models in this branch of empirical studies usually take form of production functions, which means
that the absence of any kind of input (such as undesirable output) will make the production of desirable
output impossible; hence, the null-jointness assumption holds. Furthermore, since the relationship between
outputs and inputs is usually nondecreasing in the production function, the weak disposability assumption
is also automatically satisfied. This nondecreasing relationship, however, can also be maintained by adding
additional constraints. See Mekaroonreung and Johnson (2012, p. 725) for details.
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The treatment of undesirable outputs as outputs has been pioneered by Färe et al. (1993)
and mainly involves the use of distance function-based models (Parmeter and Kumbhakar,
2014). In Färe et al. (1993), a Shephard output-oriented distance function is constructed
and used to estimate the shadow price of undesirable output. Since the Shephard distance
function assumes that desirable and undesirable outputs are inflated or deflated at the same
rate and in the same direction, in other words, that outputs are radially adjusted, this method
may not satisfy the common interests of the public and policymakers, who prefer to reduce
undesirable outputs and increase desirable outputs simultaneously. To address this concern,
Färe et al. (2005) develop a directional distance function that allows for the simultaneous
inflation of desirable outputs and deflation of undesirable outputs. Additionally, in both Färe
et al. (1993) and Färe et al. (2005), the weak disposability assumption of undesirable outputs
is maintained by imposing constraints on the quadratic directional output distance function,
while the null-jointness assumption is not imposed in their empirical models.10 Bokusheva
and Kumbhakar (2014) present another approach to treating undesirable outputs. In their
study, a hedonic function h(ybad , ygood ) is used to represent an aggregator of desirable
and undesirable outputs. Further, the functional form chosen for h(ybad , ygood ) determines
the type of relationship imposed on the two kinds of outputs. Needless to say, neither null
jointness nor weak disposability is imposed ex ante in this input-oriented distance function
model.

The final treatment of undesirable output in parametric efficiency estimation techniques
involves taking it as a shifter of the technology set (see Sect. 3 for a detailed discussion). The
studies of Atkinson and Dorfman (2005) and Assaf et al. (2013) fall within this field, and
they further employ a Bayesian estimation method to obtain efficiency scores of individual
DMUs and coefficients of the models. The weak disposability assumption is imposed by
adding constraints to the models, and the null-jointness constraint is imposed automatically
in this type of parametric model. More specifically, supposing the coefficients for desirable
and undesirable outputs are βgood and βbad , respectively, this means that production occurs
if and only if the combination of βgood and βbad is possible under the present production
technology; otherwise the production process stops. It follows that if either of the two kinds
of output become zero, the production process will cease; consequently, the null-jointness
constraint imposed on output is automatically imposed in this kind of parametric model.

In what follows, we will borrow the Bayesian technique from Atkinson and Dorfman
(2005) and Assaf et al. (2013) to construct and estimate SFA-based EEE in terms of both
radial measurement and nonradial measurement.

3 Model specification for SFA-based EEE

As noted above, in the construction of the SFA-based models to estimate EEE, the most
challenging problem encountered is how to maintain the regularity constraint of weak dis-
posability. To be more direct, the challenge is how to decide the sign of coefficients for
desirable and undesirable outputs in the model construction and how to respect those con-
straints in the model estimation. The null-jointness constraint is satisfied automatically in the
parametric SFA-based model, as noted above.

Inspired by Atkinson and Dorfman (2005) and Assaf et al. (2013), this study attempts to
surmount this weak disposability barrier by means of the Bayesian technique. Supposing a

10 In Färe et al. (2005), the quadratic directional output distance function is also estimated using stochastic
estimation methods, where both assumptions are not imposed ex ante but discussed after estimation.
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production process with two inputs and one desirable output and ignoring the existence of
undesirable output for the time being, we can obtain a standard isoquant. If a firm produces a
certain amount of undesirable output ybadt1 at time t1, then the isoquant shifts upward, reflecting
that a higher combination of inputs is required to produce the same desirable output because
some inputs used are directed toward reducing the production of the undesirable output. The
larger the amount of ybadt1 , the higher the combination of inputs is. This means that with
constant desirable output and technology, undesirable output can only be further reduced
through the increased usage of at least some inputs (Assaf et al., 2013). If we further hold the
inputs of capital and labor constant and realize the increase in input through an increase in
the energy input, it follows that the undesirable output should be negatively associated with
energy input. This means that, given a specific level of technology, the non-energy (labor and
capital) inputs and desirable outputs, less undesirable output (emission) comes at the cost
of more energy input, viz., ∂E/∂Y bad ≤ 0. Correspondingly, the sign of the coefficient for
undesirable output should be positive, viz., ∂E/∂Y god ≥ 0. Finally, an SFA-based model
that is used to estimate nonradial EEE can be expressed as

