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A B S T R A C T   

Cycling provides numerous benefits to individuals and to society but the burden of road traffic injuries and 
fatalities is disproportionately sustained by cyclists. Without awareness of the contributory factors of cyclist 
death and injury, the capability to implement context-specific and appropriate measures is severely limited. In 
this paper, we investigated the effects of the characteristics related to the road, the environment, the vehicle 
involved, the driver, and the cyclist on severity of crashes involving cyclists analysing 72,363 crashes that 
occurred in Great Britain in the period 2016–2018. Both a machine learning method, as the Random Forest (RF), 
and an econometric model, as the Random Parameters Logit Model (RPLM), were implemented. 

Three different RF algorithms were performed, namely the traditional RF, the Weighted Subspace RF, and the 
Random Survival Forest. The latter demonstrated superior predictive performances both in terms of F-measure 
and G-mean. The main result of the Random Survival Forest is the variable importance that provides a ranked list 
of the predictors associated with the fatal and severe cyclist crashes. For fatal classification, 19 variables showed 
a normalized importance higher than 5% with the second involved vehicle manoeuvring and the gender of the 
driver of the second vehicle having the greatest predictive ability. For serious injury classification, 13 variables 
showed a normalized importance higher than 5% with the bike leaving the carriageway having the greatest 
normalized importance. Furthermore, each path from the root node to the leaf nodes has been retraced the way 
back generating 361 if-then rules with fatal crash as consequent and 349 if-then rules with serious injury crash as 
consequent. The RPLM showed significant unobserved heterogeneity in the data finding four normal distributed 
indicator variables with random parameters: cyclist age ≥ 75 (fatal prediction), cyclist gender male (fatal and 
serious prediction), and driver aged 55–64 (serious prediction). The model’s McFadden Pseudo R2 is equal to 
0.21, indicating a very good fit. Furthermore, to understand the magnitude of the effects and the contribution of 
each variable to injury severity probabilities the pseudo-elasticity was assessed, gaining valuable insights into the 
relative importance and influence of the variables. 

The RF and the RPLM resulted complementary in identifying several roadways, environmental, vehicle, driver, 
and cyclist-related factors associated with higher crash severity. Based on the identified contributory factors, 
safety countermeasures useful to develop strategies for making bike a safer and more friendly form of transport 
were recommended.  
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1. Introduction 

In recent years, there has been a rapid rise in the bike use in most 
countries. In the UK, cyclist traffic grew by 62% between 2004 and 2021 
(DfT, 2022a). Cycling represents a widespread and convenient form of 
transportation which provides numerous benefits to individuals and to 
society. As an active transportation mode, it is environment-friendly, 
associated with very little or no pollution produced (Guo et al., 2018). 
Furthermore, bike use is unlikely to cause death or injury to other road 
users (WHO, 2020). Although foregoing positive aspects, the burden of 
road traffic injuries and fatalities is disproportionately sustained by 
cyclists (WHO, 2018). It is estimated that the death and injury risks 
while riding a bicycle is higher than when driving a car (Nilsson et al., 
2017), Thus, the cyclist is one of the road user categories with the 
highest crash risks. 

The active transportation has attracted relevant attention because of 
its role in building sustainable transportation systems, in land use 
planning, and in profiting health. The UN Sustainable Development Goal 
11, Target 11.2, promotes a shift away from motorized vehicles towards 
sustainable form of transport such as cycling (United Nations, 2015). It 
specifically requires promoting and prioritizing cycling as an accessible 
mean of transport for whole trips, or parts of them, and improving the 
infrastructure for cycling around the world. Whereby the goal can be 
reached, cyclist safety must be the core of global road safety and the 
road system must be designed and retrofitted to consider cyclists’ needs. 

A significant barrier to achieving uptake of cycling are the lack of 
cycling-friendly infrastructures as well as the road traffic danger. 
Improving the cyclist’s safety level is a different challenge compared 
with motorized vehicles which have been widely exanimated in the 
literature (Scarano et al., 2023). Without awareness of the contributory 
factors of cyclist death and injury, the capability to implement context- 
specific and appropriate measures is limited. Thus, identifying the fac-
tors that affect crash severity is essential to improve cyclist safety. 

In this paper, we investigated whether characteristics related to the 
road, environment, vehicle involved, driver, and cyclist were associated 
with cyclists’ crash severity. These associations were examined using 
crash data from Great Britain in the period 2016–2018, implementing 
both a machine learning method and an econometric model. Only a few 
studies in the literature have used both econometric and machine 
learning models in a complementary way. The combination of these two 
approaches has allowed for the identification not only of contributing 
factors to the crash severity but also the most critical scenarios for 
cyclists. 

2. Literature review 

Previous studies dealing with cyclist crash severity provided evi-
dence of the relevance of the issue for researchers, policy makers, and 
engineers. The researchers’ commitment is trying to raise awareness on 
the critical factors related to roadway, environment, vehicle, crash, 
driver, and cyclist characteristics. Below, we tried to retrace their ex-
ertions through an in-depth literature review in the attempt to sum-
marize the main findings about potential risk factors related to cyclist’s 
injury severity (Table 1). 

Most of the severe injuries with cyclist involvement occurred during 
the night and on unlit roads (Asgarzadeh et al., 2018; Boufous et al., 
2012; Chang et al., 2022; Dash et al., 2022; Hosseinpour et al., 2021; 
Samerei et al., 2021; Wang et al., 2015) and affected the head (Brand 
et al., 2013; Oikawa et al., 2019). Thus, really so much research high-
lighted the relevance of wearing the helmet and reflective clothing to 
reduce fatal and serious cyclist crashes (Carlson et al., 2023; Chen and 
Shen, 2016; Lapparent, 2005; Marinovic et al., 2021; Moore et al., 2011; 
Walter et al., 2013). Rural area and higher speed limits were further 
connected with the increase of crash severity (Cloutier at al., 2019; 
Isaksson-Hellman and Töreki, 2019; Hosseinpour et al., 2021; Kaplan 
and Prato, 2013; Roberts and Chen, 2017; Wang et al., 2021; Yan et al., 

Table 1 
Summary of the key literature findings.  

Contributory factors 
of cyclist crash 
severity 

References  

Roadway factors Higher speed limits Cloutier at al., 2019; Isaksson- 
Hellman et al., 2019; Kaplan and 
Prato, 2013; Roberts and Chen, 
2017; Wang et al., 2021; Yan 
et al., 2011  

Rural area Hosseinpour et al., 2021  
Unlit roads Chang et al., 2022; Dash et al., 

2022; Wang et al., 2015  
Sidewalks Gitelman and Korchatov, 2021;  

Wang et al., 2021  
Curves Alshehri et al., 2020  
Motor vehicle lanes Du et al., 2013; Wang et al., 2021  
Lack of cycling paths 
separated by the 
motorists 

Loo and Tsui, 2010; Lusk et al., 
2011; Kaplan et al., 2014; 
Klassen et al., 2014 

Environmental factors Night-time Asgarzadeh et al., 2018; Boufous 
et al., 2012; Hosseinpour et al., 
2021; Samerei et al., 2021  

Foggy and rainy 
weather 

Samerei et al., 2021; Wang et al., 
2015  

Slippery and wet 
road surface 

Kaplan et al., 2014; Rash-ha 
Wahi et al., 2018; Wang et al., 
2015 

Cyclist   
factors Older cyclist Bahrololoom et al., 2020; 

Behnood and Mannering, 2017; 
Blaizot et al., 2013; Chen and 
Shen., 2016; Liu et al., 2020; 
Oikawa et al., 2019; Samerei 
et al., 2021; Weber et al., 2014  

Younger cyclist 
(<16) 

Kaplan et al., 2014; Oxley et al., 
2016; Wang et al., 2015  

Male cyclist Ouni and Belloumi, 2018; 
Hosseinpour et al., 2021; 
Meredith et al., 2020; Damsere- 
Derry and Bawa, 2018  

Alcohol-impaired 
state 

Behnood and Mannering, 2017; 
Marinovic et al., 2021  

Not wearing a 
helmet or reflective 
clothing 

Chen and Shen., 2016; 
Lapparent, M., 2005; Marinovic 
et al., 2021; Moore et al., 2011; 
Walter et al., 2013  

Mobile phone use 
when riding 

Buhler et al., 2021; Du et al., 
2013; Wang et al., 2021  

Red light violations Bai and Sze, 2020; Jahangiri 
et al., 2016; Wu et al., 2012  

Riding on the wrong 
side of road 

Behnood and Mannering, 2017; 
Hamann et al., 2015  

Speeding Damsere-Derry and Bawa, 2018 
Driver factors Younger driver Scholes et al.,2018  

Male driver Mason–Jones et al., 2022;  
Scholes et al.,2018  

Alcohol-impaired 
state 

Behnood and Mannering, 2017; 
Liu and Fan, 2021  

Hazardous 
overtaking 

Calvi et al., 2021; Piccinini et al., 
2018; Thomas et al., 2019;  

Speeding Behnood and Mannering, 2017; 
Liu et al., 2020 

Vehicle   
factors Larger and heavier 

vehicle 
Damsere-Derry and Bawa, 2018; 
Joo et al., 2017; Chen and Shen., 
2016; Mason-Jones et al., 2022;  
Sun et al., 2022a 

Crash   
factors Head-on crash Boufous et al., 2012; Lin and Fan, 

2019  
Angle crash Yan et al., 2011  
Head injury Brand et al., 2013; Oikawa et al., 

2019  
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2011). 
Among cyclist risky behaviour, previous studies have also identified 

speeding (Damsere-Derry and Bawa, 2018), red light violations (Bai and 
Sze, 2020; Jahangiri et al., 2016; Wu et al., 2012), mobile phone use 
when riding (Buhler et al., 2021; Du et al., 2013; Wang et al., 2021), and 
riding on the wrong side of road (Behnood and Mannering, 2017; 
Hamann et al., 2015). On the other hand, driver hazardous overtaking 
and driver speeding resulted in an increase in the probability of fatal and 
serious crashes (Behnood and Mannering, 2017; Calvi et al., 2021; Liu 
et al., 2020; Piccinini et al., 2018; Thomas et al., 2019). 

The psychophysical state, the age, and the gender of the cyclist 
further affect the cyclist’ injury severity. Several studies asserted that 
the older and younger cyclists were associated with higher crash severity 
(Bahrololoom et al., 2020; Behnood and Mannering, 2017; Blaizot et al., 
2013; Chen and Shen, 2016; Kaplan et al., 2014; Liu et al., 2020; Liu and 
Fan, 2021; Oikawa et al., 2019; Oxley et al., 2016; Samerei et al., 2021; 
Wang et al., 2015; Weber et al., 2014). Male cyclists were also more 
likely to sustain serious injuries and fatalities (Ouni and Belloumi, 2018; 
Hosseinpour et al., 2021; Meredith et al., 2020; Damsere-Derry and 
Bawa, 2018). Few studies examined the cyclist and driver psychophys-
ical state. According with their results, alcohol-impaired state increased 
the crash severity (Behnood and Mannering, 2017, Liu and Fan, 2021; 
Marinovic et al., 2021). The features of drivers, such as gender and age 
also affected cyclist crash severity. Especially, previous studies found 
that death rates associated with male and young drivers were consid-
erably higher (Mason-Jones et al., 2022; Scholes et al.,2018). 

The severity of cyclist crashes increased when the cyclist crash 
occurred on the sidewalks, at curves and on the motor-vehicle lanes (Du 
et al., 2013; Wang et al., 2021; Gitelman and Korchatov, 2021; Alshehri 
et al., 2020). The availability of cycling paths separated by the motorists 
was found to reduce the likelihood of fatal and serious cyclist crashes 
(Loo and Tsui, 2010; Lusk et al., 2011; Kaplan et al., 2014; Klassen et al., 
2014). As regard the environmental factors, slippery and wet road sur-
face as well as foggy and rainy weather have been identified as con-
tributors to the most severe cyclist crashes (Kaplan et al., 2014; Rash-ha 
Wahi et al., 2018; Samerei et al., 2021; Wang et al., 2015). 