− log(E) � f (Y good , Ybad , X ) − uit + vi t

∂ f /∂Y good ≤ 0

∂ f /∂Ybad ≥ 0

vi t ∼ i idN (0, σ 2
v )

ui ∼ i idN+(0, σ 2
u ) (5)

Accordingly, an SFA-based model used to estimate radial EEE, which can be seen as the
application of the input distance function to the field of EEE estimation, can be expressed as

− log(E) � f (Y good , Ybad , X/E) − uit + vi t

∂ f /∂Y good ≤ 0

∂ f /∂Ybad ≥ 0

vi t ∼ i idN (0, σ 2
v )

ui ∼ i idN+(0, σ 2
u ) (6)

where Y good , Ybad , X and E represent the desirable output, undesirable output, non-energy
inputs and energy input, respectively, and vi t and uit represent the random noise and ineffi-
ciency terms. The error term can also be assumed to follow different kinds of distributions.

Having constructed the model, we now turn to the process of model estimation. The
challenge here lies in how to satisfy the sign constraints on the coefficients during the model-
estimation process. Clearly, the most commonly used maximum likelihood estimator cannot
achieve this goal. However, in SFA-based empirical studies, the Bayesian technique is also
used to estimate the coefficients of the model and the efficiency scores of individual DMUs.
Moreover, according to vandenBroeck et al. (1994) andGriffin andSteel (2007), theBayesian
method has the characteristics of (i) full leveraging of prior knowledge of parameters (includ-
ing the coefficients as well as the inefficiency level) in the estimation process11; (ii) easy
incorporation of restrictions such as regularity constraints into the model through the prior
density distribution function and (iii) easy selection of the most fitting model from competing

11 On the one hand, according to Baltagi et al. (2001), the incorporation of prior information on parameters
provides convenience; on the other hand, it is a difficult task in some cases to make proper prior assumptions
on parameters.
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ones.12 This study will use the second characteristic of the Bayesian method to achieve the
goal of imposing a sign constraint on the coefficients of the two kinds of outputs, namely,
setting the ex ante constraints that the coefficient for desirable output follows a normal distri-
bution and takes a value less than zero and that the coefficient for undesirable output follows
a normal distribution but takes values greater than zero.

4 Environmental energy efficiency levels in China

4.1 Background

To support roughly one-fifth of the global population with only seven percent of the world’s
agricultural acreage, China has chosen to mobilize nearly all the resources that could be
exploited to promote the process of its industrialization at the outset, even at the cost of
environmental deterioration to some extent (Wu, et al., 2019). As shown in Table 1, over
the 35 years from 1980 to 2015, the percent share of the Chinese economy in world GDP
(PPP dollars), grew from 2.32 to 17.24. At the same time, the percent share of Chinese
energy consumption in world primary energy consumption also increased from 6.29 to 22.92.
Although energy efficiency in China in terms of its GDP/energy ratio rose from 0.37 in 1980
to 0.75 in 2015, it was still lower than the ratios of Japan, the U.S. and India, at 1.23, 0.92
and 1.33, respectively, in 2015.13

By the beginning of the twenty-first century, environmental degradation in China had
become serious, to the extent that it is now perceived and felt not only by environmental
scientists and specialists but also by the general public. For example, in 2015, the number of
days that air quality in Beijing met official standards was only 186. In other words, the people
of Beijing had to wear masks to protect themselves from air pollution for almost half of the
year in 2015. More seriously, according to the weather report by China Central Television,
the predominant state television broadcaster, approximately 1.42 million square kilometers,
or one-seventh of China’s national territory, was covered in thick haze onDecember 19, 2016,
and as a consequence, many highways had to be closed to avoid traffic accidents.

Many measures have been taken by the Chinese government to address environmental
and energy problems since the beginning of the twenty-first century, and the paradigm shift
from resource mobilization to sustainable development has often involved direct govern-
ment/public sector interventions, such as incentives to adopt greener technologies/processes
in personal behavior and/or production through subsidies or an additional tax on polluting
technologies/processes. Representative events include the nomination of the former president
of Tsinghua University, who is a specialist in environmental protection and has studied and
worked in English for about ten years, as the Minister of Environmental Protection; strength-
ening of the penalties, including criminal liability, against those who purposely and severely
violate the environmental protection law; and enforcement of the InterimMeasures forReduc-
tion and Substitution of Coal Consumption in Key Provincial Administrative Regions (PARs)
(Directive 2984 in 2014). To evaluatewhether energy conservation and environmental protec-
tion policies have achieved their goals, the present study will employ environmental energy
efficiency as an index. Given that information about both energy consumption and envi-
ronmental pollutants is contained simultaneously in the EEE index, its performance should
dominate that of indexes such as energy intensity or pollutant emission of per unit of GDP.

12 For more detailed explanations, see Li et al. (2016).
13 Data are taken from the BP Statistical Review of World Energy 2016.
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4.2 Research design

4.2.1 Model selection

TO estimate the SFA-based EEE values, we need to select our preferred SFA models from
competing ones. However, there is no one model that is absolutely predominant over the
others; instead, each model often displays a virtue or virtues at the cost of the loss of another
or several other virtue(s). Therefore, the research purpose and the degree of compatibility
between the data and the model are used to decide which model(s) is (are) selected. Fur-
thermore, as a pragmatic method, empirical researchers often employ more than one model
to estimate efficiency levels and then take the average of the estimates as the final value.14

We follow this research practice and select three models to complete the estimation process.
More specifically, we choose one model each from the second, third and fourth generations
of SFA models.15

4.2.2 Assumption on non-energy input adjustments

SFA-based EEE with nonradial adjustment assumes that only energy input may be used
inefficiently, whereas SFA-based EEE with radial adjustment assumes that both energy and
non-energy inputs (capital and labor inputs in this study) may be used inefficiently and
that they all need to be adjusted proportionately. In reality, we cannot argue for or against
either method with full confidence because we perceive that both assumptions (that only
energy inputs are inefficiently used and that all inputs are inefficiently used) are unlikely,
and consequently, efficiency estimates obtained from a single method are likely to be biased.
As a pragmatic compromise, this study uses the average values of the radial and nonradial
estimates to represent the final level of Chinese EEE.

In total, there are 6 models that are used to estimate EEE levels; the first three are based
on the nonradial treatment, while the last three are based on the radial treatment. Finally, we

14 Even for price regulation in natural monopoly industries, regulatory bodies such those in Germany, Finland
and England employ different frontier models to estimate cost levels and then use the average value of the
estimates from different models to determine the final cost level of individual monopolies. Some scholars such
asKuosmanen (2012) refer to this practice as “naivemodel averaging” and criticize the parallel use of estimators
based on conflicting assumptions or specifications, whereas others such as Agrell and Bogetof (2017), Per
J. Agrell and Peter Bogetoft (2017), "Regulatory Benchmarking: Models, Analyses and Applications", Data
Envelopment Analysis Journal: Vol. 3: No. 1–2, pp 49–91. http://dx.doi.org/10.1561/103.00000017) support
this approach, stating, “We do not share this criticism. As long as benchmarking scholars cannot clearly rank
one method as being superior to another, we see no reason the regulator should make that call. It is also not
just ‘an easy way out’ of methodological discussion to apply multiple methods. In fact, one can argue that it
makes life easier for the regulator and the model developers to only have to relate to one set of assumptions
and one set of results, and that the simultaneous application of multiple methods puts additional discipline on
the model development approach.”.
15 The development of SFAmodels may be classified into four generations, namely, i) first-generationmodels,
which treat inefficiency as firm effects (random or fixed) and time-invariant; ii) second-generation models,
which assume inefficiency is time-varying; iii) third-generation models, which assume inefficiency is time-
varying and which simultaneously isolate firm effects from inefficiency; and iv) fourth-generation models,
which assume that inefficiency is neither time-invariant nor time-varying, but rather a composite consisting
of a persistent part and a transient part. Well-known papers promoting SFA development include pioneering
works by Aigner et al. (1977) and Meeusen and van den Broeck (1977), Pitt and Lee (1981), Schmidt and
Sickles (1984), Battese and Coelli (1988, 1992, 1995), Cornwell et al. (1990), Kumbhakar (1990), Kumbhakar
et al. (2014), Greene (2005a, 2005b), Filippini and Greene (2015), Battese and Rao (2002), O’Donnell et al.
(2008), Cullmann (2012), Agrell et al. (2014) and Huang et al. (2014), among others.
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use the average value of the estimates from these 6 models as the EEE level for individual
provincial administrative regions in China.

4.2.3 Treatment with environmental variables

There are generally two kinds of approaches used to deal with environmental variables
in the efficiency literature. One assumes that environmental variables influence production
technology and hence incorporates them directly into the stochastic frontier model as the
regressor; the other assumes that they influence only the distance that separates each firm
from the best practice function and hence constructs a regression function between efficiency
and environmental factors. As for the predominance of either of the two methods, Coelli
et al. (1999, p. 267) point out, “The ex-ante selection of one method over the other is a
difficult task. From a philosophical standpoint, we prefer the Case 2 model because we
believe the estimated frontier represents the outer boundary of the production possibility
set, irrespective of environmental issues. The gross efficiency measures obtained from this
procedure seem closest to the intuitive notion of efficiency being about converting physical
inputs into physical outputs. One can then decompose these gross efficiency measures into
managerial and environmental components if additional data is available.”