The size of vehicle that is involved in a cyclist crash influences the 
crash severity. The involvement of larger and heavier vehicles signifi-
cantly increased the probability of fatal and serious consequences (Chen 
and Shen, 2016; Damsere-Derry and Bawa, 2018; Joo et al., 2017; 
Mason-Jones et al., 2022; Sun et al., 2022a). Finally, crash type was 
pivotal in cyclist injury severity outcome. The cyclist injury severity 
level could be elevated by specific crash types such as head-on and angle 
crashes (Boufous et al., 2012; Lin and Fan, 2019; Yan et al., 2011). 

Aimed at exploring even more big data, finding structures, similarity, 
and concealed correlations or rules, the application of both econometric 
and machine learning models has widespread in recent years. The 
existing literature offers a variety of econometric methods to model 
cyclist crash severity. Methodologies include latent class cluster analysis 
(Akgun et al., 2018; Kent et al., 2021; Sivasankaran and Balasu-
bramanian, 2020), logit model (Fan, 2021; Samerei et al., 2021; Salon 
and Mcintyre, 2018), correlated and grouped random parameters model 
with heterogeneity in means and/or variances (Ahmed et al., 2020; 
Ahmed et al., 2021; Ahmed et al., 2023; Fountas et al., 2018; Pantangi 
et al., 2020; Pantangi et al., 2021), negative binomial regression (Yu and 
Xu, 2018; Tuckel, 2021), probit model (Ghomi et al., 2016; Joo et al., 
2017; Lin and Fan, 2021), and so on. 

Among them, the multinomial logit model (MNL) is commonly 
recognized as the most extensively utilized. However, this model is 
burdened with several limitations that hinder its practicality, notably 
the IIA assumption. Thus, when the alternatives share some unobserved 
effects, the MNL model may not be appropriate (Lord et al., 2021; Rella 
Riccardi et al., 2023). To address this constraint, numerous studies have 
identified the Random Parameter Logit Model (RPLM) as an essentially 
useful tool in the analysis of discrete choices (Greene et al., 2006; 
McFadden and Train, 2000). It is highly flexible and allows capturing 

unobserved characteristics that may systematically vary across the ob-
servations. This permits to capture underlying or variable effects of in-
dependent variables that may be omitted or included in the model, 
respectively (Ahmed et al., 2021; Rella Riccardi et al., 2022a). 

Thus, an increasing number of applications in cyclist safety field 
have accounted for heterogeneity into the means and variance of the 
distributions of the random parameters (Lin and Fan, 2021; Sun et al., 
2022b; Wu et al., 2019; Ye et al., 2021b). However, the econometric 
models may provide unstable results due to the difficulties in handling 
high dimensional data. A richer set of variables can potentially improve 
predictive capability and understanding of causality, but it may create 
additional burden and complexity to the model (Mannering et al., 2020). 
Since the need for handling extremely large amounts of data to gain 
added insights in road safety while providing a high level of prediction 
accuracy is a current challenge that researchers are facing, we decided to 
combine the random parameter logit model with a data-driven tool 
belonging to the family of the machine learning models. Among the 
different machine learning approaches, the Artificial Neural Network 
and the Support Vector Machine exhibit high prediction performance. 
Nevertheless, the Artificial Neural Network and the Support Vector 
Machine have been criticized for their black-box nature as they suffer 
from a non-trivial limitation of providing outputs whose interpretability 
is not easy or intuitive and their results cannot be considered eligible to 
underly causality and select practical and safety countermeasures 
(Mannering et al., 2020). Even the Classification Tree (CT) has been 
widely used in crash severity analyses (Ghomi et al., 2016; López et al., 
2014; Montella et al., 2012, 2020; Moral-Garcia et al., 2019; Prati et al., 
2017), probably because it is considered the closest machine learning 
tool with good interpretability and ability to handle large amounts of 
data. Indeed, the CTs handle high-dimensional data reasonably well, 
ignore irrelevant descriptors making a rank of the most influential var-
iables, and, mostly, the CTs are amenable to model interpretation due to 
their tree structure. The major CT drawback, however, is its relatively 
low prediction accuracy that may discourage its use in crash severity 
prediction analyses. To overcome the CTs limitation, Breiman (2001) 
proposed an ensembling algorithm, the Random Forest (RF), that still 
measures the descriptor importance, preserves the tree structure, and, 
mainly, provides a reduction of variance compared to the single CTs. The 
RF also exhibited high predictive performances (Dash et al., 2022; 
Komol et al., 2021; Rella Riccardi et al., 2022b; Wahab and Jiang, 2019). 
Such characteristics make the RF being considered particularly well 
suited to datasets with many features, a circumstance that is becoming 
more prevalent and increasingly common. In presence of large databases 
and a vast number of variables, the traditional classification approaches 
tend to become overwhelmed by the number of features and fail whereas 
the RF continues to perform well. To sum up, safety analysts must often 
consider trade-offs between the number of variables and the number of 
observations in the crash dataset and the intended use of the results of 
their research. Conscious that an ideal model would be one with 
excellent predictive capabilities and scalable to very large data that also 
uncovers causality and provides insights from crash observations, we 
proposed the combined use of machine learning methods and econo-
metric models to take advantage of the different properties of the models 
to identify cyclists’ crash severity contributory factors. In detail, in this 
paper we used the RF as machine learning method and the RPLM as 
econometric model. The RF tool was chosen among the machine 
learning algorithms to preserve the useful characteristics of the classi-
fication trees but with additional randomness that makes better pre-
dictions whereas the RPLM was chosen to take account of the 
heterogeneity among data due to unobserved characteristics that may 
systematically vary across the observations. 

3. Crash data 

The crash data used in this study have been obtained from the 
STATS19 dataset provided by the Department for Transport (https:// 
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www.gov.uk). The dataset contains road crashes resulting in personal 
injury occurred on public highways in Great Britain. Crash data were 
collected by the police at the scene of the crash or were reported by a 
member of the public at a police station and are available at https:// 
www.gov.uk/transport-statistics-notes-and-guidance-road-accident- 
and-safety. In this study, we analysed the crashes that occurred in Great 
Britain in the three-year period from 2016 to 2018. 

In all reported crashes at least one vehicle is involved and informa-
tion on Property Damage Only (PDO) crashes are not supplied. Origi-
nally, crash data were offered in three subsets storing crash, vehicle, and 
casualty-related information. The crash database contained thirty-two 
variables aimed at describing the crash event. Vehicle data included 
twenty-two variables describing all the vehicles involved. Finally, the 
casualty dataset featured sixteen variables for illustrating casualties, i.e., 
person injured/dead due to the crash. With the aim to work on a unique 
set of information, the three subsets were merged into one trough crash 
index, which is unique for each crash. 

Furthermore, to maximize the performance of the statistical tools, 
the data were preliminarily prepared with appropriate transformations 
that consisted in the combination of some categories and the recoding of 

redundant information. About vehicles involved in the crash, only the 
bike and a second vehicle were considered for the study, since just a very 
small percentage of cyclist crashes involved more than two vehicles. 

The final dataset consists of 72,363 cyclist crashes. It was rearranged 
in thirty-nine explanatory variables related to roadway (Table 2), 
environment (Table 3), vehicle (Table 3 and Table 4), driver (Table 5), 
and cyclist (Table 5). Crash severity, representing the response variable, 
was ranked according to the injury severity of the most seriously injured 
person involved in the crash and was collected into three classes: slight 
injury, serious injury, and fatal. It is considered fatal a crash where at 
least one person is killed instantly or within the thirtieth day beginning 
on the day in which the crash occurred. A serious injury crash is a crash 
resulting in an injury for which a person is held in the hospital as an “in- 
patient”, or suffers from any injuries such as fractures, concussion, in-
ternal injuries, burns (excluding friction burns), severe cuts, severe 
general shock requiring medical treatment, and injuries causing death 
30 or more days after the crash. Finally, a slight injury includes injuries 
of a minor character. 

The database used in this study featured 429 fatal crashes (0.59% of 
the total crashes), 14,890 serious injury crashes (20.58% of the total 

Table 2 
Descriptive statistic related to roadway information.  

Variable Fatal Serious Slight Total 
N % N % N % N % 

First road class        
A1 213  0.29 5,865  8.10 23,298  32.20 29,376  40.60 
B2 63  0.09 1,972  2.73 6,787  9.38 8,822  12.19 
C3 29  0.04 930  1.29 3,889  5.37 4,848  6.70 
Motorway 1  0.00 1  0.00 3  0.00 5  0.01 
Missing 123  0.17 6,122  8.46 23,067  31.88 29,312  40.51 
Road type        
Single carriageway 341  0.47 11,694  16.16 43,581  60.23 55,616  76.86 
Dual carriageway 59  0.08 1,154  1.59 4,082  5.64 5,295  7.32 
One way street 8  0.01 378  0.52 1,784  2.47 2,170  3.00 
Roundabout 16  0.02 1,383  1.91 5,920  8.18 7,319  10.11 
Slip road 4  0.01 83  0.11 353  0.49 440  0.61 
Missing 1  0.00 198  0.27 1,324  1.83 1,523  2.10 
Speed limit (mph)        
20 24  0.03 1,600  2.21 7,830  10.82 9,454  13.06 
30 187  0.26 10,379  14.34 42,868  59.24 53,434  73.84 
40 46  0.06 1,028  1.42 3,076  4.25 4,150  5.73 
≥50 172  0.24 1,880  2.60 3,254  4.50 5,306  7.33 
Missing 0  0.00 3  0.00 16  0.02 19  0.03 
Junction detail        
Not at junction 240  0.33 4,858  6.71 15,212  21.02 20,310  28.07 
Crossroads 144  0.20 7,,007  9.68 28,820  39.83 35,971  49.71 
Other junctions 22  0.03 1,073  1.48 4,629  6.40 5,724  7.91 
Roundabout 23  0.03 1,886  2.61 7,896  10.91 9,805  13.55 
Missing 0  0.00 66  0.09 487  0.67 553  0.76 
Junction control        
Not at junction or within 20 m 240  0.33 4,858  6.71 15,212  21.02 20,310  28.07 
Traffic lights 57  0.08 1,479  2.04 6,374  8.81 7,910  10.93 
Give way/Stop 132  0.18 8,310  11.48 33,310  46.03 41,752  57.70 
Missing 0  0.00 243  0.34 2148  2.97 2,391  3.30 
Second road class        
A1 33  0.05 1,424  1.97 6,354  8.78 7,811  10.79 
B2 13  0.02 681  0.94 2,676  3.70 3,370  4.66 
C3 12  0.02 581  0.80 2,741  3.79 3,334  4.61 
Motorway 1  0.00 21  0.03 56  0.08 78  0.11 
Missing 370  0.51 12,183  16.84 45,217  62.49 57,770  79.83 
Pedestrian crossing physical facilities      
No physical crossing facilities within 50 m 335  0.46 11,419  15.78 40,788  56.37 52,542  72.61 
Central refuge 17  0.02 458  0.63 1,896  2.62 2,371  3.28 
Pedestrian phase at traffic signal junction 45  0.06 1,169  1.62 5,517  7.62 6,731  9.30 
Pelican, puffin, toucan or similar non junction pedestrian light Crossing 25  0.03 1,006  1.39 3,817  5.27 4,848  6.70 
Zebra 8  0.01 608  0.84 3,016  4.17 3,632  5.02 
Missing 1  0.00 259  0.36 2,105  2.91 2,365  3.27  

1 A = major roads intended to provide large-scale transport links within or between areas. Generally, an A road will be among the widest, most direct roads in an area, and is of 
the greatest significance to traffic travelling through the area. 

2 B = roads intended to connect different areas and to feed traffic between A roads and smaller roads on the network. B roads are still important routes for traffic (including 
traffic travelling through the area), but less so than an A road. 

3 C = smaller roads intended to connect together unclassified roads with A and B roads, and often linking a housing estate or a village to the rest of the network. 
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crashes), and 57,044 slight injury crashes (78.83% of the total crashes). 

4. Method 

4.1. Random forest tool 

The Random Forest tool proposed by Breiman (2001) is a classifier 
that learns from a large number of B decision trees {T1(X), …, TB(X)}, 
where Xi = {xi1, …, xip} is a p-dimensional vector of the descriptors that 
are associated with the ith crash. Each crash belongs to a dataset of N 
crashes, D = {(X1, Y1), …, (XN, YN)}, Yi is the crash severity class of the 
ith crash, with i = 1, …, N. The tree ensemble produces B outputs {Ŷ1 =

T1(X), …, ŶB = TB(X)}, where Ŷb, b = 1, …, B, is the prediction for the ith 
crash generated by the bth tree. After a large number of trees is gener-
ated, the outputs are aggregated to produce one final prediction Ŷ which 
is the most popular class voted by the majority of the trees. 