This study follows this suggestion and does not incorporate any environmental variables
into the SFA model; the estimated efficiency here is sometimes termed gross efficiency.
Further, because our main interest in this study lies in estimating the EEE levels during the
sample period instead of identifying the relationship between efficiency and environmental
variables, we do not conduct any analysis on this issue.16

4.3 Data collection andmodel specification

The data collected include 510 observations from 30 provincial administrative regions of
mainland China, spanning from 2000 to 2016.17 The data are mainly taken from the China
Statistical Yearbook on Environment, China Environment Yearbook, China Statistical Year-
book, China Energy Statistical Yearbook and CEInet Statistical Database. The selection
of variables is in line with the microproduction framework by Zhou and Ang (2008) and
Filippini and Hunt (2015); specifically, we regard capital, labor and energy as inputs and
GDP and CO2 (carbon dioxide) as desirable and undesirable outputs. Detailed information
is summarized in Table 2.

Model I
The first model specified is the Shephard input distance function with the functional form

suggested by Battese and Coelli (1992), which can be expressed as

− ln(Eit ) � a + βk ln(Kit ) + βl ln(Lit ) + β
good
y ln(Y good

it )

+ βbad
y ln(Ybad

it ) + βt T − uit + vi t

uit � ui ∗ exp(−η(t − T ))

β
good
y ≤ 0

βbad
y ≥ 0 (7)

16 Depending on the designated research purpose, regression analysis of the relationship between efficiency
and environmental variables may be an important and integral part of some empirical studies.
17 Tibet is not included due to data accessibility, and Chongqing is grouped with Sichuan Province.
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Table 2 Data sources and processing

Variable Description Unit Data source Data
processing

Y good
it Desirable output

(GDP)
108 CNY China Statistical

Yearbook
Adjusted by
GDP index
to constant
2000 value

Ybad
it Undesirable output

(CO2 [carbon
dioxide])

104 ton China Statistical
Yearbook on
Environment,
CEInet Statistical
Database

Calculated
according to
formula
suggested by
IPPC (2006)

Eit Energy consumption
(coal equivalent)

104 ton China Energy
Statistical Yearbook

Kit Capital stock 108 CNY China Statistical
Yearbook

Adjusted by
GDP index
to constant
2000 value

Lit Labor input 104 person China Statistical
Yearbook

where Eit , Kit , Lit , Y
good
it and Ybad

it represent the energy input, capital input, labor input,
and desirable and undesirable outputs of the ith DMU in the tth period, respectively, while
vi t stands for a two-sided error term and uit captures one-sided nonnegative inefficiency. Fol-
lowing Battese and Coelli (1992), eta (η) can be more than, equal to or less than zero, which
means improved, constant or reduced estimated efficiency on the part of the focal DMU. T
represents the time trend dummy and reflects whether there is a technological change during
the sample period. Finally, the βs are coefficients to be estimated. The distribution assump-
tions on the error term and inefficiency are shown in Table 3. βgood

y ≥ 0 and βbad
y ≤ 0 mean

that increasing desirable output or decreasing undesirable output requires an increase in input,
which further reflects that reducing emission is costly and necessitates additional resource
input. This condition is taken into account through the constraint of weak disposability of
undesirable output.

Model II
In the opinion of Greene (2005a, 2005b), themodel proposed by Battese and Coelli (1992)

may overestimate the level of inefficiency because it does not separate firm-specific effects ai
(or DMU-specific heterogeneity) from the inefficiency term uit , and consequently ai may be
misestimated as inefficiency. To address this issue, the second model proposed is a Shephard
input distance model with a true random-effects functional form and can be specified as
follows:

− ln(Eit ) � a + βk ln(Kit ) + βl ln(Lit ) + β
good
y ln(Y good

it )

+ βbad
y ln(Ybad

it ) + βi T + αi − uit + vi t

β
good
y ≤ 0

βbad
y ≥ 0 (8)

123



Annals of Operations Research

Table 3 Specifications of the models employed

Model Key Hypothesis Efficiency estimation Original source

Models I
and IV

εi t � vi t − uit

vi t ∼ iddN (μ, σ 2
v ), ui ∼ i idExp(λ)

λ ∼ Exp(− log(r∗ � 0.750))

uit � ui ∗ exp(−η(t − T ))

η ∼ iddN (0, σ 2)

e f fi t � exp(−uit ) Griffin and Steel
(Shephard &
Färe, 1974)

Models
II and
V

εi t � αi + vi t − uit

vi t ∼ iddN (μ, σ 2
v )

uit ∼ Exp(λ), λ ∼ Exp(− log(r∗ � 0.750))

αi ∼ iddN (0, σ 2)

e f fi t � exp(−uit ) The present study

Models
III and
VI

εi t � αi + vi t − uit − ηi

vi t ∼ iddN (μ, σ 2
v )

uit ∼ Exp(λ), λ ∼ Exp(− log(r∗ � 0.750))

αi ∼ iddN (0, σ 2), ηi ∼ iddN+(0, σ 2)

e f fi t � exp(−uit )

∗ exp(−ηi )

The present study

where αi stands for DMU-specific time-invariant heterogeneity and the denotations of the
other variables are similar to those in formula (6). The true random-effects model makes the
separation of DMU-specific heterogeneity and inefficiency possible and solves the difficulty
encountered in the model proposed by Battese and Coelli (1992).

Model III
From the viewpoint that the inefficiency of DMUs may be composed of time-invariant as

well as time-varying parts, Kumbhakar et al. (2012) further extend the models presented in
Greene (2005a, 2005b) by adding a random term reflecting time-invariant inefficiency, i.e.,
εi t � αi ± ηi ± uit + vi t , where the denotation of vi t and αi are similar to those in formula
(6), and uit and ηi stand for time-varying and time-invariant inefficiency, respectively. Note
that in this model, time-invariant firm-specific heterogeneity is divided into two parts: one is
the heterogeneity that affects production and can be controlled by the DMU (i.e.,ηi ), and the
other is the heterogeneity that affects production but is beyond the control of the DMU (i.e.,
αi ). This model can be specified as follows:

− ln(Eit ) � a + βk ln(Kit ) + βl ln(Lit ) + β
good
y ln(Y good

it )

+ βbad
y ln(Ybad

it ) + βt T + αi − ηi − uit + vi t

β
good
y ≤ 0

βbad
y ≥ 0 (9)

Models I to III are specified to estimate the nonradial EEE levels of individual DMUs,
whereas Models IV to VI have the same functional form as the previous models except that
they are specified to estimate the radial EEE level of individual DMUs.

Model IV

− ln(Eit ) � a + βk ln(Kit
/
Eit ) + βl ln(Lit

/
Eit ) + β

good
y ln(Y good

it )
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+ βbad
y ln(Ybad

it ) + βt T − uit + vi t

uit � ui ∗ exp(−η(t − T ))

β
good
y ≤ 0

βbad
y ≥ 0 (10)

Model V

− ln(Eit ) � a + βk ln(Kit
/
Eit ) + βl ln(Lit

/
Eit ) + β

good
y ln(Y good

it )

+ βbad
y ln(Ybad

it ) + βi T + αi − uit + vi t

β
good
y ≤ 0

βbad
y ≥ 0 (11)

Model VI

− ln(Eit ) � a + βk ln(Kit
/
Eit ) + βl ln(Lit

/
Eit ) + β

good
y ln(Y good

it )

+ βbad
y ln(Ybad

it ) + βt T + αi − ηi − uit + vi t

β
good
y ≤ 0

βbad
y ≥ 0 (12)

Table 3 summarizes the models employed in this study.

5 Results and analysis

The estimation results obtained fromModels I toVI are reported and discussed in this section.
We begin our analysis with the EEE estimates. The coefficients of variables are reported and
discussed in the next part.

5.1 Environmental energy efficiency estimates

Descriptive statistics for the EEE estimates from the different models are reported in Table 4.
Since the assumptions imposed vary from model to model, the estimates from each of them
are correspondingly different. As previously noted, theoretically speaking, Models I and IV

Table 4 Descriptive statistics of estimates

Variable Mean S.D Min Max Obs

Model I 0.5914 0.2284 0.1854 0.9698 510

Model II 0.9253 0.0555 0.5884 0.9817 510

Model III 0.6187 0.2074 0.2290 0.9676 510

Model IV 0.7362 0.0954 0.5661 1.0000 510

Model V 0.9711 0.0188 0.8691 0.9952 510

Model VI 0.8447 0.0723 0.6242 0.9883 510

Average 0.7812 0.0616 0.6435 0.8997 510
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Fig. 1 Trends of environmental energy efficiency estimates for the period 2000–2016

may miscalculate firm-specific heterogeneity as inefficiency, and the estimates of EEE from
those two models should be lowest. In contrast, Models II and V not only separate firm-
specific heterogeneity from inefficiency but also assume the nonexistence of time-invariant
inefficiency; thus, the estimates from those two models should be highest.Models III and VI
suppose that inefficiency includes persistent as well as transient parts, and the estimates they
produce should theoretically fall between the estimates fromModels I and IV and those from
Models II and V . As shown in Table 4, all these theoretical predictions are confirmed by our
results. Since one cannot identify which model is closest to reality, using the average value
to reflect the industry-wide efficiency level is a commonly employed technique in empirical
studies. Table 4 shows that the average EEE value during the sample period is approximately
0.7812, with a maximum of 0.8997 and a minimum of 0.6435, which implies that there is
considerable room for improvement in China’s EEE level.