Overtime, multiple algorithms have been developed to carry out RF 
analyses with the aim of improving the performances of the classifier 
especially in presence of many features (as the GB database that contains 
39 variables and 72,363 crashes with cyclist involvement) and with a 
small proportion of the true cases (fatal and serious cyclist crashes in this 
study). In such circumstances, the traditional RF tool performance tends 

to decline with respect to the target classification (Amaratunga et al., 
2008) as informative variables have too little opportunity of being 
selected among all the available variables. In this study, we performed 
three different RF algorithms: the traditional RF (Breiman, 2001), the 
Weighted Subspace RF (Xu et al., 2012), and the Random Survival Forest 
(Ishwaran et al., 2008). In the traditional RF, each tree of the forest is 
trained only on a sample of N crashes drawn at random with replace-
ment from the complete dataset of N crashes. This procedure is also 
known as the bagging step and the selected samples are called the in-bag 
cases. Instead of simple random sampling, the Weighted Subspace RF 
uses a weighting method for feature subspace selection to enhance 
classification performance over high-dimensional data. Finally, the 
Random Survival Forest algorithm uses and “ensemble learning” that be 
resumed in the following steps:  

1) it draws a bootstrap sample with random feature selection and with a 
replacement from the original sample;  

2) for each bootstrap sample, it grows a tree and chooses the best split 
among a randomly selected subset of descriptors at each node; at 
each node, the variable selected as the best splitter groups the ob-
servations into disjoint classes which are externally heterogeneous 
and internally homogeneous; 

Table 3 
Descriptive statistics related to environment and bike information.  

Variable Fatal Serious Slight Total 
N % N % N % N % 

Area         
Urban 200  0.28 11,106  15.35 48,276  66.71 59,582  82.34 
Rural 229  0.32 3,784  5.23 8,768  12.12 12,781  17.66 
Day of week        
Weekday 306  0.42 11,489  15.88 46,367  64.08 58,162  80.38 
Weekend 123  0.17 3,401  4.70 10,677  14.75 14,201  19.62 
Lighting         
Daylight 317  0.44 11,647  16.10 44,798  61.91 56,762  78.44 
Darkness 112  0.15 3,243  4.48 12,246  16.92 15,601  21.56 
Weather         
Fine 377  0.52 13,006  17.97 48,430  66.93 61,813  85.42 
Raining 33  0.05 1,158  1.60 5,022  6.94 6,213  8.59 
Other 9  0.01 272  0.38 1,254  1.73 1,535  2.12 
Missing 10  0.01 454  0.63 2,338  3.23 2,802  3.87 
Pavement        
Dry 334  0.46 11,923  16.48 45,387  62.72 57,644  79.66 
Wet/frozen 94  0.13 2,827  3.91 10,730  14.83 13,651  18.86 
Missing 1  0.00 140  0.19 927  1.28 1,068  1.48 
Number of bikes        
1 413  0.57 14,479  20.01 56,420  77.97 71,312  98.55 
>1 16  0.02 411  0.57 624  0.86 1,051  1.45 
Bike skidding and overturning       
No 357  0.49 12,599  17.41 48,250  66.68 61,206  84.58 
Yes 71  0.10 1,847  2.55 4,669  6.45 6,587  9.10 
Missing 1  0.00 444  0.61 4,125  5.70 4,570  6.32 
Bike leaving carriageway       
No 345  0.48 13,725  18.97 51,608  71.32 65,678  90.76 
Nearside 63  0.09 622  0.86 1,304  1.80 1,989  2.75 
Offside 19  0.03 117  0.16 171  0.24 307  0.42 
Missing 2  0.00 426  0.59 3,961  5.47 4,389  6.07 
Bike hit off carriageway       
None 400  0.55 14,284  19.74 52,898  73.10 67,582  93.39 
Barrier/Pole/Tree/Wall 8  0.01 120  0.17 152  0.21 280  0.39 
Other 21  0.03 102  0.14 204  0.28 327  0.45 
Missing 0  0.00 384  0.53 3,790  5.24 4,174  5.77 
Bike 1st point of Impact       
No impact* 42  0.06 1,121  1.55 2,798  3.87 3,961  5.47 
Back 105  0.15 1,457  2.01 6,449  8.91 8,011  11.07 
Front 157  0.22 7,724  10.67 27,800  38.42 35,681  49.31 
Nearside/Offside 124  0.17 4,263  5.89 17,303  23.91 21,690  29.97 
Missing 1  0.00 325  0.45 2,694  3.72 3,020  4.17 

Abbreviations: na = not admissible. 
* Bike first point of impact: No impact indicates that there was no collision or contact between the bike and the vehicles, another bike, the objects, or the structures 
during the reported event. This mode can be useful in identifying crashes where other types of events may have occurred, such as skidding, runoff or loss of bike 
control, without a direct physical impact. 
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Table 4 
Descriptive statistics related to vehicle information.  

Variable Fatal Serious Slight Total 
N % N % N % N % 

Vehicle 2 skidding and overturning      
No 336  0.46 12,638  17.46 49,920  68.99 62,894  86.91 
Yes 21  0.03 241  0.33 520  0.72 782  1.08 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 1  0.00 380  0.53 3,754  5.19 4,135  5.71 
Vehicle 2 leaving carriageway       
No 330  0.46 12,665  17.50 50,066  69.19 63,061  87.15 
Nearside 12  0.02 150  0.21 388  0.54 550  0.76 
Offside 15  0.02 80  0.11 152  0.21 247  0.34 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 1  0.00 364  0.50 3,588  4.96 3,953  5.46 
Vehicle 2 hit off carriageway       
None 346  0.48 12,849  17.76 50,652  70.00 63,847  88.23 
Barrier/Pole/Tree/Wall 9  0.01 54  0.07 83  0.11 146  0.20 
Other 3  0.00 35  0.05 59  0.08 97  0.13 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 0  0.00 321  0.44 3,400  4.70 3,721  5.14 
Vehicle 2 1st point of impact       
No impact 10  0.01 860  1.19 2,680  3.70 3,550  4.91 
Back 13  0.02 807  1.12 3,202  4.42 4,022  5.56 
Front 246  0.34 6,251  8.64 25,419  35.13 31,916  44.11 
Nearside/Offside 89  0.12 5,087  7.03 20,569  28.42 25,745  35.58 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 0  0.00 254  0.35 2,324  3.21 2,578  3.56 
Vehicle 2 engine capacity       
≤1000 26  0.04 749  1.04 3024  4.18 3799  5.25 
1001–1500 54  0.07 2,809  3.88 11,413  15.77 14,276  19.73 
1501–2000 106  0.15 4,428  6.12 18,572  25.67 23,106  31.93 
2001–3000 38  0.05 1,359  1.88 5,301  7.33 6,698  9.26 
>3000 78  0.11 520  0.72 1439  1.99 2,037  2.81 
Missing 50  0.07 3,165  4.37 14,140  19.54 17,355  23.98 
na 77  0.11 1,860  2.57 3,155  4.36 5,092  7.04 
Vehicle 2 propulsion code       
Petrol 113  0.16 4,979  6.88 20,294  28.04 25,386  35.08 
Heavy oil 189  0.26 4,626  6.39 18,015  24.90 22,830  31.55 
Other 3  0.00 305  0.42 1,583  2.19 1,891  2.61 
na 77  0.11 1,860  2.57 3,155  4.36 5,092  7.04 
Missing 47  0.06 3,120  4.31 13,997  19.34 17,164  23.72 
Vehicle 2 age        
≤15 281  0.39 9,132  12.62 36,775  50.82 46,188  63.83 
>15 19  0.03 652  0.90 2,412  3.33 3,083  4.26 
Missing 47  0.06 3,077  4.25 13,725  18.97 16,849  23.28 
na  82  0.11 2,029  2.80 4,132  5.71 6,243  8.63 

Vehicle 2 type        
Car 213  0.29 10,839  14.98 46,538  64.31 57,590  79.58 
Bike 6  0.01 229  0.32 305  0.42 540  0.75 
Bus 17  0.02 275  0.38 975  1.35 1,267  1.75 
PTW 16  0.02 283  0.39 1,041  1.44 1,340  1.85 
Truck 66  0.09 381  0.53 972  1.34 1,419  1.96 
Van 29  0.04 1,064  1.47 3,808  5.26 4,901  6.77 
Other 11  0.02 129  0.18 400  0.55 540  0.75 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 0  0.00 59  0.08 155  0.21 214  0.30 
Vehicle 2 towing and articulation      
No 322  0.44 12,674  17.51 52,343  72.33 65,339  90.29 
Articulated vehicle 20  0.03 90  0.12 121  0.17 231  0.32 
Other 9  0.01 115  0.16 310  0.43 434  0.60 
na 77  0.11 1,860  2.57 3,155  4.36 5,092  7.04 
Missing 1  0.00 151  0.21 1,115  1.54 1,267  1.75 
Vehicle 2 manoeuvre       
Going ahead 260  0.36 5,099  7.05 17,646  24.39 23,005  31.79 
Moving off 9  0.01 1,078  1.49 5,254  7.26 6,341  8.76 
Overtaking 30  0.04 764  1.06 2,857  3.95 3,651  5.05 
Turning left/right/U/Reversing 37  0.05 4,235  5.85 18,099  25.01 22,371  30.91 
Other 21  0.03 1,710  2.36 6,670  9.22 8,401  11.61 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 1  0.00 373  0.52 3,668  5.07 4,042  5.59 

Abbreviations: na = not admissible, PTW = Powered two-wheeler. 
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Table 5 
Descriptive statistics related to cyclist and driver information.  