Figure 1 shows the development trajectory of EEE levels from 2000 to 2016. It seems that
(i) all models except Model IV , which shows an obvious downward trend, yield estimates
of relatively flat trends during the sample period and that (ii) when the average value of
estimates from different models is used as an index, the EEE level slightly decreased from
0.7858 in 2000 to 0.7726 in 2016.

To obtain a more comprehensive picture of pollutant emission and energy conservation
during the first 15 years of the twenty-first century, we calculate two additional indexes,
namely, the GDP/energy ratio and the GDP/undesirable output ratio. As shown in Fig. 2, the
GDP/energy ratio changed from approximately 0.6272 in 2000 to approximately 1.1150 in
2016, and the GDP/undesirable output ratio changed from 0.3124 in 2000 to 0.5907 in 2016.
Thus, both indexes show a tendency toward improvement in general, implying a reduction
in energy consumption and in pollutant emission when evaluated in units of GDP. It is an
inspiring outcome.

Now let us explain the reasons behind those differences, taking the comparison between
EEE and the GDP/energy ratio as an example. These two indexes show contradictory behav-
ior; namely, the GDP/energy ratio demonstrates an improvement in energy use efficiency,
while the EEE index does not show such a trend. Clearly, the difference comes from the
fact that the EEE index takes into consideration both desirable and undesirable outputs and
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Fig. 2 Trends of three indexes for the period 2000–2016

both energy and non-energy inputs and reports the degree of deviation between optimal
and real energy inputs, keeping non-energy inputs as well as all outputs constant, while the
GDP/energy ratio does not consider the impact of non-energy inputs and undesirable outputs.
This indicator may lead to incorrect attribution of energy conservation resulting from other
factors to improvement in energy use efficiency. For example, substituting energy input with
non-energy inputs (viz., capital or labor) and/or adopting energy-saving technology can lead
to improvements in the GDP/energy ratio. This kind of improvement is not due to a change
in energy use efficiency and cannot lead to an improvement in the EEE index. An increase
in the GDP/energy ratio may reflect an increase in attention paid to this index by policy, but
it does not necessarily mean an improvement in terms of Pareto optimality.

In conclusion, the emphasis on environmental protection and energy conservation by the
Chinese government has led to a reduction in energy consumption and CO2 emission per
unit of GDP, but this improvement may have resulted from changes such as input factor
substitution, technology improvement and upgrades of the industrial structure, rather than
from an increase in the level of EEE.

Now, we examine the EEE estimates for individual provincial administrative regions
during the period 2000–2016. Figure 3 shows that the range of EEE estimates among different
regions is relatively large, with the lowest value being 0.6823 in Ningxia and the highest
being 0.8938 in Shanghai. Generally, the EEE levels in eastern regions,18 where the speed of
economic development is relatively fast, are higher than those in central and western regions,
where it is relatively slow.

Figure 4 visualizes the spatial distribution pattern of EEE levels in mainland China.

5.2 Parameter estimates

The parameter estimates from the different models are reported in Table 5. Before we assess
the individual models, two key points deserve special attention.

18 Eastern regions in our sample include Beijing, Tianjin, Hebei, Shanghai, Shandong, Jiangsu, Zhejiang,
Fujian and Guangdong and Hainan.
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Fig. 3 EEE levels of individual provincial administrative regions for the period 2000–2016

First, the signs of the coefficients of the non-energy inputs (βk and βl ) inModels I , II and
III (under the assumption of nonradial adjustment) are the same as the sign of the energy input
(recall that the sign of the independent variable in Models I , II and III is negative), which
means that energy consumption cannot be reduced by an increase in non-energy inputs. Put
differently, no substitution relationship exists between the two types of inputs. This result
may come from our assumption that non-energy inputs are efficiently usedwhile energy input
is not, which further means that energy and non-energy inputs are treated as heterogeneous
factors. In contrast, all models including the assumption of radial adjustment (Models IV , V
andVI) demonstrate a substitution relationship between energy and non-energy inputs (recall
that the sign of the independent variable inModels IV , V and VI is also negative); namely, an
increase in the capital or labor input may result in a decrease in energy consumption, other
things being equal. Again, this is thought to be related to the ex ante assumption that all
inputs are treated homogeneously in terms of being not fully efficiently used.

Second, all models with nonradial adjustment predict technological progress (recall that
the sign of the independent variable inModels I , II and III is negative; consequently, a positive
sign on the time trend coefficient implies technological progress). More specifically, when
we assume non-energy inputs are fully efficient, energy consumption is reduced by approx-
imately 0.0068, 0.0279 or 0.0618 percent annually at the level of sample mean because of
technological progress, keeping other inputs and outputs constant. The models with radial
adjustment lead to different predictions; specifically, Models IV and VI predict technologi-
cal progress, while Model V predicts technological regression. Unfortunately, the Bayesian
method does not allow for assessment of the statistical significance of parameter estimates,
and no further judgment with confidence can be made.

Now let us examine themeanings of the different parameters. Since the variables used here
are normalized by the mean value of the sample and then the natural logarithm taken (except
for the time trend variable), the coefficients can be interpreted as the percentage change in the
mean level of the corresponding variables. First, we takeModel I as an example of themodels
in the nonradial adjustment group. Table 5 shows thatGDPgrowth of one percentwill increase
energy consumption by approximately 0.5599 percent, while a one-percent reduction in CO2

emission will necessitate additional investment equal to approximately 0.0017 percent of
the mean value of the energy variable; that is, the decrease in CO2 emission is costly and
consumes additional investment that could otherwise be used to produce desirable output.
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Fig. 4 Spatial disribution of EEE levels for the period 2000–2016. Note: Areas with efficiency � 0 have no
data

The parameter eta (η) in the B-C (92) model (Model I is also called the B-C (92) model in
the SFA literature) is used to show the dynamic change trend of the efficiency level, and a
positive value of η demonstrates the improvement in the efficiency level during the period
2000–2016. The parameter lambda (λ) in the second line from the bottom equals the ratio
between σ 2

u and σ 2
v . A value of zero means that there is no inefficiency and that energy input

is fully efficiently used (in this case, the SFA model reverts to a traditional average response
model); otherwise, the larger the value of λ is, the higher the inefficiency level of the energy
input.19

Finally, we turn to the coefficients of capital (βk) and labor (βl ). Strictly speaking, it
seems that a one-percent increase in capital (labor) input will increase energy consumption
by approximately 0.4960 (0.0297) percent, holding other inputs, outputs and the technology
level constant. However, from the viewpoint of Pareto improvement, there is little reason

19 See Battese and Coelli (1992) for more detailed explanations.
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Table 5 Parameter estimates from the different models

Nonradial adjustment Radial adjustment

Model I Model II Model III Model IV Model V Model VI

Constant 0.6136 −1.0880 0.5500 0.3989 −0.4198 0.1731

β
Y good −0.5599 −0.7481 −0.2840 −0.1365 −0.0131 −0.1275

β
Ybad 0.0017 0.0018 0.0016 0.1227 0.1466 0.2235

βk −0.4960 −0.6916 −0.6062 0.3701 0.3384 0.3190

βl −0.0297 −0.0088 −0.1631 0.1812 0.1711 0.1174

βt 0.0279 0.0618 0.0068 0.0022 −0.0040 0.0098

Eta (η) 0.0019 −0.0135

Lambda (λ) 1.6700 12.9200 8.0080 3.9160 33.5900 19.1900

Obs 510 510 510 510 510 510

Outputs from the Bayesian method do not show the statistical significance of parameters

to think that an increase in one kind of input cannot lead to improvements in other kinds
of inputs and/or outputs (the decrease in the undesirable output can be seen as a Pareto
improvement). Instead, the meaning of the coefficients of capital and labor inModel I should
be interpreted as representing the proportional relationship among different kinds of inputs
in the production process; in other words, to maintain normal production under the present
technology level, the ratio of input quantities among ln(energy), ln(capital) and ln(labor )
should be 1: 0.4960: 0.0297.

Except for the coefficients of capital (βk) and labor (βl ), the meanings of the parameters
estimated from the models in the radial adjustment group are the same as those in the radial
adjustment group. If we take capital as an example, Model IV in Table 5 shows that a one-
percent increase in capital will lead to a reduction in energy consumption of approximately
0.3701 percent, other things being equal. In other words, there exists a substitution relation-
ship between energy and non-energy inputs when we assume that both kinds of inputs are
not fully efficiently used.

6 Concluding remarks

Currently, energy conservation and pollutant emission reduction are common challenges
faced by both developed and developing economies. In this respect, the performance of
China, as the world’s largest developing economy, could have an important impact on the
patterns of change in world energy consumption and environmental protection. In response
to these concerns, the Chinese government announced that China would further reduce its
energy consumption per GDP unit by 15 percent and greenhouse gas emission by 18 percent
during the period 2016–2020. What is notable is that China announced its participation in
the Paris Climate Agreement on September 24, 2016; in doing so, China showed the world
that it will take more responsibility in global actions to reduce greenhouse gas emission and
conserve energy.

However, what has China’s performance trajectory been in terms of energy consump-
tion and pollutant emission during the first two decades of the twenty-first century? Is it
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enough to use the GDP/energy and GDP/undesirable output ratios alone as indexes of energy
efficiency and pollutant emission? With these concerns in mind, this study, based on the
Shephard input distance function and the Bayesian technique, proposes an SFA-based model
that can be used to measure environmental energy efficiency while retaining the regular-
ity constraints of null-jointness and weak disposability of undesirable output(s). Combining
undesirable outputs such as CO2 with desirable outputs such as GDP in the estimation of
energy efficiency reflects the special attention paid to environmental protection and sustain-
able development. We believe that the comparison of energy efficiency over time and/or
across regions/countries will be more informative and instructive when undesirable outputs
are also considered. Although the DEA-based method can achieve this goal, in situations
where the time span is long and the environmental heterogeneity among DMUs is obvi-
ous, the SFA-based method is thought to be superior to the DEA-based method because of
its advantages in controlling for environmental heterogeneity, in separating efficiency from
technological change, and in dividing inefficiency from the error term.