Variable Fatal Serious Slight Total 
N % N % N % N % 

Cyclist manoeuvre        
Going ahead 362  0.50 11,753  16.24 42,128  58.22 54,243  74.96 
Moving off 9  0.01 360  0.50 1,696  2.34 2,065  2.85 
Overtaking 7  0.01 633  0.87 2,462  3.40 3,102  4.29 
Turning left/right/U/Reversing 37  0.05 1100  1.52 4,011  5.54 5,148  7.11 
Other 13  0.02 635  0.88 2,947  4.07 3,595  4.97 
Missing 1  0.00 409  0.57 3,800  5.25 4,210  5.82 
Cyclist journey purpose       
Commuting to/from work 55  0.08 2,724  3.76 11,340  15.67 14,119  19.51 
Journey as part of work 12  0.02 793  1.10 3,351  4.63 4,156  5.74 
To/from school 6  0.01 327  0.45 2,047  2.83 2,380  3.29 
Other 45  0.06 1,647  2.28 4,204  5.81 5,896  8.15 
Missing 311  0.43 9,399  12.99 36,102  49.89 45,812  63.31 
Cyclist gender        
Female 58  0.08 2,559  3.54 11,120  15.37 13,737  18.98 
Male 369  0.51 12,201  16.86 45,433  62.78 58,003  80.16 
Missing 2  0.00 130  0.18 491  0.68 623  0.86 
Cyclist age        
≤17 36  0.05 1,710  2.36 8,331  11.51 10,077  13.93 
18–24 28  0.04 1,432  1.98 6,825  9.43 8,285  11.45 
25–34 52  0.07 2,651  3.66 13,004  17.97 15,707  21.71 
35–44 51  0.07 2,616  3.62 10,050  13.89 12,717  17.57 
45–54 72  0.10 2,897  4.00 8,788  12.14 11,757  16.25 
55–64 74  0.10 1,679  2.32 4,228  5.84 5,981  8.27 
65–74 55  0.08 675  0.93 1,379  1.91 2,109  2.91 
≥75 36  0.05 278  0.38 462  0.64 776  1.07 
Missing 25  0.03 952  1.32 3,977  5.50 4,954  6.85 
Cyclist IMD        
Less deprived 198  0.27 6,291  8.69 21,527  29.75 28,016  38.72 
More deprived 154  0.21 6,637  9.17 28,020  38.72 34,811  48.11 
Missing 77  0.11 1,962  2.71 7497  10.36 9,536  13.18 
Cyclist home area        
Urban 247  0.34 11,039  15.26 44,616  61.66 55,902  77.25 
Rural 69  0.10 1,065  1.47 2,585  3.57 3,719  5.14 
Small town 36  0.05 825  1.14 2,348  3.24 3,209  4.43 
Missing 77  0.11 1,961  2.71 7,495  10.36 9,533  13.17 
Driver 2 journey purpose       
Commuting to-from work/school 27  0.04 1,653  2.28 5,719  7.90 7,399  10.22 
Journey as part of work 122  0.17 2,193  3.03 7,676  10.61 9,991  13.81 
Other 37  0.05 1,254  1.73 3,417  4.72 4,708  6.51 
na 71  0.10 1,631  2.25 2850  3.94 4552  6.29 
Missing 172  0.24 8,159  11.28 37,382  51.66 45,713  63.17 
Driver 2 gender        
Female 55  0.08 3,452  4.77 14,031  19.39 17,538  24.24 
Male 287  0.40 7,766  10.73 29,765  41.13 37,818  52.26 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 16  0.02 2,041  2.82 10,398  14.37 12,455  17.21 
Driver 2 age        
≤17 3  0.00 94  0.13 315  0.44 412  0.57 
18–24 45  0.06 1,160  1.60 3,902  5.39 5,107  7.06 
25–34 75  0.10 2,330  3.22 8,852  12.23 11,257  15.56 
35–44 66  0.09 2,004  2.77 8,077  11.16 10,147  14.02 
45–54 61  0.08 2,118  2.93 8,075  11.16 10,254  14.17 
55–64 57  0.08 1,489  2.06 5,279  7.30 6,825  9.43 
65–74 16  0.02 779  1.08 2,837  3.92 3,632  5.02 
≥75 13  0.02 616  0.85 1,826  2.52 2,455  3.39 
na 76  0.11 1,817  2.51 3,850  5.32 5,743  7.94 
Missing 17  0.02 2,483  3.43 14,031  19.39 16,531  22.84 
Driver 2 IMD        
Less deprived 135  0.19 4,667  6.45 16,488  22.79 21,290  29.42 
More deprived 160  0.22 4,926  6.81 19,578  27.06 24,664  34.08 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 63  0.09 3,666  5.07 18,128  25.05 21,857  30.20 
Driver 2 home area        
Urban 203  0.28 7,785  10.76 30,728  42.46 38,716  53.50 
Rural 57  0.08 1,013  1.40 3,007  4.16 4,077  5.63 
Small town 35  0.05 796  1.10 2,333  3.22 3,164  4.37 
na 71  0.10 1,631  2.25 2,850  3.94 4,552  6.29 
Missing 63  0.09 3,665  5.06 18,126  25.05 21,854  30.20 
Crash severity 429  0.59 14,890  20.58 57,044  78.83 72,363  100.00 

Abbreviations: IMD = Index of Multiple Deprivation; na = not admissible. 
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3) it repeats the above steps until B trees are generated. 

In this study, we used the Classification And Regression Tree (CART) 
(Breiman et al., 1984) algorithm to build the forest. At each node, the 
CART algorithm selects the variable candidate for splitting according to 
the maximum decrease in the impurity of the node. The impurity (or 
heterogeneity) of each node is assessed through the Gini reduction cri-
terion (the higher the value of the Gini index, the higher the homoge-
neity of the node that is due to the split) which can be calculated as 
follows (López et al., 2014; Montella et al., 2011): 

iY(t) = 1 −
∑

j
p(j|t)2 (1)  

where: 
iY(t) is the impurity of the node t, 
p(j|t) is the proportion of crashes in the node t that belong to the class 

j. 
It has been shown that there is a potential overestimate of the true 

prediction error, depending on the choices of the random forest hyper-
parameters, such as the number of trees (B), and the number of de-
scriptors. To reduce the true prediction error, the out-of-bag estimate of 
the error rate (EROOB) was estimated by varying the B and the number of 
descriptors: 

EROOB =
∑N

i=1

(
Ŷ
OOB

(Xi) ∕= Yi
)

N
(2)  

where: 

Ŷ
OOB

(Xi) is the predicted class for the ith crash; 
Xi is the vector of the descriptors that are associated with the ith 

crash; 
Yi is the crash severity class of the ith crash; 
N is the total number of crashes in the database. 
The values of the number of trees and the number of descriptors were 

chosen so that the EROOB tends to stabilize around the minimum value. 
For each tree in the “forest”, a set of randomly selected variables 

governs the tree growth. The importance of each variable determines the 
predictive power of the variable itself in the forest. The contribution of 
the variable xj to the homogeneity of each node in a particular tree is: 

VI =
∑T

t=1

N(t)
N

ΔiY(t, s) (3) 

where: 
VI is the relative importance of variable xj;

ΔiY(t, s) is the reduction in the Gini index obtained by splitting var-
iable xj at node t; 

N is the total number of observations; 
T is the number of nodes in the tree. 
The variable importance evaluated for the variable xj, (VI

(
xj
)
), is 

computed as the sum of the importance over all of the B trees in the 
forest: 

VI
(
xj
)
=

∑B
b = 1VI

b( xj
)

B
(4) 

where: 
VIb( xj

)
is the variable importance of the bth tree, calculated using the 

equation (2); 
B is the number of trees. 
The RF was performed in the R-CRAN software environment using 

the packages, “randomForest”, “wsrf”, and “randomForestSRC”. 
To further explore the random forest tool and understand how the 

patterns are combined to make predictions, each path from the root 
node to the leaf nodes of each generated tree of the forest has been 
retraced the way back to generate if-then rules where the splitters from 
the root node to the terminal node are the antecedents and the severity 

class of the terminal node is the consequent. The procedure is inspired to 
the association rule discovery technique (Das et al., 2019; Montella 
et al., 2021), another machine learning tool that highlights items that 
occur frequently together in a crash dataset. Each crash record contains 
different items (e.g., road type, area, day of week, crash severity, 
pavement, …) and the dataset contains all the items of each crash. 
Basing on the relative frequency of the number of times the sets of items 
occur alone and in combination in a dataset, the association rules were 
extracted with the form “A → B”, where A and B are disjoint item-sets: A 
is the antecedent and B is the consequent. The conversion of the trees in 
the forest in if-then rules allows to visualize the different patterns that 
are mostly combined each other when a cyclist crash occur and aims to 
identify potential scenarios that are critical in the interaction between 
bikes and the other motorized vehicles. 

Gaining results that identify the factors contributing the most to the 
cyclist crashes while accurately predicting the true cases (fatal and 
serious cyclist crashes in this study) is highly desirable. Hence, we car-
ried out three different RF tools and then their results were compared in 
terms of prediction accuracy measured with F-measure and G-mean 
indicators (paragraph 4.3). 

4.2. Random parameters logit model 

The random parameter logit model (also known as mixed logit 
model) belongs to the econometric model. It is the generalized version of 
the standard multinomial logit model and allows the estimated param-
eters βj to be fixed or to be random across all the observations in the 
database of size N. Such randomness can be expressed in the evaluation 
of injury-severity functions Sij: 

Sij = βjXij+ εij (5)  

where: 
Sij represents the propensity for a crash ith of being recorded with the 

crash severity class j (here j varies from 1 to 3: 1 = slight injury, 2 =
serious injury, 3 = fatal); 

Xij is the vector of explanatory variables that are associated with the 
ith crash; 

βj is the column vector of the estimable parameters for the crash 
severity class j; 

εii is the error term, independent and identically distributed, 
following the Type I generalized extreme value distribution (i.e., Gum-
bel), and independent of underlying parameters or data characteristics; 

σ is the vector of parameters characterizing the distribution of βj in 
terms of mean and variance. 

The random parameter multinomial logit model overcomes the 
multinomial logit model limitations by avoiding issues regarding IIA 
(Independence of Irrelevant Alternatives) violation and permitting the 
heterogeneous effects and correlation in unobserved factors. Thus, if 
unobserved heterogeneity is allowed, βj is a vector with a continuous 
density function f(β|σ) and the injury severity outcome probabilities are 
defined as follows: 

Pij =
∫

eβjXij
∑

JeβjXij
f (β|σ)dβ (6)  

The injury severity outcome probability is purely a weighted average for 
different values of βj across cyclist crashes where the elements of the 
vector βj may be fixed or randomly distributed (Anastasopoulos and 
Mannering, 2011). 

To estimate how the model fits the data, the McFadden’s Pseudo R2 

was assessed: 

McFaddenR2 = 1 −
LLfull
LL0

(7)  

where: 
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LL0 is the loglikelihood of the null model ;
LLfull is the loglikelihood of the model including all statistically sig-

nificant variables. 
The McFadden’s Pseudo R2 variability range is between 0 and 1. 

However, McFadden’s Pseudo R2 greater than 0.20 indicates a very good 
fit (Andreß et al., 2013). 

Before implementing the model, all variables were tested for multi-
collinearity by using the Pearson’s correlation coefficient (Pearson, 
1896). It measures the degree of linear relationship between two vari-
ables. A correlation coefficient of + 1 or − 1 indicates a perfect positive 
or negative linear correlation, respectively. Variables are considered 
strongly correlated if the absolute value of Pearson’s correlation is 
higher than 0.85 and the estimated correlation has p-value less than 0.05 
(Cafiso et al., 2010; Montella and Imbriani, 2015). Variables included in 
the models are not highly correlated. 

The RPLM was performed in the R-CRAN software environment 
using the package “mlogit”. 

The regression coefficients derived from RPLM merely provide a 
qualitatively impact of significant independent variables on crash 
severity. This implies that the model coefficients cannot be directly 
interpreted. Thus, to paraphrase the quantitatively impact of specific 
variables on the injury-outcome probabilities the elasticity should be 
computed. In the case of a continuous variable, elasticity represents the 
percentage change in the outcome when the predictor variable increases 
by 1% (Lord et al., 2021). It is obtained by calculating the partial de-
rivative with respect to the continuous variable for each individual 
observation. However, in our study explanatory variables were cate-
gorical, thus they were transformed into dummy variables. Each unique 
value of the original categories was assigned a corresponding dummy 
variable. When the independent variable is a dummy variable, pseudo- 
elasticity must be employed to evaluate the impact of individual 
parameter estimates on the probabilities of crash severity. The specific 
pseudo-elasticities can be calculated using the following equation (Ye 
et al., 2021a): 

EPjiXim =

[

exp
(
βjm

)
∑

Jexp
(
ASCj + βjXi

)

∑
Jexp(Δ

(
ASCj + βjXi

) − 1
]

× 100 (8)  

where: 
EPji

Xim 
is the direct pseudo-elasticity of the mth variable from the vector 

Xi; 
J is the number of crash severity class; 
ASCj +βjXi is the function value that determines the crash severity 

class when Xim is zero; 
Δ(ASCj +βjXi) is the function value after modifying Xim from zero to 

one. 
The pseudo-elasticity of an indicator variable, in relation to a crash 

severity category, reflects the percentage alteration in the probability of 
that specific crash severity class when the variable is shifted from zero to 
one. 

4.3. Performance metrics 

The performance of the RF algorithms and the RPLM were evaluated 
considering the G-mean and the F-measure, which are multi-parameter 
indicators that combine more simple indicators into a single perfor-
mance measure, and the False Positive rate. The F-measure value com-
bines the precision and the recall, both indicators of correct 
classification of the true cases. A high value of F-measure indicates high 
prediction accuracy in classifying the fatal and serious injury crashes. G- 
mean combines the performance of the model in correctly classifying 
both the positive and negative classes. The performance measures were 
evaluated as follows (Guo et al., 2008): 

F − measure =

(
1 + β2)× Precision × Recall

Precision + Recall
(9) 

where: 
Precision = TP

TP+FP is the probability of correct classification; 
Recall = Acc+ = TP

TP+FN is the true positive rate. TP is the number of 
true positives; FN is the number of false negatives. 

β is a coefficient to adjust the relative importance of precision versus 
recall. 

β was set equal to 1 to equally consider precision and recall (Bekkar 
et al., 2013). 

G − mean = (Acc− × Acc+)
1
2 (10) 

where: 
Acc− = TN

TN+ FP is the true negative rate; TN is the number of true 
negatives; FP is the number of false positives. 