Next, we collect a panel data set covering 30 provincial administrative regions inmainland
China for the period 2000–2016 and use the newly proposed model to estimate the levels
of EEE. Further, to obtain a more objective and complete understanding, six different SFA-
based models are specified to carry out the estimation process, and both the GDP/energy
and GDP/undesirable output ratios are also calculated for the purpose of conducting a cross-
check.

The empirical results from our estimation can be summarized as follows:

i. For the individual provincial administrative regions, EEE levels differ sharply from
region to region, ranging from the lowest value of 0.6823 in Ningxia to the highest value
of 0.8938 in Shanghai. Generally, the EEE levels in eastern regions are higher than those
in central and western regions.

ii. If we take the 30 individual provincial administrative regions as a whole, the average
EEE value during the whole sample period is approximately 0.7812, with a maximum
of 0.8997 and a minimum of 0.6435. This average decreased slightly from 0.7858 in
2000 to 0.7726 in 2016.

iii. The GDP/energy ratio improved from 0.6272 in 2000 to 1.1150 in 2016, and the
GDP/undesirable output ratio increased from 0.3124 in 2000 to 0.5907 in 2016, which
implies a reduction in energy consumption and pollutant emission per unit ofGDPduring
2000–2016.

iv. On the assumption that only energy input is not fully efficiently used (in the SFA-based
nonradial EEEmodel), the empirical results show that no substitution relationship exists
between energy and non-energy inputs. The meaning of the coefficients of capital and
labor in such models should be interpreted as representing the proportional relationship
among different kinds of inputs in the production process.

v. On the assumption that both energy and non-energy inputs are not fully efficiently used
(in the SFA-based radial EEE model), the empirical results demonstrate a substitution
relationship between energy and non-energy inputs. The reason for this difference with
the results of the nonradialmodelsmay lie in the assumption that theSFA-basednonradial
EEEmodel treats energy and non-energy inputs as heterogeneous factors, while the SFA-
based radial EEE model treats them as homogeneous factors.

From the viewpoint of policy implications, our research shows the following:

i. With the emphasis placed on environmental protection and energy conservation by the
Chinese government, a reduction in energy consumption and CO2 emission per unit
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of GDP did occur during the first two decades of the twenty-first century. However,
this improvement may have resulted from changes such as input factor substitution,
technological progress or upgrading of the industrial structure, rather than from an
increase in the EEE level.

ii. TheGDP/energy and pollutant emission perGDPunit indexes can reflect only one aspect
of energy use efficiency, and they should be used in combinationwithmore sophisticated
indexes, such as the EEE index. This is because the former are influenced by factors
other than pure energy efficiency. For that reason, the EIA (2009) suggests that energy
intensity (the reciprocal of the GDP/energy ratio) does not necessarily reflect true energy
efficiency.

iii. Given the existence of positive externalities in environmental protection, plants produc-
ing undesirable output as a byproduct may be reluctant to invest in emission reduction
in the absence of incentive or punishment mechanisms. Consequently, a win–win solu-
tion in terms of economic development and environmental protection should replace the
outdated, GDP-oriented development philosophy, as the latter may weaken the incentive
for local governments to rigidly enforce environmental protection-related laws. The new
idea that “lucid waters and lush mountains are invaluable assets” advocated by the presi-
dent of China represents a major change in development philosophy, and corresponding
measures should be taken to put this idea into practice.
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Appendix

As illustrated in Fig. 5, in the case of input-oriented efficiency estimation, radial adjustment
means that energy and non-energy inputs contract from B1 to B1’ and B2 to B2’, respec-
tively. Energy efficiency is therefore obtained by calculating OB ′/OB � OB1′/OB1 �
OB2′/OB2. Nonradial adjustment, as illustrated in Fig. 6, means that only energy input
contracts as much as possible, with other inputs and outputs held constant. In such a case,
energy efficiency is calculated by OA1′/OA1. Although it is difficult to conclude which
assumption dominates the other, we should bear those differences in mind when applying
them in empirical studies (Table 6).
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Fig. 5 Radial energy efficiency
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Table 6 Matrix of four types of
environmental energy efficiency
estimates

Radial adjustment Nonradial
adjustment

Nonparametric
DEA-based

DEA-based radial EEE DEA-based
nonradial EEE

Parametric
SFA-based

SFA-based radial EEE SFA-based
nonradial EEE
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