The False Positive rate (FPrate) indicates how often the model is likely 
to miss-predict. As shown by previous studies, it is an important metric 
for unbalanced datasets (Islam and Abdel-Aty, 2023; Li et al., 2020): 

FPrate =
FP

FP + TN
(11)  

5. Results 

5.1. Random forest tool 

Due to the considerable number of features collected in the GB 
database and the true cases being only a small proportion of the total 
crashes, the performances exhibited by the traditional RF tool and the 
Weighted Subspace RF were poor, mainly when it comes to classify the 
fatal and serious crashes (Table 6). The traditional RF and the Weighted 
Subspace RF correctly classify few fatal and serious injury crashes. Also, 
the traditional RF and the Weighted Subspace RF required a number of 
trees sufficiently large to obtain stable results (1500 trees and 500 trees 
to make up the forest respectively) with a computational burden higher 
than the computational burden required to perform the Random Sur-
vival Forest algorithm. The Random Survival Forest was initially carried 
out generating 500 trees. Then, the hyperparameter tuning process 
provided the optimal number of trees equal to 68. The error rate was 
significantly smaller than 0.5, the benchmark value associated with a 
procedure no better than flipping a coin (Ishwaran and Kogalur, 2007). 
The tree depth was set equal to 4 levels. 

The Random Survival Forest algorithm is the most straightforward 
RF algorithm able to capture the complex relationships between the 
predictors and cyclist crash severity showing superior predictive per-
formances both in terms of F-measure, G-mean, and FPrate. Hence, only 
the Random Survival Forest results were provided. 

The main result of the Random Survival Forest is the variable 
importance that provided a ranked list of the predictors associated with 
the fatal and severe cyclist crashes. The most important contributors 
exhibited high importance whereas variables whose importance is close 

Table 6 
Performance measures of the RF models.   

Number of trees F- 
measure 

G- 
mean 

FPrate 

Traditional RF 1500    
Fatal   0.00  0.00  0.00 
Serious injury   0.09  0.22  0.01 
Slight injury   0.88  0.22  0.95 
Weighted Subspace RF 500    
Fatal   0.01  0.06  0.00 
Serious injury   0.16  0.31  0.04 
Slight injury   0.87  0.30  0.90 
Random Survival 

Forest 
Firstly 500, then 
68    

Fatal   0.09  0.74  0.07 
Serious injury   0.28  0.48  0.21 
Slight injury   0.78  0.51  0.56  
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to zero are variables that contribute nothing to prediction. There are 
some variables with negative values of importance, whose presence is 
associated to a noise in the classification process. 

Unfortunately, the tool cannot directly correlate crash contributory 
factors with crash severity, nor it can be used to quantify the impact of 
the contributing factors on injury severity. As an attempt to overcome 
these drawbacks of the RF tool, the if-then rules that had been generated 
for each tree in the forest by retracing the way back each path from the 
root node to the leaf nodes and were below provided. The splitters (the 
predictors giving the best partition at each level of the tree) are the 
antecedents whereas the severity class of the terminal node is the 
consequent. The RF provided 1,038 rules. The generated rules were 
ordered by the decreasing proportion of crashes that each rule covered 
in the related tree. Then, the most relevant rules were selected according 
to the highest frequency of appearance in the trees. The 20 more 
frequent rules having fatal cyclist crashes as consequent were reported 
in Table 7, whereas the 20 more frequent rules having serious injury 
cyclist crashes as consequent were reported in Table 8. The conversion 
of the trees of the forest in if-then rules allows to visualize how the 
different patterns are likely to be combined each other when a cyclist 
crash occur and aims to identify potential scenarios that are critical in 
the interaction between the bikes and the other motorized vehicles. 

5.1.1. Fatal variable importance and if-then rules 
Fig. 1 shows the normalized importance of the variables in the forest 

for fatal classification. The variables with normalized importance higher 
than 5% were 19, with the second involved vehicle manoeuvring 
(vehicle 2 manoeuvre) and the gender of the driver of the second vehicle 
(driver 2 gender) having the greatest normalized importance (at least 
50% of importance in the classification process) and higher predictive 
ability. The variable vehicle 2 manoeuvre included going ahead, moving 
off, overtaking, turning left, right, U inversion and reversing while the 
variable driver 2 gender provided information about the greater pro-
pensity of being involved in a cyclist crash based on the gender of the 
driver of the second involved vehicle in case of multi-vehicle crashes. 
The moderately important variables (importance in the classification 
process around 20–50%) were 5 and included: (1) area, that contributed 
to understand if the fatal crash with cyclist involvement occurred in 
urban or rural area; (2) junction control, that provided information 
about the fatal crash related to the intersection organization (traffic 
lights or give way/stop) if the crash occurred at intersection; (3) cyclist 
manoeuvre, that included the same manoeuvres of the second vehicle 
involved; (4) the journey purpose of the driver of the second vehicle 
involved, that provided information related to the driver purpose of 
travel, if commuting to-from work/school or the journey as part of work; 
and (5) junction detail, that contributed to understand if the crash 
occurred at crossroads or roundabouts in case of crashes at intersections. 
There were also 12 variables of small importance (less than 20% of 
importance). 

The fatal crash was the consequent for 361 rules (1 with two ante-
cedents, 15 with three antecedents, 345 with four antecedents, 34.8% of 
the total rules). As identified by the variable importance, the manoeuvre 
of the second vehicle involved in the cyclist crash is pivotal. In the if- 
then rules, the variable occurred as the first item in 57 rules. 

Moreover, the rules also identified the type of the second vehicle 
involved as well as its engine capacity having great influence on the 
severity of the cyclist crashes. The type of the second vehicle involved 
generated 55 rules as first antecedent whereas the vehicle engine ca-
pacity 49. In many cases, the RF tool found a combination of patterns 
that occurred together in fatal cyclist crashes. For instance, the rule 
T47_2 associated the combination of three antecedents, namely (1) the 
second vehicle manoeuvre equal to going ahead or overtaking, (2) the 
second vehicle type equal to car or van, and (3) the area equal to rural, 
with the fatal severity. To better understand the meaning of this rule, 
consider that the manoeuvre of the second vehicle involved (going 
ahead/overtaking), the second vehicle type (car/van), and the area 

Table 7 
Top 20 if-then rules for fatal cyclist crashes generated by RF.  

ID 
Rule 

Antecedents Consequent # % 

T3_5 Vehicle 2 leaving carriageway = No, 
Nearside & Driver 2 age ≤ 17, 18–24, 
25–34, 35–44, 45–54, ≥75 & Junction 
control = Traffic lights, No junction 

Fatal 273  29.84 

T34_14 Vehicle 2 manoeuvre = Going ahead, 
Overtaking, Turning left/right/U/ 
Reversing & Vehicle 2 type = Bike, 
PTW, Car, Bus, & Driver 2 age = 18–24, 
25–34, 55–64 

Fatal 222  24.75 

T19_12 Driver 2 age = 18–24, 25–34, 35–44, 
45–54, 55–64, 65–74, ≥75 & Junction 
detail = Roundabout & Vehicle 2 
manoeuvre = Going ahead, Moving off, 
Overtaking & Vehicle 2 type = PTW, 
Car, Van, Bus 

Fatal 215  23.97 

T26_14 Vehicle 2 manoeuvre = Going ahead, 
Overtaking & Driver 2 age ≤ 17, 18–24, 
25–34, 35–44, 45–54, 55–64 & Vehicle 
2 engine capacity ≤ 1000, 1001–1500, 
2001–3000, >3000 & Cyclist home 
area = Urban 

Fatal 214  23.86 

T57_11 Vehicle 2 manoeuvre = Going ahead, 
Moving off, Overtaking & Area = Rural 
& Road type = Dual carriageway, One- 
way street, Single carriageway, Slip 
road & Vehicle 2 skidding and 
overturning = No 

Fatal 172  19.39 

T63_8 Vehicle 2 manoeuvre = Going ahead & 
Cyclist age = 25–34, 35–44, 65–74 

Fatal 166  18.57 

T63_5 Vehicle 2 manoeuvre = Going ahead & 
Cyclist age = 18–24, 45–54, 55–64, 
≥75 

Fatal 158  17.67 

T65_5 Vehicle 2 towing and articulation = No 
& Vehicle 2 manoeuvre = Going ahead, 
Moving off, Overtaking & Junction 
control = Traffic lights, No junction & 
Driver 2 age = 18–24, 25–34, 45–54, 
55–64, 65–74 

Fatal 154  17.17 

T60_7 Area = Rural & Vehicle 2 manoeuvre =
Going ahead, Moving off, Overtaking & 
Bike hit off carriageway = Barrier/ 
Pole/Tree/Wall & Driver 2 age =
25–34, 45–54, 55–64, 65–74, ≥75 

Fatal 148  16.50 

T18_10 Vehicle 2 manoeuvre = Going ahead, 
Moving off, Overtaking & Vehicle 2 
type = PTW, Car, Van & Area = Rural 

Fatal 144  16.05 

T23_14 Bike 1st Point of impact = Back, 
Nearside/Offside & Vehicle 2 
manoeuvre = Going ahead, Moving off, 
Overtaking & Junction detail = No 
junction & Driver 2 age = 18–24, 
25–34, 35–44, 45–54, 55–64, 65–74 

Fatal 144  16.05 

T24_11 Vehicle 2 hit off carriageway = Barrier/ 
Pole/Tree/Wall & Driver 2 Gender = M 
& Cyclist home area = Rural, Small 
town & Driver 2 age ≤ 17, 18–24, 
25–34, 35–44, 45–54, 55–64, ≥75 

Fatal 139  15.50 

T40_8 Area = Rural & Vehicle 2 manoeuvre =
Going ahead & Junction detail =
Crossroad, Roundabout, No junction 

Fatal 131  14.60 

T62_7 Area = Rural & Vehicle 2 manoeuvre =
Going ahead, Turning left/right/U/ 
Reversing & Vehicle 2 type = Bike, Car, 
Van, Bus & Bike leaving carriageway =
No 

Fatal 129  14.38 

T30_7 Bike leaving carriageway = No & 
Driver 2 Gender = M & Area = Rural 

Fatal 127  14.16 

T39_10 Vehicle 2 type = Car, Van, Bus & Bike 
leaving carriageway = No & Cyclist 
home area = Rural, Small town & 
Vehicle 2 manoeuvre = Going ahead, 
Overtaking 

Fatal 118  14.10 

(continued on next page) 
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(rural) are the splitter variables. Their combined presence increases the 
fatal severity propensity in cyclist crashes. Hence, this association of 
factors shall be considered a potential cause of cyclist crashes resulting 
in fatal outcome. 

In 51 rules, the most frequent manoeuvres associated to the second 
vehicle involved in the cyclist crash were the turning left, turning right, 
U inversion, and reversing. The vehicle going ahead, proceeding on its 
route occurred in 40 rules. As the vehicle type, bus and truck occurred in 
56 rules, followed by the PTW which was found in 39 rules. The rule 
T34_14 identified that the patterns of the second vehicle involved in a 
cyclist crash are associated with a greater propensity to fatal severity. 
The driver gender of the second vehicle involved in the crash only 
generated 7 rules as the first antecedent but it was often associated with 
other variables in 27 rules. Of which, 17 were with male drivers’ 
involvement. Area was found in 41 rules as first antecedent. Of which, 
25 reported the rural context as the most frequent antecedent in fatal 
cyclist crashes. 

The strongest rule identified by the RF for fatal crashes (T3_5) 
covered roughly 30% of the observations falling in the tree from which 
the rule was extracted. Overall, the rule covered roughly 64% of the total 
fatal crashes in the database and contained the second vehicle involved 
in the crashes that does not leave the carriageway or those leaving the 
nearside of the carriageway. The age of the drivers of the second vehicles 
are young drivers (up to 44 years old), middle-aged (between 45 and 54 
years old), and very elderly drivers (at least 75 years old) that fail to 
navigate a traffic light intersection hitting a cyclist or hit the cyclist far 
from the intersections. An interesting rule is the rule T57_11 covering 
those fatal cyclist crashes that occurred in rural area because of the 
second vehicle involved that goes ahead, moves off or overtakes another 
vehicle on road segments, far from intersections. The rule T23_14 
associated the manoeuvres of the second vehicle (going ahead, moving 
off, and overtaking) on road segments, far from intersections, and the 
second vehicle involved that hits the cyclist on the back or nearside/ 
offside with the fatal crash as a consequence. Another interesting rule 
(T32_11) identified the association between commuting to-from work or 
school as the purpose of the journey of the driver of the second vehicle 
involved and the fatal cyclist crash. 

5.1.2. Serious injury variable importance and if-then rules 
Fig. 2 shows the normalized importance of the variables in the forest 

for serious injury classification. The variables with normalized impor-
tance higher than 5% were 13, with the bike leaving the carriageway 
having the greatest normalized importance. If the cyclist leaved the 
carriageway because of the crash, the variable provides understanding 
on the direction of leaving, nearside or offside. The moderately impor-
tant variables (importance in the classification process around 20–50%) 

Table 7 (continued ) 

ID 
Rule 

Antecedents Consequent # % 

T27_6 Bike leaving carriageway = No & 
Cyclist home area = Rural, Small town 
& Vehicle 2 manoeuvre = Going ahead, 
Overtaking & Vehicle 2 type = Bike, 
PTW, Car, Van, Truck 

Fatal 124  13.82 

T59_14 Cyclist home area = Rural, Small town 
& Vehicle 2 towing and articulation =
No & Area = Rural 

Fatal 115  12.82 

T32_11 Vehicle 2 engine capacity ≤ 1000, 
1001–1500, 1501–2000, >3000 & 
Driver 2 Journey Purpose =
Commuting to-from work/school, 
Other & Vehicle 2 manoeuvre = Going 
ahead, Moving off & Cyclist age =
18–24, 45–54, 55–64, 65–74, ≥75 

Fatal 112  12.49 

T47_2 Vehicle 2 manoeuvre = Going ahead, 
Overtaking & Vehicle 2 type = Car, Van 
& Area = Rural 

Fatal 109  12.21  

Table 8 
Top 20 if-then rules for serious injury crashes generated by RF.  

ID 
Rule 

Antecedents Consequent # % 

T54_12 Bike leaving carriageway = No & 
Vehicle 2 engine capacity ≤ 1000, 
1001–1500, 1501–2000, 2001–3000 & 
Vehicle 2 towing and articulation = No 
& Driver 2 age = 18–24, 25–34, 35–44, 
55–64, 65–74, ≥75 

Serious 449  50.06 

T39_8 Vehicle 2 type = PTW, Car, Van, Bus & 
Bike leaving carriageway = No & 
Cyclist home area = Urban 

Serious 406  48.51 

T27_2 Bike leaving carriageway = No & 
Cyclist home area = Urban & Vehicle 2 
skidding and overturning = No 

Serious 430  47.94 

T30_8 Bike leaving carriageway = No & 
Driver 2 Gender = M & Area = Urban 

Serious 401  44.70 

T24_9 Driver 2 Gender = M & Cyclist home 
area = Urban & Vehicle 2 towing and 
articulation = No 

Serious 341  38.02 

T3_6 Vehicle 2 leaving carriageway = No, 
Nearside & Driver 2 age ≤ 17, 18–24, 
25–34, 35–44, 45–54, ≥75 & Junction 
control = Give way/Stop 

Serious 323  35.30 

T67_14 Vehicle 2 type = Bike, PTW, Car, Van & 
Vehicle 2 manoeuvre = Going ahead, 
Overtaking 

Serious 311  34.67 

T48_12 Area = Urban & Vehicle 2 type = Bike, 
PTW, Car, Van, Bus & Driver 2 age ≤
17, 18–24, 35 44, 45–54, 55–64, ≥75 

Serious 307  34.23 

T23_7 Bike 1st point of impact = Front & Area 
= Urban 

Serious 286  31.88 

T49_9 Vehicle 2 manoeuvre = Going ahead & 
Vehicle 2 type = Car, Van, Bus 

Serious 265  29.54 

T13_12 Driver 2 Gender = M & Cyclist home 
area = Urban & Vehicle 2 engine 
capacity ≤ 1000, 1001–1500, 
1501–2000 & Cyclist manoeuvre =
Going ahead, Overtaking, Turning left/ 
right/U/Reversing 

Serious 256  28.54 

T4_14 Bike leaving carriageway = No & 
Vehicle 2 type = Bike, PTW, Car, Van & 
Junction detail = No junction, Other & 
Vehicle 2 manoeuvre = Going ahead, 
Overtaking, Turning left/right/U/ 
Reversing 

Serious 242  26.45 

T66_16 Vehicle 2 engine capacity ≤ 1000, 
2001–3000, >3000 & Vehicle 2 type =
Bike, PTW, Car, Van & Speed limit =
30, 40 

Serious 226  25.20 

T43_15 Vehicle 2 type = Bike, PTW, Car, Van & 
Driver 2 age ≤ 17, 18–24, 25–34, 
35–44, 55–64, 65–74, ≥75 & Vehicle 2 
manoeuvre = Going ahead 

Serious 206  24.91 

T34_15 Vehicle 2 manoeuvre = Going ahead, 
Overtaking, Turning left/right/U/ 
Reversing & Vehicle 2 type = Bike, 
PTW, Car, Bus & Driver 2 age ≤ 17, 
35–44, 45–54, 65–74, ≥75 

Serious 210  23.41 

T45_2 Vehicle 2 skidding and overturning =
No & Vehicle 2 manoeuvre = Going 
ahead & Vehicle 2 type = Car, Van & 
Vehicle 2 age ≤ 15 

Serious 205  22.85 

T26_5 Vehicle 2 manoeuvre = Going ahead & 
Cyclist age ≤ 17, 18–24, 25–34, 35–44, 
45–54 & Bike leaving carriageway =
No & Junction detail = Crossroads, Slip 
road 

Serious 198  22.07 

T36_14 Area = Urban & Driver 2 IMD = Less 
deprived 

Serious 197  21.96 

T65_1 Vehicle 2 towing and articulation = No 
& Vehicle 2 manoeuvre = Turning left/ 
right/U/Reversing & Bike 1st Point of 
impact = Front 

Serious 196  21.85 

T14_5 Driver 2 Gender = M & Junction detail 
= No junction & Bike leaving 
carriageway = No 

Serious 185  20.62  
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Fig. 1. Variable importance for fatal crashes.  
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were 8 and included: (1) the IMD of the second driver involved in the 
serious injury cyclist crash, that showed the relative deprivation level of 
the area the second driver involved in the serious injury cyclist crash 
lives in; (2) the skidding and/or overturning of the second vehicle (yes 
or no); (3) cyclist manoeuvre, that included manoeuvres like going 
ahead, moving off, overtaking, and turning left, right, U inversion and 
reversing; (4) lighting, that provided information about the lighting 

condition at the time the crash occurred (daylight or darkness); (5) bike 
hit off carriageway, that provided information about the cyclist impact 
against barriers, poles, trees or walls when hitting off the carriageway 
because of the crash; (6) the presence of towed or articulated vehicles in 
cyclist-other vehicle crashes (yes or no); (7) pavement, that contributed 
to understand the pavement condition at the time of the crash occur-
rence (dry or wet/frozen); and (8) the type of the second vehicle 

Fig. 2. Variable importance for serious cyclist crashes.  
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involved in the cyclist crash contributing to understand if the second 
vehicle involved in the crash when the outcome was a serious injury was 
another bike, a PTW, a car, a van, a bus or a truck. There were also 4 
variables of small importance (less than 20% of importance). 

The serious injury outcome was the consequent for 349 rules (1 with 
two antecedents, 11 with three antecedents, 337 with four antecedents, 
33.6% of the total rules). As the first antecedent, the most important 
variable, that was the bike leaving carriageway, gave rise to 27 if-then 
rules. Of which, almost the half of the rules identified the cyclist not 
leaving the carriageway. Interestingly, the variables that provided the 
greatest number of rules as first item were those identified also for fatal 
crashes: the manoeuvre of the second vehicle involved (60 rules out of 
349), the type of the second vehicle involved (54 rules out of 349), and 
its engine capacity (42 rules out of 349). In 37 rules, the most frequent 
manoeuvres associated to the second vehicle involved in the cyclist 
crash were turning left, turning right, U inversion, and reversing and 
moving off manoeuvres. The involvement of bus or truck in the cyclist 
crashes generated 39 rules with the serious injury outcome, followed by 
the PTW that was found in 34 rules. The strongest rule extracted by the 
RF trees was the rule T54_12 covering 50% of the observations falling in 
the tree from which the rule was extracted. The rule associated a cyclist 
that does not leave the carriageway and vehicles of different engine 
capacities with a serious injury crash as consequent. This rule confirmed 
the vulnerability of cyclists compared with motorized vehicles. The 
patterns of the second vehicle were further identified also affecting the 
serious cyclist crashes. The rule T67_14, indeed, associated the combi-
nation of manoeuvring and vehicle type with a greater probability of 
serious injury. 

Differently from fatal crashes with cyclist involvement, the RF 
identified the urban area as the most frequent context in which serious 
injury crashes are observed. The rule T23_7 provided the association of 
urban area and frontal impact with serious injury crashes. Another rule 
(T36_14) provided the association of urban area and the driver of the 
second vehicle involved living in less deprived area with serious injury 
crashes. When involved in crashes, (rule T65_1) the vulnerability of the 
cyclists of being involved in serious injury outcomes increases with a 
frontal impact with the second vehicle involved that is making turning 
left or right manoeuvres, U inversion or reversing. 

5.2. Random parameters logit model 

In the fatal severity prediction 21 explanatory variables with 45 in-
dicator variables were found to be statistically significant, whereas in 
the serious severity prediction 17 explanatory variables with 30 indi-
cator variables proved to be statistically significant. Four normal 
distributed indicator variables were found to produce random parame-
ters: cyclist age ≥ 75 (fatal prediction), cyclist gender male (fatal and 
serious prediction), and driver age 55–64 (serious prediction). The in-
dicator variable cyclist age ≥ 75 was associated with a mean of 3.29, and 
a standard deviation of parameter density function of 0.66. This means 
that, for more than 99.9% of the crashes with an elderly cyclist, the 
probability of the fatal outcome increased, while, just for a very small 
percentage (less than0.1%) of the observations, the probability of a fatal 
outcome decreased. For fatal prediction, the mean and standard devia-
tion of density function of cyclist gender male were respectively equal to 
0.37 and − 0.97 indicating that for 64.72% of the cyclist crashes the 
probability of a fatal outcome increased by the presence of a male cyclist 
whereas, for the remaining 35.28% of the observations, presence of a 
male cyclist caused a decrease in that probability. For serious outcome, 
the mean and standard deviation of density function of cyclist gender 
male amounted to − 0.11 and 1.56. This implies that for 52.80% of the 
observations with a male cyclist the probability of the serious crash 
decreased, meanwhile for 47.20% of the observations the probability of 
a serious outcome increased. The indicator variable driver age 55–64 
showed a mean of − 0.12, and a standard deviation of parameter density 
function of 0.51. This suggests that for 58.96% of the observations with a 

male driver the probability of the serious outcome decreased, whereas 
for 41.04% of crashes the probability of a serious outcome decreased. 

The model’s McFadden Pseudo R2 is equal to 0.21, indicating a very 
good fit. Whereas in terms of F-measures and G-mean the model per-
formed differently. For instance, the model ability in terms of F-mea-
sures is reasonable for serious injury (equal to 0.29) but low for fatal 
crashes (equal to 0.06). 

Instead, G-mean exhibited highest classification performance for 
fatal crashes (equal to 0.77) than serious injury (equal to 0.49) 
(Table 12). Similarly, the FPrate is lower for fatal crashes. 

The results for both the fixed and random variables were shown in 
Table 9 (part A and part B). For each significant variable (p-value less 
than 0.05), the βj estimated value was reported. Furthermore, in the 
Table 10 (part A and part B) the pseudo-elasticity values were provided 
(Table 11). 

High speed limits have a significant impact on the severity of cyclist 
crashes. In comparison to speed limits equal to 30 mph, speed limits of 
40 mph are linked to an increase of 2.67% in serious injuries and a 
significant increase of 19.61% in fatal crashes. The impact becomes even 
more pronounced for speed limits equal to or greater than 50 mph, with 
a substantial 8.25% higher probability of serious cyclist injuries and an 
alarming 36.63% higher probability of cyclist fatalities. These findings 
indicate a significant escalation in the likelihood of serious injuries and 
fatal crashes as speed limits increase. 

Interestingly, in comparison to single carriageways, roundabouts 
exhibit a significant decrease of 22.01% in the probability of fatal cyclist 
crashes, making them the road type with the lower probability of such 
crashes. In contrast, dual carriageways and slip roads show increases of 
6.41% and 13.62% respectively in the probability of cyclist fatalities. 
This highlights the contrasting safety profiles of different road types, 
with roundabouts offering a comparatively safer environment for cy-
clists, while dual carriageways and slip roads pose higher risks. 

The presence of darkness plays a significant role in crash severity, as 
reflected in the pseudo-elasticity values. For fatal cyclist crashes, dark-
ness is associated with an increase of 14.47% in the probability, indi-
cating that cycling during darker conditions raises the risk of fatal 
crashes. Moreover, darkness also shows a slight increase of 2.55% in the 
probability of serious cyclist crashes. 

Wet/frozen pavement is significant mainly for fatal crashes, with an 
increase of 7.75% in probability. On the other hand, weekends exhibit a 
broader effect, leading to an increase in both fatal and serious crashes. 
For fatal crashes, weekends are associated with an increase of 6.77% in 
the probability, suggesting a higher risk of fatal outcomes during this 
time. Furthermore, weekends also show a slight increase of 2.61% in the 
probability of serious injuries. 

Bike leaving the carriageway on the nearside and offside is strongly 
associated with crash severity, as highlighted by the pseudo-elasticity 
values. When the bike leaves the carriageway on the nearside, there is 
a substantial 31.32% increase in the probability of fatal crashes and a 
noticeable 5.41% increase in the probability of serious injuries. Simi-
larly, when the bike leaves the carriageway on the offside, the impact is 
even more pronounced, with a significant 65.62% increase in the 
probability of fatal crashes and a substantial 11.72% increase in the 
probability of serious injuries. 

Considering vehicle 2 engine capacity with 1501–2000 as the base-
line, engine capacity greater than 3000 is associated with a substantial 
increase of 54.26% in the probability of cyclist fatalities and a noticeable 
increase of 5.74% in the probability of serious injuries. These findings 
suggest that encounters with vehicles possessing larger engine capacities 
pose a significantly higher risk to cyclists in terms of both fatal outcomes 
and serious injuries. 

Regarding driver-related factors, both male gender and young 
drivers (≤17) increase the probability of fatal crashes by 5.52% and 
4.75% respectively. The most influential variable is cyclist age. 
Compared to young cyclists (25–34), older cyclists exhibit an escalating 
risk of fatal crashes: for cyclists aged 35–44, the probability increases by 
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Table 9 
Mixed logit: parameter estimates (Part A).  

Variable Fatal Serious      

β Std. 
Err. 

p- 
value 

β Std. 
Err. 

p- 
value 

Intercept − 0.82 0.04 <0.001 0.16 0.06 0.01 
Speed Limit (30 

mph as baseline)       
20 − 0.13 0.02 <0.001 − 0.10 0.03 <0.001 
40 0.89 0.02 <0.001 0.12 0.04 <0.001 
≥ 50 1.67 0.03 <0.001 0.38 0.05 <0.001 
Area (Rural as 

baseline)       
Urban − 0.66 0.02 <0.001 − 0.18 0.03 <0.001 
Junction control 

(Not at junction 
or within 20 m 
as baseline)       

Give way/Stop − 0.74 0.01 <0.001 − 0.08 0.02 <0.001 
Traffic lights 0.30 0.01 <0.001    
Pedestrian crossing 

physical 
facilities (No 
physical crossing 
facilities within 
50 m baseline)       

Central refuge 0.93 0.01 <0.001    
Pedestrian phase 

at traffic signal 
junction 

0.44 0.02 <0.001 − 0.13 0.04 <0.001 

Pelican puffin 
toucan or 
similar non 
junction 
Pedestrian light 
crossing 

0.31 0.01 <0.001    

Zebra − 0.43 0.02 <0.001    
Road type (Single 

carriageway as 
baseline)       

Dual carriageway 0.29 0.01 <0.001    
Roundabout − 1.00 0.02 <0.001    
Slip road 0.62 0.03 <0.001    
Lighting (Daylight 

as baseline)       
Darkness 0.66 0.02 <0.001 0.12 0.03 <0.001 
Pavement (Dry as 

baseline)       
Wet/Frozen 0.35 0.01 <0.001    
Weather (Clear as 

baseline)       
Raining − 0.46 0.02 <0.001 − 0.19 0.04 <0.001 
Day of week 

(Weekday as 
baseline)       

Weekend 0.31 0.01 <0.001 0.12 0.03 <0.001 
Number of bikes (1 

as baseline)       
>1 1.04 0.05 <0.001 0.84 0.07 <0.001 
Bike 1st point of 

impact (No 
impact as 
baseline)       

Back    − 0.58 0.05 <0.001 
Front − 0.68 0.02 <0.001 − 0.16 0.04 <0.001 
Nearside/Offside − 0.66 0.03 <0.001 − 0.34 0.04 <0.001 
Bike leaving 

carriageway 
(No as baseline)       

Nearside 1.43 0.04 <0.001 0.25 0.06 <0.001 
Offside 2.99 0.08 <0.001 0.54 0.13 <0.001 
Vehicle 2 skidding 

and overturning 
(No as baseline)       

Yes 0.37 0.03 <0.001 0.40 0.02 <0.001 
Vehicle 2 engine 

capacity        

Table 9 (continued ) 

Variable Fatal Serious     

(1501–2000 as 
baseline) 

≤ 1000 0.50 0.01 <0.001    
2001–3000 0.08 0.02 <0.001    
>3000 2.47 0.04 <0.001 0.26 0.06 <0.001 
Vehicle 2 age 

(≤15 as 
baseline)       

>15    − 0.49 0.01 <0.001 
Table 9. Mixed 

logit: 
parameter 
estimates (Part 
B)       

Variable Fatal Serious      
β Std. 

Err. 
p- 
value 

β Std. 
Err. 

p- 
value 

Intercept − 0.82 0.04 <0.001 0.16 0.06 0.01 
Driver 2 gender 

(Female as 
baseline)       

Male 0.25 0.01 <0.001    
Driver 2 age 

(25–44 as 
baseline)       

≤17 0.22 0.06 <0.001    
18–24 − 0.24 0.02 <0.001    
35–44 − 0.41 0.02 <0.001 − 0.21 0.03 <0.001 
45–54 − 0.73 0.02 <0.001 − 0.14 0.04 <0.001 
55–64 − 0.19 0.02 <0.001 − 0.12 0.05 0.01 
St. dev. of 

density 
function 
55–64 

0.51 0.19 0.01    

65–74 − 1.35 0.03 <0.001 − 0.12 0.05 0.02 
≥75 − 0.94 0.03 <0.001 0.13 0.06 0.03 
Cyclist IMD (Less 

deprived as 
baseline)       

More deprived 0.14 0.01 <0.001    
Cyclist gender 

(Female as 
baseline)       

Male 0.37 0.02 <0.001 − 0.11 0.03 <0.001 
St. dev. of 

density 
function Male 

− 0.97 0.03 <0.001 1.56 0.06 <0.001 

Cyclist age (25–34 
as baseline)       

≤17 − 0.07 0.02 <0.001    
18–24 0.12 0.02 <0.001    
35–44 0.43 0.02 <0.001 0.28 0.03 <0.001 
45–54 0.61 0.02 <0.001 0.47 0.03 <0.001 
55–64 1.40 0.02 <0.001 0.6 0.04 <0.001 
65–74 2.35 0.04 <0.001 0.69 0.06 <0.001 
≥75 3.29 0.07 <0.001 0.74 0.10 <0.001 
St. dev. of 

density 
function ≥ 75 

− 0.66 0.10 <0.001    

Cyclist journey 
purpose 
(Commuting to 
from work as 
baseline)       

Journey as part of 
work 

− 0.39 0.03 <0.001    

To/from school 0.30 0.03 <0.001 − 0.27 0.07 <0.001 
Number of 

observations 
72,363      

Log likelihood 
null model 

− 79,499      

Log likelihood 
full model 

− 62,668      

IMD = Index of Multiple Deprivation. 
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9.55%. It further rises to 13.47% for cyclists aged 45–54, 30.67% for 
cyclists aged 55–64, 51.51% for cyclists aged 65–74, and a significant 
73.79% for cyclists aged ≥ 75. These findings highlight the increasing 
risk associated with older age groups in terms of fatal outcomes. Thus, as 
cyclist age increases, the probability of experiencing a fatal or a serious 
crash significantly rises. 

Finally, the purpose of the cyclist’s journey, specifically when it is to 
or from school, influences the probability of fatal crashes, as indicated 
by the pseudo-elasticity value of 6.65%. When the cyclist’s journey is 
specifically related to commuting to or from school, there is a notable 
6.65% increase in the probability of fatal outcomes. 

6. Discussion 

Study results identified several roadways, environmental, vehicle, 
driver, and cyclist-related factors associated with cyclist crash severity. 
The integrated use of the RF and the RPLM yielded significant findings in 
analysing the cyclist crash severity. Both RF and RPLM models found 
that rural area, characterized by higher speed limits, was where the most 
severe crashes occurred. Indeed, the probability of a serious or a fatal 
outcome increases exponentially with the speed limit. This finding is 
consistent with previous studies (Cloutier at al., 2019; Isaksson-Hellman 
and Töreki, 2019). The higher the speed, the greater the stopping dis-
tance required, and hence the increased probability to have the most 

severe injury. To mitigate these effects, we recommend specific safety 
countermeasures such as traffic calming and low speed zones in areas 
with significant cyclists’ activity, and strict speed enforcement as carried 
out in Oslo and Helsinki that achieved the zero pedestrian and cycling 
fatality goal by decreasing the traffic speeds (ETSC, 2020). 

Regarding the road related variables, the results of both models 
further showed that the likelihood of fatal crash occurrence increases on 
dual carriageways, slip roads and at junctions controlled by traffic lights. 
Although several studies have identified intersections as dangerous 
areas (Moore et al., 2011; Yuan and Abdel-Aty, 2018), the RPLM showed 
that the probability of a fatal crash in the roundabout is lower than on 
dual or single carriageways. This is mainly due to the reduction of 
vehicle speeds in roundabouts (Montella, 2011, 2018). 

As regards the light condition, nighttime is related to the increase of 
injury severity. The likelihood of fatal and serious crash occurrence at 
night is much higher than during the daytime. Cyclist visibility is an 
important road safety issue, especially in unlit streets at night where 
both drivers and cyclist sight are critically reduced (Chen and Funny, 
2019; Hu et al., 2022). Lighting with light emitting diodes (LEDs), 
mandatory bicycle lights, and reflective clothing for cyclists can improve 
visibility during the nighttime. 

Regarding the cyclist characteristics, male cyclists were found to 
have an increased likelihood of fatal outcome because of their higher 
tendency for risky behaviour. This is in line with the findings of previous 
research (Bíl et al., 2010; Hosseinpour et al., 2021; Eluru et al., 2008; 
Meredith et al., 2020). The age of the cyclist was also found to be a 
statistically significant variable, with elderly cyclists (age ≥ 75) showing 
a dramatic increase in the probability of a fatal outcome. This result 
might be due to the greater fragility of older cyclists as well as to their 
increased reaction and perception times. These observations are in line 
with the findings of previous research (Bahrololoom et al., 2020; Liu 
et al., 2020; Oikawa et al., 2019; Samerei et al., 2021). Safety 

Table 10 
Pseudo-elasticity for significant variables (Part A).  

Variable Fatal Serious 

Speed Limit (30 mph as baseline)   
20  − 2.96%  − 2.23% 
40  19.61%  2.67% 
≥ 50  36.63%  8.25% 
Area (Rural as baseline)   
Urban  − 14.65%  − 4.03% 
Junction control (Not at junction or within 20 m as baseline)  
Give way/Stop  − 16.34%  − 1.72% 
Traffic lights  6.49%  
Pedestrian crossing physical facilities (No physical crossing facilities within 50 m baseline) 
Central refuge  20.36%  
Pedestrian phase at traffic signal junction  9.74%  − 2.85% 
Pelican puffin toucan or similar non junction Pedestrian 

light crossing  
6.78%  

Zebra  − 9.44%  
Road type (Single carriageway as baseline)   
Dual carriageway  6.41%  
Roundabout  –22.01%  
Slip road  13.62%  
Lighting (Daylight as baseline)   
Darkness  14.47%  2.55% 
Pavement (Dry as baseline)   
Wet/Frozen  7.75%  
Weather (Clear as baseline)   
Raining  − 10.15%  − 4.21% 
Day of week (Weekday as baseline)   
Weekend  6.77%  2.61% 
Number of bikes (1 as baseline)  
>1  22.87%  18.29% 
Bike 1st point of impact (No as baseline)  
Back   − 12.63% 
Front  − 14.87%  − 3.60% 
Nearside/Offside  − 14.50%  − 7.52% 
Bike leaving carriageway (No as baseline)  
Nearside  31.32%  5.41% 
Offside  65.62%  11.72% 
Vehicle 2 skidding and overturning (No as baseline) 
Yes  8.68%  8.00% 
Vehicle 2 engine capacity (1501–2000 as baseline)  
≤ 1000  10.91%  
2001–3000  1.78%  
>3000  54.26%  5.74% 
Vehicle 2 age (≤15 as baseline)  
>15   − 10.67%  

Table 11 
Pseudo-elasticity for significant variables (Part B).  

Variable Fatal Serious 

Driver 2 gender (Female as baseline)   
Male  5.52%  
Driver 2 age (25–44 as baseline)   
≤17  4.75%  
18–24  − 5.23%  
35–44  − 8.99%  − 4.58% 
45–54  − 15.92%  − 3.00% 
55–64  − 4.13%  − 2.52% 
65–74  − 29.55%  − 2.61% 
≥75  − 20.60%  2.75% 
Cyclist IMD (Less deprived as baseline)   
More deprived  3.01%  
Cyclist gender (Female as baseline)   
Male  8.06%  − 2.40% 
Cyclist age (25–34 as baseline)   
≤17  − 1.67%  
18–24  2.59%  
35–44  9.55%  6.14% 
45–54  13.47%  10.26% 
55–64  30.67%  13.01% 
65–74  51.51%  15.15% 
≥75  73.79%  16.44% 
Cyclist journey purpose (Commuting to from work as baseline)   
Journey as part of work  − 8.44%  
To/from school  6.65%  − 5.87%  

Table 12 
Performance measures of the RPLM.  

Severity level F-measure G-mean FPrate McFadden R2 

Fatal  0.06  0.77  0.15 0.21 
Serious injury  0.29  0.49  0.24 
Slight injury  0.72  0.53  0.43  
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improvement strategies focused on male and elderly cyclists should 
include education and/or training of cyclists through programs aimed at 
teaching safe cycling skills, the building of buffered cycle lanes with 
forgiving curbs to consider that people make mistakes, the removal of 
obstacles from the bike path, and regulations requiring the use of helmet 
while cycling. Helmet use has been shown to be 85 and 88% effective in 
mitigating head and brain injuries while nearly 70% of bicyclist fatal-
ities involve head injuries (WHO, 2020). The increasing helmet use is 
essential for future improvements in cyclist safety. Moreover, the bike 
helmets with airbags developed in Sweden produced a significantly 
reduction in the risk of most severe injuries (WHO, 2020). 

Although “poverty” and “deprivation” have often been considered as 
synonyms, there is a clear distinction between the two terms. Depriva-
tion refers to people’s unmet needs whereas poverty refers to the lack of 
resources required to meet those needs (McLennan et al., 2019). Thus, 
people are deprived if they lack the resources of all kinds, not just in-
come. The main measurement of deprivation for England is the IMD, 
which is a measure of relative deprivation of small areas roughly 
equivalent to postcode areas, each with a similar population size. It is 
based on 7 different domains of deprivation (income deprivation, 
employment deprivation, education, skills and training deprivation, 
health deprivation and disability, crime, barriers to housing and services 
and living environment deprivation), defining deprivation in a broad 
way to encompass a wide range of aspects of an individual’s living 
conditions (Townsend, 1979). Since the Department of Transport 
(2022b) found an association between casualties and deprivation at the 
national level, we investigated driver and cyclist IMD. The mixed logit 
model showed that cyclists from more deprived areas were more likely 
to die due to a crash. Probably, this is for the lack of adequate cyclist 
facility and safety education. Thus, it’s necessary to invest equitable 
among different areas in well-connected and continue cycling infra-
structure and to develop educational programs focused on road safety. 

The RF model identified the gender of the second vehicle’ driver as 
one of the variables having the greatest normalized importance and 
higher predictive ability for fatal classification. Like the effects of male 
cyclist, the mixed logit found male drivers increasing the likelihood of 
fatal crash relative to their female counterparts. Young drivers were also 
more likely to be involved in the fatal crashes, and results of both 
econometric and machine learning methods confirm previous findings 
(Scholes et al., 2018). These outcomes may be explained by the poor 
skills of young drivers and the driving style of young or male drivers that 
is usually more aggressive. The implementation and exercising of legal 
regulations concerning road safety, targeted safety campaigns, and 
educational programs for young and male drivers may contribute to the 
change of bed behaviours and the increase in awareness. 

Regarding the second vehicle involved in the cyclist crash charac-
teristics, RF model has associated vehicles older than 15 years with an 
increasing in likelihood of fatal crashes, while mixed logit model has 
identified older vehicles as a predictor of serious crashes. Although 
previous studies showed that increasing vehicle age increases the 
probability of most severe injuries (Behnood and Mannering, 2015), the 
association between vehicle age and cyclist crash severity is complex 
(Behnood et al., 2014). As the vehicle type, bus and truck occurred in 56 
rules with fatal crash as consequent and in 39 rules with the serious 
injury outcome. These results are in line with the findings of previous 
research (Damsere-Derry and Bawa, 2018; Joo et al., 2017; Mason-Jones 
et al., 2022; Sun et al., 2022a). 

The overall findings regarding the vehicle type are due to the larger 
mass and the wider stiffness, the major area of impact for cyclists, the 
higher bumper height, and the greater stopping distances that charac-
terized bus and truck as compared with other vehicles. In London, even 
though heavy goods vehicles account just for a very small percentage of 
vehicle kilometres, they are involved in 20% of the cyclist fatal crashes 
(RoSPA, 2015). The truck side guards, also known as lateral protective 
devices (designed to keep pedestrians and cyclists from being run over 
by rear wheels of a large truck), may be effective in reducing the severity 

of crashes between trucks and cyclists. Overpasses and underpasses that 
enable cyclists to cross distributor roads without sharing the space with 
motorized vehicles, separate facilities for vehicle types (trucks/bus and 
bikes), mirrors on signal posts to enable large vehicle drivers to see in 
otherwise blind spots, the use of safer trucks with a better visibility and 
education of drivers, cyclists and road managers could be also useful 
measures to improve cyclist safety. Both econometric and machine 
learning methods showed that higher engine capacity of second vehicle 
involved in the crash increases the probability of fatal outcome. This is 
likely because, the motor vehicle with a larger engine capacity tends to 
attain higher speed and such drivers are also more likely to be aggressive 
assuming a risk behaviour (Mazharul Haque et al., 2009). 

As regards the journey purpose, the models identified the most 
dangerous situation as the way to and from school, situations when the 
children are unprotected road users (European Commission, 2012). 
Furthermore, the RF model found the variable vehicle 2 manoeuvre 
having the greatest normalized importance for fatal classification. The 
RF rules showed that the most frequent manoeuvres associated to the 
second vehicle involved in the fatal crash were the turning left, turning 
right, U inversion, and reversing. These results are in line with previous 
studies (Behnood and Mannering, 2017; van Haperen et al., 2018, Wang 
et al., 2018) and suggest planning specific protected cycle lanes and 
providing separation for turning manoeuvres of cyclists and motor ve-
hicles. Other relevant countermeasures for crash severity reduction 
include Intelligent Transportation System (ITS) safety applications that 
have proved their effectiveness reducing road fatalities by minimizing 
human error. The ITS applications for enhancing cyclist safety involve 
road user presence warning signals, traffic signal prioritisation based on 
the detection of cyclists, intelligent cycling infrastructure which reflect 
patterns of cycle flows within defined areas (such as major destinations – 
schools, train stations or university), and Advanced Driver Assistance 
Systems (ADAS). Most of the existing ADAS are designed for motorized 
vehicles (e.g., autonomous emergency braking,). However, they can also 
be available for cyclists, either as an application on a smartphone or as a 
dedicated device, which can be integrated in the bike (Scarano et al., 
2023; Scholliers et al, 2017). 

7. Conclusions 

In this paper, both a machine learning method, as the RF, and an 
econometric model, as the RPLM, were implemented to identify several 
patterns associated with severe injury and fatal cyclists’ crashes. These 
associations were examined using crash data from Great Britain in the 
period between 2016 and 2018. 

The Random Survival Forest demonstrated higher prediction accu-
racy among the three performed RF algorithms. The RF tool showed that 
the interaction between a bike and other motorized vehicles is likely to 
increase the crash severity. Such critical interactions were only identi-
fied by the RF. Moreover, the second vehicle manoeuvre, the second 
vehicle type, the driver’s gender, journey purpose, and IMD were also 
identified by the RF variable importance rank as the variables exhibiting 
the highest detrimental impact on crash severity. 

The RPLM showed that four indicator variables, such as cyclist age ≥
75 (fatal prediction), cyclist gender male (fatal and serious prediction), 
and driver age 55–64 (serious prediction), were associated with nor-
mally distributed random parameters, with statistically significant 
standard deviation of parameter density function indicating significant 
unobserved heterogeneity in the data. Furthermore, the pseudo- 
elasticity of the explanatory variables provided the magnitude of the 
effects of each variable on injury severity probabilities, gaining valuable 
insights into the relative importance and influence of the variables. For 
instance, speed limit emerged as a significant factor, with higher limits 
demonstrating positive elasticities for both fatal and serious crashes. The 
junction control and road characteristics also showed notable effects. 
Specifically, the presence of zebra crossings and roundabouts are asso-
ciated with a negative pseudo-elasticity, indicating their potential as 
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safety-enhancing features. Lighting conditions as well as the number of 
bikes involved in the crash played a significant role, with the darkness 
and the presence of multiple bikes involved in the crash increase the 
probabilities of experiencing fatal and serious outcome. While the RPLM 
felt short in capturing the effects of the second vehicle, the RF provided 
several results related to the effects of the second vehicle on crash 
severity. 

Finally, focusing specifically on factors related to the cyclist, the 
pseudo-elasticities values revealed that a cyclist leaving the carriageway 
on the nearside or offside as well as the older age cyclist groups (55–64, 
65–74, ≥75) strengthened the possibility of both fatal and serious 
outcome. As cyclist age increases, the probability of experiencing a fatal 
or a serious crash significantly rises. 

The RPLM identified a larger number of predictors compared to the 
RF. However, the RF method automatically detected patterns and re-
lationships within datasets being able to uncover hidden correlations 
that were not captured by the econometric models. The insights pro-
vided by the machine learning tool are valuable because they shed light 
on the interdependence among the different factors related to road 
infrastructure, the environment, the vehicle characteristics, and the 
driver and cyclist influencing cyclist’ crashes. This interdependence 
refers to how these factors interact leading to the severity of crashes. 

As regards the methodological perspective, this study shows that 
safety analyses combining both econometric and machine learning 
models are very useful and informative. Econometric models may pro-
vide quantitative and easy interpretable insights into the factors influ-
encing cyclist crash severity, while machine learning models may detect 
complex crash scenarios and uncover hidden correlations among the 
contributing factors. By integrating these two approaches, policymakers 
and researchers can gain a comprehensive understanding of the factors 
contributing to cyclist safety and develop targeted interventions and 
policies to mitigate risks and improve overall safety for cyclists. 

In this study, the random parameters logit model was estimated 
without accounting for heterogeneity in means and variances. A corre-
lated and grouped random parameters model with heterogeneity in 
means and/or variances is thus the direction of future research. 
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